JPH0384925A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0384925A
JPH0384925A JP1221989A JP22198989A JPH0384925A JP H0384925 A JPH0384925 A JP H0384925A JP 1221989 A JP1221989 A JP 1221989A JP 22198989 A JP22198989 A JP 22198989A JP H0384925 A JPH0384925 A JP H0384925A
Authority
JP
Japan
Prior art keywords
layer
recess
implanted
concentration
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1221989A
Other languages
Japanese (ja)
Inventor
Kayoko Tamura
田村 かよ子
Haruhide Fuse
玄秀 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1221989A priority Critical patent/JPH0384925A/en
Publication of JPH0384925A publication Critical patent/JPH0384925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To form a capacitor electrode part having an n<+> layer of a definite concentration by a method wherein p-type ions are implanted into a sidewall and a bottom part of a first recessed part and n-type ions are implanted into the bottom part of the first recessed part so as to offset a p<+> layer. CONSTITUTION:An SiO2 film 2 is formed on a p-type substrate 1 by a thermal oxidation method and a CVD method; a first recessed part 3 is formed in a separation part and a trench capacitor formation part by a dry etching operation by using a selective photoresist mask. Boron ions 4 are implanted into sidewalls in all directions four times obliquely by a 90-revolution step ion implantation operation to form a p<+> layer 5. Then, arsenic ions 17 are implanted four times obliquely by a 90-revolution step ion implantation operation. Thereby, a boron ion implantation layer at a bottom part of an implated groove is offset and transformed sufficiently into an n-type. Since a concentration of the p<+> layer in sidewalls of a second deep recessed part directly under the first recessed part is offset by an n-layer and suppressed, a p<+> high concentration part is not produced in a storage node to be formed later and an n<+> layer can be formed in a state having a uniform concentration.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法に関し 具体的には高密
度LSI、特に高密度メモリーの製造方法に関するもの
であも 従来の技術 超高密度LSIのためSCC構造(Surrounde
dCapacitor Ce1l)が1987年固体素
子コン77レンスにおいて、本発明者等によって報告さ
れていも この中に第4図に示すような手法が行われて
い4 3CC構造の製造方法の途中までの説明を第4図
の工程断面図に基づいて行う。同図(a)工程において
p型Si基板l上に5ift膜2を形威し 分離を共用
するトレンチキャパシタの形成部を5ide膜2をマス
クとして垂直にエツチングして第1の凹部3を形成すも
 そして、(b)工程にてボロンイオン注入4によって
p゛領域5を形成・すも後に形成されるソース(上部)
とストレージノード(下部)の接続が必要な部分に ヒ
素イオン注入17によってp+領域5上の側壁にn+領
域18を形成すも 次に(C)工程にて、カバレッヂの
優れたCVD5iO*膜を形成して、垂直性の強いエツ
チングにてサイドウオール5iO26を残も そして(
d)工程にて深いトレンチキャパシタ形成部である第2
の凹部7を形成するためにシリコンエツチングを行う。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor device, and specifically relates to a method of manufacturing a high-density LSI, especially a high-density memory. SCC structure (Surrounde
dCapacitor Ce1l) was reported by the present inventors at the 1987 Solid State Device Conference 77, but the method shown in Figure 4 was used in this report. This is done based on the process cross-sectional diagram in Figure 4. In the step (a) of the same figure, a 5-IFT film 2 is formed on a p-type Si substrate 1, and the formation portion of a trench capacitor that shares isolation is vertically etched using the 5-Ide film 2 as a mask to form a first recess 3. Then, in step (b), a p region 5 is formed by boron ion implantation 4, and a source (upper part) is formed after that.
An n+ region 18 is formed on the sidewall above the p+ region 5 by arsenic ion implantation 17 in the area where connection between the storage node (bottom) and the storage node (lower part) is required.Next, in step (C), a CVD 5iO* film with excellent coverage is formed. Then, the sidewall 5iO26 was left by etching with strong verticality and (
d) In the process, the second
Silicon etching is performed to form the recess 7.

そしてボロンイオン注入8を側壁すべてにイオン注入し
p゛層9形成し 続いてAsイオン10を続けて側壁す
べてに注入しn0層11を形威すも 発明が解決しようとする課題 しかし このようにして形成した場合に次に示すような
問題が生じも それを第5図を用いて説明すも 第2の
凹部を形成したalookeVの加速エネルギーにてl
Xl0’″Cm−”のドーズ量のボロンを4回ステップ
イオン注入し サイドウオールS i O*6のすぐ近
くのボロンの分布を同図(a)に示す。 10 ”c 
m−”のやや濃度の高い部分がサイドウオールの少し下
に存在していも そして同図(b)は第1の凹部におい
て加速エネルギー150keV、ドーズ量2 X 10
”cm−”を4回ステップイオン注入したときのAsの
原子の濃度の等濃緑である力<  (a)に示すボロン
濃度が10”cmすである部分でのAsの濃度(よ は
ぼ同等になっていも このたべ キャパシタ電極の一部
のn0層が90層に打ち消されて切断されてしまう力\
 あるい(よ キャパシタを形成した後に形成されるス
トレージノードに十電圧が印加されると空乏化してしま
1.%  n“層として働かなくなるだけでなく、上部
のトランスファゲートトランジスタのソースとの接続も
切断されてしまう。
Then, boron ions 8 are implanted into all the side walls to form a p layer 9, and then As ions 10 are successively implanted into all the side walls to form an n0 layer 11. If the second recess is formed, the following problem may occur, which will be explained using Fig. 5.
Boron was step-implanted four times at a dose of Xl0'''Cm-'', and the distribution of boron in the immediate vicinity of the sidewall S i O *6 is shown in FIG. 10”c
Even if the part with a slightly higher concentration of "m-" exists slightly below the sidewall, the figure (b) shows that the acceleration energy is 150 keV and the dose is 2 x 10 in the first recess.
The force that is the same dark green as the concentration of As atoms when step ion implantation of "cm-" is performed four times < The concentration of As at the part where the boron concentration shown in (a) is 10 cm (approximately equivalent) Even if it is, the force that causes part of the n0 layer of the capacitor electrode to be canceled by the 90 layer and cut \
Or (Yo) If a voltage of 100% is applied to the storage node formed after forming the capacitor, it becomes depleted and not only does it no longer function as a 1.% n layer, but also the connection with the source of the upper transfer gate transistor. It gets cut off.

この様な従来の方法で(よ メモリセルの動作が不安定
になったり、特殊な狭い電圧範囲゛でし力\動作しない
状態になってしまう。この課題を解決する一つの方法が
半導体装置の製造方法として発明者の一人から特許出願
(出願番号63−5155)されていも これは第1の
凹部を形成された眞 わずかに凹部を追加エツチングす
ることでpoの高濃度部を取り去る方法であも しかし
この方法によると、 ドライエツチングを1回よぶんに
行うため工程数が増加すること及び微小な精密エツチン
グが必要となるため工程コストが増加すも本発明4tS
CC構造のメモリセルを形成するにあたり、このキャパ
シタ側壁の一部のn4層が93層に打ち消されることな
く一定の濃度のn0層をもつキャパシタ電極部を形成で
きる半導体装置の製造方法を提供することを目的とする
With conventional methods like this, the operation of the memory cell becomes unstable or the memory cell becomes inoperable within a special narrow voltage range.One way to solve this problem is to improve the performance of semiconductor devices. Although one of the inventors has filed a patent application (Application No. 63-5155) for the manufacturing method, this is a method in which the high concentration portion of PO is removed by etching a slight additional recess after the first recess is formed. However, according to this method, the number of steps increases because dry etching is performed once, and the process cost increases because minute precision etching is required.
To provide a method for manufacturing a semiconductor device in which a capacitor electrode part having a constant concentration of n0 layer can be formed without the part of n4 layer on the side wall of the capacitor being canceled by the 93 layer when forming a memory cell of CC structure. With the goal.

課題を解決するための手段 本発明は上述の課題を解決するた△ 半導体基板に第1
の凹部を形成する工程と、前記第1の凹部側壁および底
部にp型イオンを注入する工程と、前記第1の凹部底部
に前記p型イオン注入によるp゛層を打ち消すようにn
型イオンを注入する工程と、その後前記半導体基板上に
絶縁膜を堆積する工程と、垂直性の優れたエツチング法
にて前記絶縁膜をエツチングして前記第1の凹部側壁部
に絶縁膜を残留させる工程と、前記第1の凹部側壁部に
残留させた絶縁膜をマスクとしてトレンチエツチングを
行い第2の凹部を形成する工程と、その第2の凹部側壁
に少なくともn層形成を行う工程とを備えた半導体装置
の製造方法であも作用 本発明は上述の構成により、第1の凹部のすぐ下の深い
第2の凹部側壁における99層の濃度がn層に打ち消さ
れて抑えられるた敗 後に形成するストレージノード中
にp0高濃度部が生じi’;n”層が均一な濃度を持つ
状態で形成され その結果安定した特性のダイナミック
RAMセルが形成できも 実施例 以下本発明の製造方法を具体的な一実施例に基づいて説
明すも 第1図(a)〜(f)は半導体装置の製造方法を示す工
程断面図であも 同図工程(a)においてp型Si基板
1上に5ide膜2を熱酸化およびCVD法にて約1μ
mの厚さにまで形威すも そして、分離部およびトレン
チキャパシタ形成部に選択的なホトレジストマスクを用
いてドライエツチングにて第1の凹部3を形威すも こ
の時の第1の凹部3の深さは0.6μmであうtも  
そして、加速エネルギー30 key、  ドーズ量1
 、5 X 10 ”cr”(7)ボロンイオン注入4
を斜め4回90 回転ステップイオン注入にて、全ての
方向の側壁に注入し99層5を形成すも 次に(b)工
程にて加速エネルギー150keV、ドーズ量2 X 
10 ”cm−”のヒ素イオン注入17を斜め4回90
 回転ステップイオン注入すもこのことによって、工程
(a)において注入された溝底部のボロンイオン注入層
が打ち消された上に十分n型化すも この注入プロファ
イルを第2図に示も 同図(a)は従来の方&  (b
)は本発明の方法であa 本発明の方法で?!Asの不
純物濃度が完全にBの不純物濃度より高くなっていも 
その抵 工程(C)において減圧CVD法にて5ins
層を0.15μm形成してリアクティブイオンエツチン
グ法にて5insを垂直エツチングしサイドウオール5
iOe6を形成すも その次に工程(d)において、こ
れらの5iOe6をマスクとして深いトレンチエツチン
グによって第2の凹部7を形成すもそして従来例と同じ
ようにボロン8およびAs10を注入してp゛層9n°
層11を形成すも 工程(e)にてさらにトレンチを掘
り下げして、B0イオンを垂直に注入して底部のp゛層
19の濃度を上げも この方法によって作成した場合に
 はぼ完成したダイナミックRAMのセルの断面図は(
f)に示すとおりであ、LMOSトランジスタのソース
12、  ゲート13.  ドレイン14であり1.第
2の凹部7は薄い酸化膜をはさん弘 ポリシリコンプレ
ート15を形成し 上部は減圧CVDSiO2にて埋め
込んでしまう。ワードライン16はゲート13形成時に
同時に形成されも ここにおいてソース12とキャパシ
タストレージ電極11は接続されており、 ドレイン1
4とは分離された形となっていも 以上のように 本実
施例によればソースとストレージ電極との接続が十分に
行なうことが可能であん このた△ 非常に良好なキャ
パシタ部を側壁に形成できも 第3図はこれらの方法で
形成したキャパシタの容量のストレージノード電圧変化
依存性を07時の容量(C・)を基準にして示していも
 この場合、プレート電圧は1.5Vに固定されていも
 従来の方法すと本発明の方法aとはまったく同じトレ
ンチ形成法で作成されているカー 従来方法では一部が
空乏化してしまい容量は急激に低下すも また本発明の
方法によって作成することによりC/C・値が3vで約
85%の大きさとなり、大きな容量低下はなく良好な特
性を得ることができた さらに 第1の凹部の側壁の深
さ方向について(よ n型層よりもp型原子が深くまで
、進入するエネルギーを選ぶことによりダイナミックR
AM形成時のn゛電極間パンチスルーを抑える効果も可
能となん な抵 本実施例ではn型層としてAsイオンを用いた7
5t  Pイオンでも同等であも またAsイオンがボ
ロン層を打ち消すことについて(よ プロセス中に行わ
れる全ての熱処理における熱拡散を生じた後に打ち消す
状態となる必要があり、注入直後に完全に打ち消してい
る必要はなり〜発明の効果 以上のように本発明によれば 第1の凹部のすぐ下の深
い第2の凹部側壁における92層の濃度がn層に打ち消
されて抑えられるたべ 後に形成するストレージノード
中にp0高濃度部が生じ′¥ n層層が均一な濃度を持
つ状態で形成され その結果安定した特性のダイナミッ
クRAMセルが形成できも
Means for Solving the Problems The present invention solves the above-mentioned problems by:
a step of implanting p-type ions into the side walls and bottom of the first recess, and a step of implanting p-type ions into the bottom of the first recess so as to cancel out the p-layer formed by the p-type ion implantation.
a step of implanting type ions, a step of depositing an insulating film on the semiconductor substrate, and etching the insulating film using an etching method with excellent verticality to leave the insulating film on the side wall of the first recess. forming a second recess by performing trench etching using the insulating film left on the side wall of the first recess as a mask; and forming at least an n layer on the side wall of the second recess. According to the present invention, with the above-described structure, the concentration of the 99 layer on the side wall of the deep second recess immediately below the first recess is suppressed by being canceled by the n layer. A high p0 concentration area is formed in the storage node to be formed, and the i';n'' layer is formed with a uniform concentration.As a result, a dynamic RAM cell with stable characteristics can be formed. Although the explanation will be based on a specific example, FIGS. 1(a) to 1(f) are process cross-sectional views showing a method for manufacturing a semiconductor device. 5ide film 2 to about 1μ by thermal oxidation and CVD method.
Then, the first recess 3 is formed by dry etching using a selective photoresist mask for the isolation part and the trench capacitor forming part. The depth of t is 0.6 μm.
And acceleration energy 30 keys, dose amount 1
, 5 x 10 “cr” (7) boron ion implantation 4
The 99 layer 5 is formed by injecting the ion implantation diagonally four times into the sidewalls in all directions using 90 rotation step ion implantation.Next, in step (b), the acceleration energy is 150 keV and the dose is 2X.
10 "cm-" arsenic ion implantation 17 diagonally 4 times 90
As a result of the rotational step ion implantation, the boron ion implanted layer at the bottom of the groove implanted in step (a) is canceled out and the implantation becomes sufficiently n-type. This implantation profile is shown in Figure 2 (a). ) is the conventional one & (b
) is the method of the present invention a) is the method of the present invention? ! Even if the impurity concentration of As is completely higher than the impurity concentration of B,
In the process (C), the resistance is 5ins by low pressure CVD method.
A layer with a thickness of 0.15 μm was formed, and a layer of 5 inches was vertically etched using a reactive ion etching method to form the sidewall 5.
After forming iOe6, in step (d), a second recess 7 is formed by deep trench etching using these 5iOe6 as a mask, and boron 8 and As10 are implanted as in the conventional example. layer 9n°
After layer 11 is formed, the trench is further dug in step (e) and B0 ions are vertically implanted to increase the concentration of the bottom p layer 19. If this method is used, a nearly completed dynamic The cross-sectional view of a RAM cell is (
f), the source 12, gate 13.f) of the LMOS transistor. Drain 14 and 1. A polysilicon plate 15 with a thin oxide film sandwiched therebetween is formed in the second recess 7, and the upper part is filled with low pressure CVDSiO2. The word line 16 is formed at the same time as the gate 13 is formed, and here the source 12 and the capacitor storage electrode 11 are connected, and the drain 1
As described above, according to this embodiment, it is possible to sufficiently connect the source and storage electrodes even though they are separated from 4. Therefore, a very good capacitor portion is formed on the side wall. Figure 3 shows the dependence of the capacitance of the capacitor formed by these methods on storage node voltage changes based on the capacitance (C) at 07. In this case, the plate voltage is fixed at 1.5V. However, the conventional method and method a of the present invention are completely the same trench forming method.The conventional method results in partial depletion and the capacitance decreases rapidly. As a result, the C/C value was approximately 85% at 3V, and good characteristics were obtained without a large drop in capacity.Furthermore, in the depth direction of the side wall of the first recess (from Dynamic R is achieved by selecting the energy that allows p-type atoms to penetrate deeply.
In this example, As ions were used as the n-type layer.
5tP ions are also equivalent, but regarding the fact that As ions cancel the boron layer, it is necessary that the state of cancellation occurs after thermal diffusion occurs in all heat treatments performed during the process, and it must be completely canceled immediately after implantation. Effects of the Invention As described above, according to the present invention, the concentration of the 92 layer on the side wall of the deep second recess immediately below the first recess is suppressed by being canceled by the n layer. A high p0 concentration area is generated in the node, and the n layer is formed with a uniform concentration, resulting in the formation of a dynamic RAM cell with stable characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における半導体装置の製造方
法を示す工程断面は 第2図は本方法および従来の方法
の原子濃度の深さ分布@ 第3図はSCCの容量のスト
レージノード電圧変化を示す特性は 第4図は従来の半
導体装置の製造方法を示す工程断面は 第5図は従来の
工程の原子濃度の等高線図であも
Figure 1 is a process cross-section showing a method for manufacturing a semiconductor device according to an embodiment of the present invention. Figure 2 is the depth distribution of atomic concentration in the present method and the conventional method. Figure 3 is the storage node voltage of the SCC capacitance. Figure 4 shows the process cross-section of the conventional semiconductor device manufacturing method, and Figure 5 shows the atomic concentration contour diagram of the conventional process.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板に第1の凹部を形成する工程と、前記
第1の凹部側壁および底部にp型イオンを注入する工程
と、前記第1の凹部底部に前記p型イオン注入によるp
^+層を打ち消すようにn型イオンを注入する工程と、
その後前記半導体基板上に絶縁膜を堆積する工程と、垂
直性の優れたエッチング法にて前記絶縁膜をエッチング
して前記第1の凹部側壁部に絶縁膜を残留させる工程と
、前記第1の凹部側壁部に残留させた絶縁膜をマスクと
してトレンチエッチングを行い第2の凹部を形成する工
程と、その第2の凹部側壁に少なくともn層形成を行う
工程とを備えた半導体装置の製造方法。
(1) A step of forming a first recess in a semiconductor substrate, a step of implanting p-type ions into the side walls and bottom of the first recess, and a step of implanting p-type ions into the bottom of the first recess.
A step of implanting n-type ions to cancel out the ^+ layer,
Thereafter, a step of depositing an insulating film on the semiconductor substrate, a step of etching the insulating film using an etching method with excellent verticality to leave the insulating film on the side wall of the first recess, and A method for manufacturing a semiconductor device, comprising: forming a second recess by performing trench etching using an insulating film left on the side wall of the recess as a mask; and forming at least an n layer on the side wall of the second recess.
(2)第1の凹部の側壁の垂直方向についてはp型原子
がn型原子よりも深い位置にまで導入され前記第1の凹
部底部についてはn型原子がp型原子のピーク位置より
も深く形成するイオン注入エネルギーを選ぶことを特徴
とする特許請求の範囲第1項記載の半導体装置の製造方
法。
(2) In the vertical direction of the side wall of the first recess, the p-type atoms are introduced deeper than the n-type atoms, and in the bottom of the first recess, the n-type atoms are introduced deeper than the peak position of the p-type atoms. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the ion implantation energy for forming the semiconductor device is selected.
JP1221989A 1989-08-29 1989-08-29 Manufacture of semiconductor device Pending JPH0384925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1221989A JPH0384925A (en) 1989-08-29 1989-08-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1221989A JPH0384925A (en) 1989-08-29 1989-08-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0384925A true JPH0384925A (en) 1991-04-10

Family

ID=16775337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1221989A Pending JPH0384925A (en) 1989-08-29 1989-08-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0384925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933215B2 (en) * 2001-06-29 2005-08-23 Atmel Germany Gmbh Process for doping a semiconductor body
US7064385B2 (en) 2003-09-19 2006-06-20 Atmel Germany Gmbh DMOS-transistor with lateral dopant gradient in drift region and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933215B2 (en) * 2001-06-29 2005-08-23 Atmel Germany Gmbh Process for doping a semiconductor body
US7064385B2 (en) 2003-09-19 2006-06-20 Atmel Germany Gmbh DMOS-transistor with lateral dopant gradient in drift region and method of producing the same

Similar Documents

Publication Publication Date Title
US4534824A (en) Process for forming isolation slots having immunity to surface inversion
US5118636A (en) Process for forming isolation trench in ion-implanted region
CA1289266C (en) Vertical trench transistor/capacitor memory cell
US5439835A (en) Process for DRAM incorporating a high-energy, oblique P-type implant for both field isolation and punchthrough
JP2663402B2 (en) Method for manufacturing CMOS integrated circuit device
JPH0571128B2 (en)
JPS6016456A (en) Semiconductor device
EP0203960B1 (en) High-performance trench capacitors for dram cells
JPH0715949B2 (en) DRAM cell and manufacturing method thereof
JPH0384925A (en) Manufacture of semiconductor device
US6661050B2 (en) Memory cell structure with trench capacitor and method for fabrication thereof
JPS61177771A (en) Manufacture of semiconductor device
US6627513B1 (en) Method of measuring resistance in deep trench
KR930005738B1 (en) Mist type dynamic random access memory cell and method for fabricating thereof
JPH0334656B2 (en)
KR920009366B1 (en) Manufacturing method of dram cell
JPH0358430A (en) Semiconductor device and manufacture thereof
JPS61119075A (en) Manufacture of semiconductor device
JPH01184862A (en) Manufacture of semiconductor device
JPS62279666A (en) Manufacture of semiconductor device
JPH04137557A (en) Memory cell
JPH03125460A (en) Manufacture of semiconductor device
JPS60235437A (en) Manufacture of semiconductor device
JPS61288462A (en) Manufacture of semiconductor device
JPH03185856A (en) Manufacture of semiconductor device