JPH02132423A - Nonlinear optical element - Google Patents

Nonlinear optical element

Info

Publication number
JPH02132423A
JPH02132423A JP18740689A JP18740689A JPH02132423A JP H02132423 A JPH02132423 A JP H02132423A JP 18740689 A JP18740689 A JP 18740689A JP 18740689 A JP18740689 A JP 18740689A JP H02132423 A JPH02132423 A JP H02132423A
Authority
JP
Japan
Prior art keywords
group
nonlinear optical
electron
hydrogen atom
denotes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18740689A
Other languages
Japanese (ja)
Inventor
Hidetaka Ninomiya
英隆 二宮
Yoshitaka Morita
森田 美貴
Yoshitaka Takahashi
佳孝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPH02132423A publication Critical patent/JPH02132423A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a single crystal of the size sufficient to constitute a light guide and to obtain the element exhibiting a high nonlinear optical effect without having absorption of visible light by using the crystal of a specific org. compd. CONSTITUTION:The nonlinear optical element is formed by using the org. compd. expressed by general formula I. In the formula, A denotes <=5C electron- withdrawing group; R1 denotes a hydrogen atom, alkyl group, alkenyl group; R2 denotes a hydroxyl group, acylamino group, ureide group; R3 denotes a hydrogen atom or monovalent substituent. The carbon atoms having the electron withdrawing property are preferably <=3 and the electron-withdrawing groups are preferably a nitro group, cyano group, formyl group, alkylsulfonyl group. R1 is preferably an alkyl group, R2 a hydroxyl group and R3 a hydrogen atom.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、レーザー光の高調波の発生、バラメトリック
増幅等に用いる有機非線形光学素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an organic nonlinear optical element used for generation of harmonics of laser light, parametric amplification, and the like.

[発明・の背景] レーザー光等の強い光を物質に照射した時に顕著に現れ
る非線形光学効果は、波長変換、強度変調、スイッチン
グ等に応用できるものであり、近年、該非線形光学効果
を有する材料の探索研究が数多く為されている。
[Background of the invention] The nonlinear optical effect that appears prominently when a substance is irradiated with intense light such as a laser beam can be applied to wavelength conversion, intensity modulation, switching, etc., and in recent years, materials with this nonlinear optical effect have been developed. Many exploratory studies have been conducted.

波長変換、特に2次の非線形光学効果に基づいた第2高
調波発生(Second Harmonic Gene
ration,以下SHGと略す。)では、従来知られ
ていたニオブ酸リチウム(LiNbO3)、燐酸二水素
カリウム(KDP)等の無機材料に比し、有機化合物が
桁違いに高い性能を有する可能性が指摘されている。(
例えば、「有機非線形光学材料」,加藤政雄、中西八郎
監修,シー・エム・シー社,1985年刊) 有機化合物の非線形性の起源は分子内π電子であり、2
次の非線形分子分極率βは、該化合物が電子供与性基お
よび電子吸引性基の両方を有するとき、特に大きくなる
Wavelength conversion, especially second harmonic generation based on second-order nonlinear optical effects.
ration, hereinafter abbreviated as SHG. ), it has been pointed out that organic compounds may have an order of magnitude higher performance than conventionally known inorganic materials such as lithium niobate (LiNbO3) and potassium dihydrogen phosphate (KDP). (
For example, "Organic Nonlinear Optical Materials", supervised by Masao Kato and Hachiro Nakanishi, published by CMC Co., Ltd., 1985) The origin of the nonlinearity of organic compounds is the intramolecular π electrons,
The following nonlinear molecular polarizability β becomes particularly large when the compound has both an electron-donating group and an electron-withdrawing group.

しかしながら、p−ニトロアニリンで代表されるように
、分子レベルの非線形分極が大きくても、結晶の状態で
は全<SHGを示さなかったり、示してもSHGの小さ
いものが数多くみられる。これは、極性の強い有機物結
晶の分子配列が反転対称になり易いことに起因する。
However, as typified by p-nitroaniline, even if the nonlinear polarization at the molecular level is large, there are many that do not exhibit total<SHG in the crystalline state, or even if they do, the SHG is small. This is due to the fact that the molecular arrangement of highly polar organic crystals tends to have inversion symmetry.

また、情報記録媒体の大容量化、高密度化の要求に応え
る形で光記録媒体の研究が盛んに行われているが、これ
ら光記録媒体の記録密度は光源の波長に依存するので(
記録密度限界は光源波長が短くなると、その2乗に反比
例して増大する。)、より短波な光源を得るために波長
変換素子への期待は大きいものがある。
In addition, research into optical recording media is being actively conducted in response to demands for larger capacity and higher density information recording media, but since the recording density of these optical recording media depends on the wavelength of the light source (
As the light source wavelength becomes shorter, the recording density limit increases in inverse proportion to the square of the wavelength. ), there are great expectations for wavelength conversion elements to obtain shorter wavelength light sources.

SHG効果をもつ化合物として、例えば2−メチル−4
−ニトロアニリン(MNA) 、2−アセトアミドー4
−ニトロ一N,N−ジメチルアニリン(DAN) 、2
−アセトアミドー4−二トロ1−ピロリジノベンゼン(
PAN) 、2’− (αメチルベンジル)アミノー5
−ニトロピリジン(MBA−NP)等が知られている。
Examples of compounds with SHG effect include 2-methyl-4
-Nitroaniline (MNA), 2-acetamide 4
-Nitro-N,N-dimethylaniline (DAN), 2
-acetamido-4-nitro-1-pyrrolidinobenzene (
PAN), 2'-(αmethylbenzyl)amino-5
-Nitropyridine (MBA-NP) and the like are known.

しかしながら、既知の高SHG活性の化合物は、例えば
2−メチル−4−ニトロアニリン、m−ニトロアニリン
等のように黄色に着色しているため、短波光の透過率が
低く、波長変換で短波光を発生するには不利である。ま
た、従来から知られているSHG効果をもつ化合物は、
光導波路のコアにするに十分な大きさの単結晶が得に<
<、波長変換素子とするために光導波路とすることは非
常に困難であった。
However, known compounds with high SHG activity, such as 2-methyl-4-nitroaniline, m-nitroaniline, etc., are yellow-colored, so they have low transmittance to short-wave light, and they cannot be used for short-wave light by wavelength conversion. It is disadvantageous for this to occur. In addition, conventionally known compounds with SHG effects are:
It is advantageous to have a single crystal large enough to form the core of an optical waveguide.
<It was extremely difficult to create an optical waveguide for use as a wavelength conversion element.

例えば、従来ファイバー型光導波路デバイスとするため
には屈折率の低い材料でてきた中空ファイバー中に、屈
折率の高い非線形光学材料を溶融して注入した後、ブリ
ッジマンーストックバーガー法等で単結晶化する方法が
とられている。(参考図書D.S.Chemla , 
 J.Zyss  : NonlinearOptic
al Properties of Organic 
Moleculesand Crystals Vol
.1 ; ACADEMIC PRESS INc.(
 19B? )) しかし、従来知られている優れた非線形光学効果を示す
有機非線形光学材料は、総じ七このような方法では単結
晶になりにくく優れた先導波路のコアを形成することは
困難である。例えば、PANSMBA−NPは溶融する
と分解して単結晶を得ることができない。
For example, in order to make a conventional fiber-type optical waveguide device, a nonlinear optical material with a high refractive index is melted and injected into a hollow fiber made of a material with a low refractive index, and then a simple method such as the Bridgman-Stockberger method is used. A method of crystallization is used. (Reference book D.S. Chemla,
J. Zyss: Nonlinear Optic
al Properties of Organic
Molecules and Crystals Vol.
.. 1; ACADEMIC PRESS INc. (
19B? )) However, conventionally known organic nonlinear optical materials exhibiting excellent nonlinear optical effects are generally difficult to form into single crystals by such methods, making it difficult to form the core of an excellent leading waveguide. For example, PANSMBA-NP decomposes when melted, making it impossible to obtain a single crystal.

本発明者らは、化合物の非線形光学効果、結晶化、可視
光の透過率について研究を行った結果、高い非線形光学
効果を示し、可視光の吸収がなく、容易に先導波路とす
るのに十分な大きさの結晶を形成する化合物を見出だし
た。
As a result of research on the nonlinear optical effect, crystallization, and visible light transmittance of the compound, the present inventors found that it has a high nonlinear optical effect, no absorption of visible light, and is sufficient to easily be used as a leading waveguide. We have discovered a compound that forms crystals of a large size.

[発明の目的コ 本発明の目的は、光導波路とするのに十分な大きさの単
結晶を容易に形成し、かつ、可視光の吸収がなく、高い
非線形光学効果を示す非線形光学素子を提供することに
ある。
[Objective of the Invention] An object of the present invention is to provide a nonlinear optical element that can easily form a single crystal large enough to be used as an optical waveguide, does not absorb visible light, and exhibits a high nonlinear optical effect. It's about doing.

[発明の構成] 本発明の上記目的は、下記一般式[1]で表される有機
化合物の結晶を用いて非線形光学素子を形成することに
よって達成された。
[Structure of the Invention] The above object of the present invention was achieved by forming a nonlinear optical element using a crystal of an organic compound represented by the following general formula [1].

一般式[Iコ (式中、Aは炭素原子数5以下の電子吸引性基を、R,
は水素原子、アルキル基、アルケニル基を、R2はヒド
ロキシル基、アシルアミノ基、ウレイド基を、R,は水
素原子又は一価の置換基を表す。) 以下、本発明をより詳細に説明する。
General formula [Ico (wherein A is an electron-withdrawing group having 5 or less carbon atoms, R,
represents a hydrogen atom, an alkyl group, or an alkenyl group, R2 represents a hydroxyl group, an acylamino group, or a ureido group, and R represents a hydrogen atom or a monovalent substituent. ) Hereinafter, the present invention will be explained in more detail.

上記一般式[I]において、Aで表される炭素原子数5
以下の電子吸引性基は、ハメットのびp値が0以上のも
のであって、これら電子吸引性基としては、例えばニト
ロ基、シアノ基、ホルミル基、ハロゲン原子(臭素原子
、塩素原子等)、アルキルスルホニル基(例えばメチル
スルホニル基)、アルコキシ力ルボニル基(例えばメト
キシカルボニル基、ブトキシカルボニル基)、トリフル
オ口メチル基、ジシアノビニル基、コハク酸イミド基、
ヘテロ環基(例えばイミダゾリル基、チアゾリル基、フ
リル基)を挙げることができる。
In the above general formula [I], the number of carbon atoms represented by A is 5
The following electron-withdrawing groups have a Hammett elongation p value of 0 or more, and examples of these electron-withdrawing groups include nitro groups, cyano groups, formyl groups, halogen atoms (bromine atoms, chlorine atoms, etc.), Alkylsulfonyl group (e.g. methylsulfonyl group), alkoxycarbonyl group (e.g. methoxycarbonyl group, butoxycarbonyl group), trifluoromethyl group, dicyanovinyl group, succinimide group,
Examples include heterocyclic groups (eg, imidazolyl group, thiazolyl group, furyl group).

電子吸引性基の炭素原子数は3以下が好ましい。The number of carbon atoms in the electron-withdrawing group is preferably 3 or less.

電子吸引性基として更に好ましいものは二トロ基、シア
ノ基、ホルミル基、アルキルスルホニル基である。
More preferred electron-withdrawing groups are a nitro group, a cyano group, a formyl group, and an alkylsulfonyl group.

R,で表されるアルキル基としては、例えばメチル基、
エチル基、プロビル基、イソプロビル基を、アルケニル
基としては、例えばエテニル基、プロペニル基、ブテニ
ル基を挙げることができる。
Examples of the alkyl group represented by R include methyl group,
Examples of the alkenyl group include ethyl group, probyl group, and isoprobyl group, and examples of the alkenyl group include ethenyl group, propenyl group, and butenyl group.

これらアルキル基、アルケニル基は置換基を有していて
もよく、置換基としては、ハロゲン原子(臭素原子、塩
素原子、フッ素原子等)、アルコキシ基(メトキシ基、
エトキシ基等)、ヒドロキシル基、シアノ基等が好まし
い。
These alkyl groups and alkenyl groups may have a substituent, and examples of the substituent include a halogen atom (bromine atom, chlorine atom, fluorine atom, etc.), an alkoxy group (methoxy group,
(ethoxy group, etc.), hydroxyl group, cyano group, etc. are preferable.

R1として好ましいものはアルキル基であり、更に好ま
しいものは、置換、未置換のメチル基である。
Preferred as R1 is an alkyl group, and more preferred is a substituted or unsubstituted methyl group.

R2で表されるアシルアミノ基としては、アセトアミド
基、ペンズアミド基等、ウレイド基としては、メチルウ
レイド基、フエニルウレイド基等を挙げることができる
Examples of the acylamino group represented by R2 include an acetamide group and a penzamide group, and examples of the ureido group include a methylureido group and a phenylureido group.

R2として好ましいものはヒドロキシル基である。Preferred as R2 is a hydroxyl group.

R,で表される一価の置換基としては、例えば塩素原子
、臭素原子、ニトロ基、シアノ基、アセトアミド基、メ
チル基が好ましい。
The monovalent substituent represented by R is preferably, for example, a chlorine atom, a bromine atom, a nitro group, a cyano group, an acetamido group, or a methyl group.

R,として好ましいものは水素原子である。Preferred R is a hydrogen atom.

以下に本発明に好ましく用いられる化合物の具体例を示
すが、これらに限定されない。
Specific examples of compounds preferably used in the present invention are shown below, but the invention is not limited thereto.

以下余白 以下余白 本発明の化合物は、従来行われている一般的合成法によ
り容易に合成することができ、また、部は試薬として購
入することができる。
The following margins are below: The compounds of the present invention can be easily synthesized by conventional general synthesis methods, and parts can be purchased as reagents.

本発明に係る非線形光学素子は、例えば前述の文献、特
開昭63− 77035号公報等に示されているような
ファイバー形状、平板形状、単結晶の周囲をクラッド材
で囲んだ形状等の光導波路である。
The nonlinear optical element according to the present invention has a fiber shape, a flat plate shape, a shape in which a single crystal is surrounded by a cladding material, etc. as shown in the above-mentioned documents, Japanese Patent Application Laid-Open No. 63-77035, etc., for example. It is a wave path.

この内ファイバー形状のものが特に好ましい。Of these, fiber-shaped ones are particularly preferred.

本発明に用いる単結晶育成法は前述の文献等に記載され
ている。好ましい単結晶育成法は、溶融液から結晶を育
成するブリッジマン法、逆ストックバーガー法である。
The single crystal growth method used in the present invention is described in the above-mentioned documents. Preferred single crystal growth methods are the Bridgman method and the reverse Stockberger method, in which crystals are grown from a melt.

本発明の非線形光学素子は、レーザー光、特に近赤外半
導体レーザー光の波長変換(高調波の発生等)、強度変
調、スイッチング等に用いることができる。
The nonlinear optical element of the present invention can be used for wavelength conversion (generation of harmonics, etc.), intensity modulation, switching, etc. of laser light, particularly near-infrared semiconductor laser light.

[実施例コ 以下、実施例を示すが、本発明の実施態様はこれらに限
定されない。
[Examples] Examples are shown below, but the embodiments of the present invention are not limited thereto.

実施例1 本発明の化合物を融点より10℃高い温度まで加熱し、
融液を外径1.0++++n,内径7Bm,長さ 50
mmのホウケイ酸ガラス製の中空ガラスファイバーに毛
細管現象を用いて注入した。
Example 1 A compound of the present invention was heated to a temperature 10°C higher than its melting point,
The outer diameter of the melt is 1.0++++n, the inner diameter is 7Bm, and the length is 50.
It was injected into a hollow glass fiber made of mm borosilicate glass using capillary action.

その後、ブリッジマンーストックバーガー法を用い、化
合物の融点より5℃高い温度に保たれた加熱炉より、化
合物の注入された中空ガラスファイバーを、1時間当り
l mmの引上げ速度で引上げ、室温で冷却し結晶化し
た。
Thereafter, using the Bridgman-Stockberger method, the hollow glass fiber injected with the compound was pulled at a pulling rate of 1 mm per hour from a heating furnace maintained at a temperature 5°C higher than the melting point of the compound, and then kept at room temperature. It was cooled and crystallized.

偏光顕微鏡で単結晶になっている部分の長さを測定した
The length of the single crystal portion was measured using a polarizing microscope.

これらの結果を次の表に示す。These results are shown in the following table.

以下余白 表 *;A:得られた単結晶の長さlDmm以上B:得られ
た単結晶の長さ1 mm以上10n+n+未満C:得ら
れた単結晶の長さ0.2w++n以上L w未満 D=溶融時に材料が分解し、単結晶が得られない 実施例2 実施例1で得られた試料1、2、3の単結晶ファイバー
を約3 mmの長さに切り出し、入射基本波として繰り
返しlOpps ,パルス幅10ns ,パルスエネル
ギー320mJのQスイッチNd : YAGレーザー
(米国Quantel Internationa1社
YGfiBOA  波長1064nm)を使用し、これ
を減衰させ集光して単結晶ファイバーの端面より導波さ
せたところスクリーン上にリング状の第2次高調波(緑
色光)が観測された。
Margin table below*; A: Length of the obtained single crystal 1 D mm or more B: Length of the obtained single crystal 1 mm or more and less than 10n+n+ C: Length of the obtained single crystal 0.2 w++ or more L less than L w D = Example 2 where the material decomposes during melting and a single crystal cannot be obtained The single crystal fibers of Samples 1, 2, and 3 obtained in Example 1 were cut to a length of approximately 3 mm, and repeatedly 1Opps was used as the incident fundamental wave. , pulse width 10 ns, pulse energy 320 mJ Q-switched Nd: A YAG laser (YGfiBOA, wavelength 1064 nm, manufactured by Quantel International in the United States) was used, and when it was attenuated and focused, the light was guided from the end face of a single crystal fiber, and it appeared on the screen. A ring-shaped second harmonic (green light) was observed.

[発明の効果コ 本発明によれば、光導波路とするのに十分な大きさの単
結晶が容易に得られ、可視光の吸収がなく、高い非線形
光学効果を示す非線形光学素子を提供することができる
[Effects of the Invention] According to the present invention, there is provided a nonlinear optical element that can easily obtain a single crystal large enough to be used as an optical waveguide, does not absorb visible light, and exhibits a high nonlinear optical effect. Can be done.

出願人 コ ニ カ 株 式 会 社Applicant Co., Ltd.

Claims (1)

【特許請求の範囲】  下記一般式[ I ]で表される有機化合物の結晶を用
いた非線形光学素子。 一般式[ I ] ▲数式、化学式、表等があります▼ (式中、Aは炭素原子数5以下の電子吸引性基を、R_
1は水素原子、アルキル基、アルケニル基を、R_2は
ヒドロキシル基、アシルアミノ基、ウレイド基を、R_
3は水素原子又は一価の置換基を表す。)
[Claims] A nonlinear optical element using a crystal of an organic compound represented by the following general formula [I]. General formula [I] ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, A represents an electron-withdrawing group with 5 or less carbon atoms, R_
1 is a hydrogen atom, an alkyl group, an alkenyl group, R_2 is a hydroxyl group, an acylamino group, a ureido group, R_
3 represents a hydrogen atom or a monovalent substituent. )
JP18740689A 1988-07-30 1989-07-21 Nonlinear optical element Pending JPH02132423A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19102088 1988-07-30
JP63-191020 1988-07-30

Publications (1)

Publication Number Publication Date
JPH02132423A true JPH02132423A (en) 1990-05-21

Family

ID=16267552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18740689A Pending JPH02132423A (en) 1988-07-30 1989-07-21 Nonlinear optical element

Country Status (1)

Country Link
JP (1) JPH02132423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381746A (en) * 1989-08-25 1991-04-08 Sekisui Chem Co Ltd Organic nonlinear optical material
JPH03140927A (en) * 1989-10-26 1991-06-14 Sekisui Chem Co Ltd Organic nonlinear optical material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381746A (en) * 1989-08-25 1991-04-08 Sekisui Chem Co Ltd Organic nonlinear optical material
JPH03140927A (en) * 1989-10-26 1991-06-14 Sekisui Chem Co Ltd Organic nonlinear optical material

Similar Documents

Publication Publication Date Title
Kwon et al. Organic nonlinear optical crystals based on configurationally locked polyene for melt growth
US4909598A (en) Non-linear optical device
JPH02132423A (en) Nonlinear optical element
Liu et al. Flux growth of nonlinear optical crystal K3B6O10Br with high optical quality and its electro-optical property
US4985178A (en) Nonlinear optical device from 3-methyl-4-methoxy-4&#39;-nitrostilbene
JPH03279928A (en) Wavelength converting element
US5406406A (en) Molecular crystal and wavelength conversion devices using the same
US5310918A (en) 1-aryl-substituted azole, non-linear optical material and novel molecular crystal containing same and method and module for the conversion of light wavelength using same
JPH04277724A (en) Organic nonlinear optical material
JPH06118462A (en) Organic nonlinear optical material
JPH073527B2 (en) Optical wavelength conversion module
JPH0695184A (en) Organic nonlinear optical material and optical functional element using that
JPH03215835A (en) Molecular crystal and method for converting light wavelength by using this crystal
JP2763224B2 (en) Organic nonlinear optical material
JPH01193815A (en) Second-order organic nonlinear optical material
JPH04166820A (en) Non-linear optical material and non-linear optical element
JPH02171730A (en) Nonlinear optical material and nonlinear optical element
JPH036538A (en) Organic nonlinear optical material and nonlinear optical element using this material
JP2539849B2 (en) Nonlinear optical material and nonlinear optical element using the same
JP2871202B2 (en) Nonlinear optical element
JPH05249517A (en) Organic nonlinear optical material
JPH03276130A (en) Second harmonic wave generating element
JPH01229234A (en) Organic nonlinear optical material and nonlinear optical element using same
JPH04199135A (en) Nonlinear optical element material
JPH0355529A (en) Novel organic nonlinear optical material and method for converting light wavelength by using this material