JPH0381746A - Organic nonlinear optical material - Google Patents
Organic nonlinear optical materialInfo
- Publication number
- JPH0381746A JPH0381746A JP21951589A JP21951589A JPH0381746A JP H0381746 A JPH0381746 A JP H0381746A JP 21951589 A JP21951589 A JP 21951589A JP 21951589 A JP21951589 A JP 21951589A JP H0381746 A JPH0381746 A JP H0381746A
- Authority
- JP
- Japan
- Prior art keywords
- nonlinear optical
- beta
- optical material
- cyano
- dihydroxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 32
- 230000003287 optical effect Effects 0.000 title abstract description 35
- GTIXRBXDGWSPFO-UHFFFAOYSA-N methyl 2-cyano-3-(3,4-dihydroxyphenyl)prop-2-enoate Chemical compound COC(=O)C(C#N)=CC1=CC=C(O)C(O)=C1 GTIXRBXDGWSPFO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000013078 crystal Substances 0.000 abstract description 21
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 abstract description 12
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 abstract description 6
- 239000004202 carbamide Substances 0.000 abstract description 6
- 239000000843 powder Substances 0.000 abstract description 5
- 238000006482 condensation reaction Methods 0.000 abstract description 3
- ANGDWNBGPBMQHW-UHFFFAOYSA-N methyl cyanoacetate Chemical compound COC(=O)CC#N ANGDWNBGPBMQHW-UHFFFAOYSA-N 0.000 abstract description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 abstract description 2
- 239000003054 catalyst Substances 0.000 abstract description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 abstract 1
- 239000002904 solvent Substances 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 4
- 230000008832 photodamage Effects 0.000 description 4
- XTTIQGSLJBWVIV-UHFFFAOYSA-N 2-methyl-4-nitroaniline Chemical compound CC1=CC([N+]([O-])=O)=CC=C1N XTTIQGSLJBWVIV-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- NVLSIZITFJRWPY-ONEGZZNKSA-N n,n-dimethyl-4-[(e)-2-(4-nitrophenyl)ethenyl]aniline Chemical compound C1=CC(N(C)C)=CC=C1\C=C\C1=CC=C([N+]([O-])=O)C=C1 NVLSIZITFJRWPY-ONEGZZNKSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- TYMLOMAKGOJONV-UHFFFAOYSA-N 4-nitroaniline Chemical compound NC1=CC=C([N+]([O-])=O)C=C1 TYMLOMAKGOJONV-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- VPSJLVUDZGXJOA-UHFFFAOYSA-N aniline 3-nitroaniline Chemical compound [N+](=O)([O-])C=1C=C(N)C=CC1.NC1=CC=CC=C1 VPSJLVUDZGXJOA-UHFFFAOYSA-N 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QLNWXBAGRTUKKI-UHFFFAOYSA-N metacetamol Chemical compound CC(=O)NC1=CC=CC(O)=C1 QLNWXBAGRTUKKI-UHFFFAOYSA-N 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- PPNXYDWMFSOVOF-UHFFFAOYSA-N n,n-dimethyl-2-[2-(4-nitrophenyl)ethenyl]aniline Chemical compound CN(C)C1=CC=CC=C1C=CC1=CC=C([N+]([O-])=O)C=C1 PPNXYDWMFSOVOF-UHFFFAOYSA-N 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000015 polydiacetylene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- -1 styrene compound Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光コンピュータや光通信など広範な分野で光
制御素子等として用いられる有機非線形材料に関し、さ
らに詳しくは、室温で安定で、耐光損傷性に優れ、かつ
SHG (第2高調波発生)活性が大きく、結晶性の良
好な3.4−ジヒドロキシ−β−シアノ−β−メトキシ
カルボニルスチレンから成る有機非線形光学材料に関す
る。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an organic nonlinear material that is used as a light control element in a wide range of fields such as optical computers and optical communications. The present invention relates to an organic nonlinear optical material made of 3,4-dihydroxy-β-cyano-β-methoxycarbonylstyrene that has excellent damage resistance, high SHG (second harmonic generation) activity, and good crystallinity.
非線形光学材料は、レーザー光の周波数変換、増幅、発
振、スイッチングなどの現象を生じ、第2高調波発生(
Sl(G)、第3高調波発生(THG)、高速度シャッ
ター、光メモリ−、光演算素子などへの応用が可能であ
る。また、非線形光学材料は、電場によって屈折率が変
化する特質を生かした光スィッチなどへの応用が可能で
ある。Nonlinear optical materials produce phenomena such as frequency conversion, amplification, oscillation, and switching of laser light, and generate second harmonics (
It can be applied to Sl(G), third harmonic generation (THG), high-speed shutter, optical memory, optical arithmetic element, etc. In addition, nonlinear optical materials can be applied to optical switches and the like that take advantage of the property that their refractive index changes depending on an electric field.
従来、非線形光学材料として、KH,PO4、NH4H
z P O4,L i N bus 、KNbOsなど
の無機系の単結晶材料が知られているが、最近では、尿
素やp−ニトロアニリン、2−メチル−4−ニトロアニ
リン(MNA) 、m−ニトロアニリン(mNA)、4
− (N、N−ジメチルアミノ)−4′−ニトロスチル
ベン(DANS)などの有機非線形光学材料の開発が進
められている。Conventionally, KH, PO4, NH4H have been used as nonlinear optical materials.
Inorganic single crystal materials such as z PO4, L i N bus and KNbOs are known, but recently urea, p-nitroaniline, 2-methyl-4-nitroaniline (MNA), m-nitroaniline Aniline (mNA), 4
- Development of organic nonlinear optical materials such as (N,N-dimethylamino)-4'-nitrostilbene (DANS) is progressing.
ポリジアセチレンやポリフッ化ビニリデンなどの高分子
材料に関しても、その非線形光学効果を利用して、制御
機能を有する導波路、光ICなどへの応用が検討されて
いる。Polymer materials such as polydiacetylene and polyvinylidene fluoride are also being considered for application to waveguides with control functions, optical ICs, etc. by utilizing their nonlinear optical effects.
有機非線形光学材料は、一般に、非線形性の起源が分子
内π電子であるため、光応答に対して格子振動を伴わず
、したがって無機材料に比べ応答が速く、また、非線形
光学定数が大きいものや吸収領域が変化できるものなど
を合成することが可能である。しかも、材料素子化の方
法も、単結晶化によるだけではなく、LB膜、蒸着法、
液晶化、高分子化などの各種の方法が考えられる。Organic nonlinear optical materials generally have nonlinearity originating from intramolecular π electrons, so they do not involve lattice vibration in response to light, and therefore have faster response than inorganic materials. It is possible to synthesize a material whose absorption region can be changed. Moreover, the methods of making materials into devices are not limited to single crystallization, but also include LB film, vapor deposition, etc.
Various methods such as liquid crystal formation and polymerization are possible.
非線形光学材料の最近の研究成果については、例えば、
加藤、生活監修「有機非線形光学材料」(シー・エム・
シー社、1985年発行)、やり、S CHEMLA、
J、ZYSS編”Non1inear 0ptical
Pro−perties and (:rystal
s″Vo1. I、Vol、’IIなどの文献にまとめ
られている。For recent research results on nonlinear optical materials, see e.g.
Kato, lifestyle supervisor ``Organic nonlinear optical materials'' (CM
S CHEMLA, Spear, S CHEMLA, Published in 1985)
J, ZYSS edition “Non1inear 0ptical
Pro-perties and (:rystal
s″Vol1. I, Vol, 'II, etc.
ところで、非線形光学材料には、次のような特性を有す
ることが求められる。By the way, nonlinear optical materials are required to have the following characteristics.
(1)非線形光学効果のうち、特に第2高調波発生(S
HG)は、変換の効率が高い等の理由から波長変換の基
本技術として位置付けられておりSHG効率(尿素を1
とする)の高いことが求められる。(1) Among nonlinear optical effects, especially second harmonic generation (S
HG) is positioned as a basic technology for wavelength conversion due to its high conversion efficiency, and SHG efficiency (1
) is required.
(2)材料が光学的非線形性を示すには、空間反転の対
称性を持たないこと、特に、その結晶が対称中心を持た
ないことが実用上米められる。(2) For a material to exhibit optical nonlinearity, it is practically required that the material has no spatial inversion symmetry, and in particular, its crystal must have no center of symmetry.
(3)室温で安定でかつ出来るだけ大きな単結晶を形成
するものであることが望まれる。(3) It is desired that the material be stable at room temperature and form a single crystal as large as possible.
(4)現在の半導体レーザーの波長は800nm程度で
あるので、極大波長(Lmax)やカットオフ波長(L
cutoff)はできるだけ短波長領域にあることが
望ましい。(4) The wavelength of current semiconductor lasers is about 800 nm, so the maximum wavelength (Lmax) and cutoff wavelength (Lmax)
cutoff) is desirably in the shortest wavelength region as possible.
ところが、公知の無機非線形光学材料は、純度の高い単
結晶が高価であり、潮解性を有し、しかも一般にSHG
効率が小さいという欠点がある。However, known inorganic nonlinear optical materials are expensive to produce single crystals with high purity, have deliquescent properties, and are generally made of SHG.
It has the disadvantage of low efficiency.
一方、有機非線形光学材料には、一般にSHG効率の大
きいものがあることは知られているが、室温で安定かつ
大きな結晶を調製するのが困難である。例えば、MNA
は高いSHG効率を有するけれども、大きな単結晶が得
られにくい。尿素は、大きな単結晶を得やすく、白色・
透明で、カットオフ波長も200nmと短波長であるけ
れども、耐湿性に劣るという欠点がある。また、スチル
ベン誘導体のDANSは、分子レベルでは2次の非線形
分極率βは非常に大きい値を示すが、結晶になると分子
の配列に反転対称を持つに至るため非線形光学効果を示
さない。On the other hand, although it is known that some organic nonlinear optical materials generally have high SHG efficiency, it is difficult to prepare stable and large crystals at room temperature. For example, MNA
Although it has high SHG efficiency, it is difficult to obtain large single crystals. Urea is easy to obtain large single crystals and has a white color.
Although it is transparent and has a short cutoff wavelength of 200 nm, it has the disadvantage of poor moisture resistance. Further, DANS, which is a stilbene derivative, exhibits a very large second-order nonlinear polarizability β at the molecular level, but when crystallized, the molecular arrangement has inversion symmetry and therefore does not exhibit a nonlinear optical effect.
このように、従来技術は、SHG効率が大きく、安定で
かつ大きな単結晶に成長させやすい有機非線形光学材料
を提供する点で、未だ不充分である。As described above, the conventional technology is still insufficient in providing an organic nonlinear optical material that has high SHG efficiency, is stable, and is easy to grow into a large single crystal.
〔発明が解決しようとする課題]
本発明の目的は、前記従来技術の有する問題点を克服し
、室温で安定で耐光損傷性に優れ、対称中心を持たない
単結晶を形成し、必要に応じて大きな単結晶に成長させ
ることができ、SHG活性が大きな有機非線形光学材料
を提供することにある。[Problems to be Solved by the Invention] An object of the present invention is to overcome the problems of the prior art described above, to form a single crystal that is stable at room temperature, has excellent resistance to light damage, and has no center of symmetry, and to The object of the present invention is to provide an organic nonlinear optical material that can be grown into a large single crystal and has a high SHG activity.
本発明者らは鋭意研究した結果、スチレン系化合物であ
って、特定の置換基と構造を有する3゜4−ジヒドロキ
シ−β−シアノ−β−メトキシカルボニルスチレンが前
記目的に適合することを見出し、その知見に基づいて本
発明を完成するに至った。As a result of intensive research, the present inventors found that 3゜4-dihydroxy-β-cyano-β-methoxycarbonylstyrene, which is a styrene compound and has a specific substituent and structure, is suitable for the above purpose, Based on this knowledge, we have completed the present invention.
[課題を解決するための手段]
すなわち、本発明によれば、下記式[I]H
で表される3、4−ジヒドロキシ−β−シアノ−β−メ
トキシカルボニルスチレンから成ることを特徴とする有
機非線形光学材料が提供される。[Means for Solving the Problems] That is, according to the present invention, an organic compound comprising 3,4-dihydroxy-β-cyano-β-methoxycarbonylstyrene represented by the following formula [I]H A nonlinear optical material is provided.
以下、本発明の構成要素について詳述する。Hereinafter, the constituent elements of the present invention will be explained in detail.
〔3,4−ジヒドロキシ−β−シアノ−β−メトキシカ
ルボニルスチレンJ
本発明で有機非線形材料として用いる化合物である3、
4−ジヒドロキシ−β−シアノ−β−メトキシカルボニ
ルスチレンは、その結晶が対称中心なたないため、優れ
た非線形光学効果を示し、微結晶粉末のSHG効率は尿
素と同程度である。[3,4-dihydroxy-β-cyano-β-methoxycarbonylstyrene J 3, which is a compound used as an organic nonlinear material in the present invention,
4-dihydroxy-β-cyano-β-methoxycarbonylstyrene exhibits excellent nonlinear optical effects because its crystals do not have a center of symmetry, and the SHG efficiency of microcrystalline powder is comparable to that of urea.
また、本発明の化合物のL maxは446nmであり
、比較的短波長領域にある。Further, the L max of the compound of the present invention is 446 nm, which is in a relatively short wavelength region.
本発明の化合物は、前記式から明らかなように、比較的
大きなπ電子共役系を有し、電子供与基として2つのヒ
ドロキシ基を、電子吸引基としてシアノ基およびメトキ
シカルボニル基をもっている。このような構造を有する
ことにより、結晶の対称性が破られると同時に、各置換
基による分極のため、SHG活性が発現したものと推定
できる。As is clear from the above formula, the compound of the present invention has a relatively large π-electron conjugated system, and has two hydroxy groups as electron-donating groups, and a cyano group and a methoxycarbonyl group as electron-withdrawing groups. It can be assumed that by having such a structure, the symmetry of the crystal is broken and, at the same time, SHG activity is expressed due to polarization caused by each substituent.
本発明の化合物は、その結晶が室温で安定であり、光損
傷を受けにくく、また、加工が容易であるためデバイス
化も容易である。そして、この化合物の結晶は、尿素に
匹敵するSHG効率を示すことから明らかなように、優
れた非線形光学効果を示す。本発明の化合物は、粉末、
単結晶、溶液などの各種の態様で、非線形光学材料とし
て用いることができる。The compound of the present invention has stable crystals at room temperature, is less susceptible to photodamage, and is easy to process, so it can be easily fabricated into devices. Crystals of this compound exhibit excellent nonlinear optical effects, as evidenced by the SHG efficiency comparable to that of urea. The compound of the present invention can be used as a powder,
It can be used as a nonlinear optical material in various forms such as a single crystal or a solution.
(製造法)
本発明の3.4−ジヒドロキシ−β−シアノ−β−メト
キシカルボニルスチレンは、例えば、下記の反応式に示
すように、3.4−ジヒドロキシアルデヒドとシアン酢
酸メチルとの縮合反応により合成することができる。(Production method) The 3,4-dihydroxy-β-cyano-β-methoxycarbonylstyrene of the present invention can be produced, for example, by a condensation reaction of 3,4-dihydroxyaldehyde and methyl cyanacetate, as shown in the reaction formula below. Can be synthesized.
OH
この縮合反応は、例えば、メタノールなどの有機溶媒を
用い、ピペリジンなどの触媒の存在下に行なう。OH This condensation reaction is carried out, for example, using an organic solvent such as methanol in the presence of a catalyst such as piperidine.
以下に実施例を挙げて本発明を具体的に説明するが、本
発明は、これらの実施例のみに限定されるものではない
。The present invention will be specifically described below with reference to Examples, but the present invention is not limited only to these Examples.
[実施例1]
(1)34−ジヒドロキシ−β−シアノ−β−メトキシ
カルボニルスチレンの合成例
3.4−ジヒドロキシベンズアルデヒド1.38 g
(10mmo 1)とシアノ酢酸メチル2.0mβに、
30mj2のメタノールを加えて溶液にした後、撹拌し
ながら10滴のピペリジンをゆっくりと滴下した。この
溶液を5時間還流した後、冷却すると、沈殿が生じた。[Example 1] (1) Synthesis example of 34-dihydroxy-β-cyano-β-methoxycarbonylstyrene 3.4-dihydroxybenzaldehyde 1.38 g
(10mmo 1) and methyl cyanoacetate 2.0mβ,
After adding 30 mj2 of methanol to form a solution, 10 drops of piperidine were slowly added dropwise while stirring. The solution was refluxed for 5 hours and then cooled to form a precipitate.
沈殿物を濾過し、メタノールで再結晶して、目的とする
化合物3.4−ジヒドロキシ−β−シアノ−β−メトキ
シカルボニルスチレン得た。収量は、1.6gであった
。The precipitate was filtered and recrystallized from methanol to obtain the target compound 3.4-dihydroxy-β-cyano-β-methoxycarbonylstyrene. The yield was 1.6g.
次ぎに、生成物のIRl ’H−NMR,UVおよび融
点(m、 p、 )を測定した結果を以下に示す。Next, the results of measuring the IRl'H-NMR, UV, and melting point (m, p, ) of the product are shown below.
融点(ff1.p、) : 200℃I R: 22
40(−CN)、1700(−GO−0−1,1600
゜(KBr) 1580 (Ar−C=C
) 、 1195 (Ar−OH)[cm−1]
’H−NMR:3.91(S、3H)、6.91(d、
2H,J=8.1)。Melting point (ff1.p,): 200℃IR: 22
40(-CN), 1700(-GO-0-1,1600
゜(KBr) 1580 (Ar-C=C
), 1195 (Ar-OH) [cm-1] 'H-NMR: 3.91 (S, 3H), 6.91 (d,
2H, J=8.1).
((:D(J、) 7゜39(d、2H,J:
l!、1)、 7.67(s、IH)。((:D(J,) 7゜39(d, 2H, J:
l! , 1), 7.67 (s, IH).
8.15(s、LH) [δ(ppm) ]UV
吸収 :んmax=446 nm。8.15 (s, LH) [δ (ppm) ] UV
Absorption: max=446 nm.
(EtOH)
これらの分析結果から、この化合物が3.4−ジヒドロ
キシ−β−シアノ−β−メトキシカルボニルスチレンで
あることが確認された。また、極大波長(λwax)が
446nmと比較的短波長領域にあることが分かる。(EtOH) From these analysis results, it was confirmed that this compound was 3,4-dihydroxy-β-cyano-β-methoxycarbonylstyrene. It can also be seen that the maximum wavelength (λwax) is 446 nm, which is in a relatively short wavelength region.
(2)非線形光学効果の確認実験
得られた3、4−ジヒドロキシ−β−シアノ−β−メト
キシカルボニルスチレンの微粉末結晶にNd : YA
Gレーザ−(波長=1.064μm、出力10mJ/パ
ルス)を照射すると、第2次高調波が発生(SHG)l
、、入射光の1/2の波長(532nm)の緑色光が観
測できた。また、その強度(SHG効率)は、尿素と同
程度であることが確認された。(2) Confirmation experiment of nonlinear optical effect Nd: YA was applied to the obtained fine powder crystals of 3,4-dihydroxy-β-cyano-β-methoxycarbonylstyrene.
When irradiated with G laser (wavelength = 1.064 μm, output 10 mJ/pulse), second harmonics are generated (SHG).
, Green light with half the wavelength (532 nm) of the incident light could be observed. It was also confirmed that its strength (SHG efficiency) was comparable to that of urea.
この化合物の結晶は室温で安定であり、結晶性も良好で
、光損傷は見られなかった。Crystals of this compound were stable at room temperature, had good crystallinity, and no photodamage was observed.
以上の事実から、この化合物が優れた非線形光学材料で
あることが分かる。From the above facts, it can be seen that this compound is an excellent nonlinear optical material.
本発明によれば、室温で安定かつ結晶性良好で、SHG
活性が大きく、耐光損傷性に優れた有機非線形材料を提
供することができる0本発明の有機非線形光学材料は、
レーザーの波長変換素子としての使用が可能であるなど
実用上重要な意義を有する。According to the present invention, SHG is stable at room temperature and has good crystallinity.
The organic nonlinear optical material of the present invention can provide an organic nonlinear material with high activity and excellent photodamage resistance.
It has important practical significance as it can be used as a wavelength conversion element for lasers.
Claims (1)
トキシカルボニルスチレンから成ることを特徴とする有
機非線形光学材料。(1) Organic nonlinear optics characterized by consisting of 3,4-dihydroxy-β-cyano-β-methoxycarbonylstyrene represented by the following formula [I] ▲Mathematical formulas, chemical formulas, tables, etc.▼[I] material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21951589A JPH0381746A (en) | 1989-08-25 | 1989-08-25 | Organic nonlinear optical material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21951589A JPH0381746A (en) | 1989-08-25 | 1989-08-25 | Organic nonlinear optical material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0381746A true JPH0381746A (en) | 1991-04-08 |
Family
ID=16736676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21951589A Pending JPH0381746A (en) | 1989-08-25 | 1989-08-25 | Organic nonlinear optical material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0381746A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63163826A (en) * | 1986-12-26 | 1988-07-07 | Idemitsu Kosan Co Ltd | Organic nonlinear optical material |
JPH02132423A (en) * | 1988-07-30 | 1990-05-21 | Konica Corp | Nonlinear optical element |
-
1989
- 1989-08-25 JP JP21951589A patent/JPH0381746A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63163826A (en) * | 1986-12-26 | 1988-07-07 | Idemitsu Kosan Co Ltd | Organic nonlinear optical material |
JPH02132423A (en) * | 1988-07-30 | 1990-05-21 | Konica Corp | Nonlinear optical element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0377923A (en) | Organic nonlinear optical material | |
JPH0381746A (en) | Organic nonlinear optical material | |
JP2530725B2 (en) | Organic nonlinear optical material | |
JPH0381744A (en) | Organic nonlinear optical material | |
JPH02187734A (en) | Nonlinear optical organic material | |
JPH03146928A (en) | Organic nonlinear optical material | |
JP2896604B2 (en) | Materials for nonlinear optical elements | |
JPH03140927A (en) | Organic nonlinear optical material | |
JPH03181919A (en) | Organic nonlinear optical material | |
JPH03140928A (en) | Organic nonlinear optical material | |
JPH03287138A (en) | Organic nonlinear optical material | |
JPH02113226A (en) | Organic nonlinear optical material | |
JPH03287139A (en) | Organic nonlinear optical material | |
JPH03255427A (en) | Organic nonlinear optical material | |
JPH0356449A (en) | 1-(4-methoxystyryl)-3-(4-nitrostyryl)benzene and production thereof | |
JPH03287137A (en) | Organic nonlinear optical material | |
JPH03287136A (en) | Organic nonlinear optical material | |
JPH05127205A (en) | Molecular crystal | |
JPH0356448A (en) | 1-(4-methylstyryl)-3-(4-nitrostyryl)benzene and production thereof | |
JPH0469624A (en) | Nonlinear optical material | |
JPH02196759A (en) | New organic compound | |
JPH07107012B2 (en) | Novel organic compound | |
JPH0616611A (en) | Alpha-cyanocinnamic acid ester compound and organic nonlinear optical material comprising the compound | |
JPH07111529B2 (en) | Organic nonlinear optical material | |
JPH03287135A (en) | Organic nonlinear optical material |