JPH04199135A - Nonlinear optical element material - Google Patents

Nonlinear optical element material

Info

Publication number
JPH04199135A
JPH04199135A JP2333172A JP33317290A JPH04199135A JP H04199135 A JPH04199135 A JP H04199135A JP 2333172 A JP2333172 A JP 2333172A JP 33317290 A JP33317290 A JP 33317290A JP H04199135 A JPH04199135 A JP H04199135A
Authority
JP
Japan
Prior art keywords
nonlinear optical
formula
electron
optical
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2333172A
Other languages
Japanese (ja)
Other versions
JP2896604B2 (en
Inventor
Ryujun Fu
龍淳 夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2333172A priority Critical patent/JP2896604B2/en
Publication of JPH04199135A publication Critical patent/JPH04199135A/en
Application granted granted Critical
Publication of JP2896604B2 publication Critical patent/JP2896604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain a practical org. nonlinear optical element material having a large nonlinear optical effect and improved storage stability and workability by using a compd. expressed by a specified formula. CONSTITUTION:The compd. used is expressed by formula I, wherein X is an amino acid deriv. having asymmetric carbon, Yn is n electron-donating substd. groups coupled with phenyl group, and n is 1 - 5. This compd. has strong electron affinity of cyclobutendion ring comparable to a nitro group and a long pi-electron conjugate, so that the whole molecule has a largely polarized structure and high optical nonlinearity. Thus, the obtd. org. nonlinear optical element material is a practical material and has large nonlinear optical effect and improved storage stability and workability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信や光情報処理等に使用される非線形光
学素子用材料。詳しくは、電子供与性置換基を有する共
役π電子系が電子吸引性置換基としてシクロブテンジオ
ン環を含有することを特徴とする非線形光学素子用材料
に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a material for nonlinear optical elements used in optical communication, optical information processing, etc. Specifically, the present invention relates to a material for a nonlinear optical element, in which a conjugated π-electron system having an electron-donating substituent contains a cyclobutenedione ring as an electron-withdrawing substituent.

(従来の技術) 光通信や光情報処理の分野では、非線形光学素子が重要
な役割を果たす。非線形光学素子用材料は、周波数が異
なる二種の入射光の和及び差の周波数を発生する光混合
、周波数の異なる二種の光となる光パラメトリック、ま
た、電気的、光学的に元媒体の屈折率を変化させるポッ
ケルス効果やカー効果、或いは入射光の2次高調波(S
HG)又は3次高調波(THG)への交換など、光信号
処理の上で極めて重要な作用をもつ。
(Prior Art) Nonlinear optical elements play an important role in the fields of optical communication and optical information processing. Materials for nonlinear optical elements can be used for optical mixing, which generates the sum and difference frequencies of two types of incident light with different frequencies, optical parametric, which generates two types of light with different frequencies, and electrical and optical mixing of the original medium. The Pockels effect and Kerr effect that change the refractive index, or the second harmonic of the incident light (S
It has an extremely important effect on optical signal processing, such as exchanging to third harmonic (THG) or third harmonic (THG).

従来、非線形光学素子用材料としては、KDP(KH2
PO4)、ニオブ酸リチウム(LiNb03)等の無機
結晶が知られていたが、要求を満足するに足る材料が見
出されなかった。
Conventionally, KDP (KH2
Although inorganic crystals such as PO4) and lithium niobate (LiNb03) were known, no material sufficient to meet the requirements was found.

有機非線形光学材料は、近年オプトエレクトロニクスの
分野における新しい光学素子用材料として注目され、そ
の研究が年々盛んになっている。
Organic nonlinear optical materials have recently attracted attention as new materials for optical elements in the field of optoelectronics, and research on them has become more active year by year.

特に、π電子共役系を有する有機化合物は、その分子単
体の性能の大きさと高速の応答性から、材料探索の為の
研究が数多くなされている。一般に、有機化合物の結晶
は、無機化合物の結晶に比べて、SHGの係数が10〜
100倍程度大きく、光応答速度も1000倍程度速く
、また光損傷に対する閾値も大きいことが知られている
In particular, many studies have been conducted on organic compounds having a π-electron conjugated system to search for materials because of their high performance as a single molecule and high-speed response. In general, crystals of organic compounds have a SHG coefficient of 10 to 10% compared to crystals of inorganic compounds.
It is known that it is about 100 times larger, its photoresponse speed is about 1000 times faster, and its threshold for photodamage is also larger.

従来知られている有機非線形光学材料としては、2−メ
チル−4−ニトロアニリン、m−ニトロアニリン、N−
(4−ニトロフェニル)−L−プロリノール、2−アセ
チルアミノ−4−ニトロ−N、 N−ジメチルアニリン
、4−ジメチルアミン−4′−ニトロスチルベン、4?
−ジメチルアミノ−N−メチル−4−スチルバゾリウム
メチルスルフェート及び4′−メチルベンジリデン−4
−ニトロアニリンなどがある。これらπ電子共役系を有
する有機化合物の光非線形性は、電磁波としてのレーザ
光と有機化合物のπ電子との相互作用に起因するもので
あって、この相互作用は、π電子共役系に電子吸引性、
電子供与性の置換基を導入することにより、更に大きく
することができる。
Conventionally known organic nonlinear optical materials include 2-methyl-4-nitroaniline, m-nitroaniline, and N-
(4-nitrophenyl)-L-prolinol, 2-acetylamino-4-nitro-N, N-dimethylaniline, 4-dimethylamine-4'-nitrostilbene, 4?
-dimethylamino-N-methyl-4-stilbazolium methyl sulfate and 4'-methylbenzylidene-4
- Examples include nitroaniline. The optical nonlinearity of organic compounds having these π-electron conjugated systems is due to the interaction between laser light as an electromagnetic wave and π-electrons of the organic compound, and this interaction causes electron attraction to the π-electron conjugated system. sex,
It can be made even larger by introducing an electron-donating substituent.

ところが、この様な有機化合物系においては、一般に双
極子モーメントが大きくなり、結晶時の双極子−双極子
相互作業が強くなって、隣接する2分子の双極子が互い
に打ち消し合う中心対称性の結晶を形成し易くなる。そ
して、応用面で重要な二次の非線形光学効果は、このよ
うな中心対称性結晶では発現しないという問題がある。
However, in such organic compound systems, the dipole moment generally increases, and the dipole-dipole interaction during crystallization becomes stronger, resulting in a centrally symmetrical crystal in which the dipoles of two adjacent molecules cancel each other out. It becomes easier to form. Another problem is that the second-order nonlinear optical effect, which is important in applications, does not occur in such centrosymmetric crystals.

そこで結晶状態で光非線形性を発現させる上で問題とな
る中心対称性を崩す為に、水素結合能を有する置換基や
不斉炭素原子を有する光学活性置換基を1、電子共役系
に分子設計時に導入するという工夫がなされている。本
発明者は、このような不斉炭素原子を有する光学活性置
換基をπ電子共役系に導入し、従来よりも大きな非線形
効果を示す材料の具体例を特願平1−248108号に
開示したが、さらに大きな非線形効果の向上が望まれて
いる。
Therefore, in order to break the central symmetry, which is a problem in expressing optical nonlinearity in the crystalline state, we designed the molecule to be an electronically conjugated system with a substituent that has hydrogen bonding ability and an optically active substituent that has an asymmetric carbon atom. Efforts have been made to introduce it from time to time. The present inventor has disclosed in Japanese Patent Application No. 1-248108 a specific example of a material that exhibits a larger nonlinear effect than conventional materials by introducing such an optically active substituent having an asymmetric carbon atom into a π-electron conjugated system. However, even greater improvements in nonlinear effects are desired.

(発明が解決しようとする課題) 一般に、非線形光学素子用材料として必要とされる特性
は、光非線形性の大きさ、光の透過性、耐レーザ損傷強
度、結晶性、位相整合性、加工性、機械的強度、吸湿性
及び硬度等があげられる。
(Problems to be Solved by the Invention) Generally, the characteristics required for a material for a nonlinear optical element are the magnitude of optical nonlinearity, light transmittance, laser damage resistance, crystallinity, phase matching, and processability. , mechanical strength, hygroscopicity and hardness.

従来から知られている非線形光学素子用材料の中から、
以上のような実用上必要とされる諸要求を満足する非線
形光学素子用材料を選ぶことは困難であった。
Among the conventionally known materials for nonlinear optical elements,
It has been difficult to select a material for nonlinear optical elements that satisfies the various practical requirements as described above.

本発明は、従来より知られている非線形光学素子用材料
の上記問題点を改良することを目的としてなされたもの
であって、その目的は、大きな非線形光学効果、保存安
定性及び加工性を改良して、実用的な有機非線形光学素
子用材料を提供することにある。
The present invention was made with the aim of improving the above-mentioned problems of conventionally known materials for nonlinear optical elements, and its purpose is to improve large nonlinear optical effects, storage stability, and processability. The object of the present invention is to provide a practical material for organic nonlinear optical elements.

本発明の他の目的は、二次の非線形光学効果の大きい有
機非線形光学素子用材料を提供することにある。
Another object of the present invention is to provide a material for an organic nonlinear optical element that has a large second-order nonlinear optical effect.

(課題を解決するための手段9 本発明者は、分子の基底状態における双極子モーメント
が大きく、結晶時に中心対称性を形成し易い化合物系で
あっても、分子に適切な置換基を導入することにより、
特に、二次の非線形光学効果の大きい有機非線形光学素
子用材料が得られることを見出し、本発明を完成するに
至った。すなわち、本発明の上記目的は、下記一般式(
I)で示される化合物を使用することによって達成され
る。
(Means for Solving the Problems 9) The present inventor has proposed that the present inventors introduce appropriate substituents into molecules even in compound systems that have a large dipole moment in the ground state of the molecule and are likely to form central symmetry during crystallization. By this,
In particular, it was discovered that a material for organic nonlinear optical elements having a large second-order nonlinear optical effect can be obtained, and the present invention was completed. That is, the above object of the present invention is achieved by the following general formula (
This is achieved by using the compound shown in I).

本発明の非線形光学素子用材料は、下記一般式(I)で
示される化合物よりなる。
The material for nonlinear optical elements of the present invention comprises a compound represented by the following general formula (I).

(式中Xは、不斉炭素を有するアミノ酸誘導体から成る
。Ynはフェニル基に結合したn個の、下記の化学式で
示される電子供与性置換基を示す。ここでnは1〜5迄
の数字を示す。式中R1〜R5は、置換又は未置換のア
リキル基を示し、R1とR2は互いに同じでも、異なっ
ていてもよい。) R4S−(Iv) HO(V) R5−(Vf) 上記一般式(I)において、置換基Xは、不斉炭素を有
するアミノ酸誘導体が窒素原子を介してシクロブテンジ
オン環に結合する有機化合物残基であって、具体的には
、不斉炭素を有するアミノ酸誘導体”と、2−クロロシ
クロブテンジオン環又は2−アルコキシシクロブテンジ
オン環との反応により導入することができる。
(In the formula, Indicates a number. In the formula, R1 to R5 represent a substituted or unsubstituted alkyl group, and R1 and R2 may be the same or different from each other.) R4S-(Iv) HO(V) R5-(Vf) In the above general formula (I), the substituent X is an organic compound residue in which an amino acid derivative having an asymmetric carbon is bonded to a cyclobutenedione ring via a nitrogen atom, and specifically, 2-chlorocyclobutenedione ring or 2-alkoxycyclobutenedione ring.

バルク状態又は薄膜状態での分子の配向を制御するため
には、これ等の置換基Xが不斉炭素原子を有し、光学活
性であると共に水素結合性の置換基である、水酸基やア
ミノ基などを含むことが重要な点である。
In order to control the orientation of molecules in a bulk state or a thin film state, these substituents It is important to include such things as

その場合、分子自体の双極子モーメントが大きい場合で
あっても、バルク又は薄膜構造における分子の配向を制
御し、中心対称性を崩すことにより、大きな光非線形性
を発現させることができる。
In this case, even if the dipole moment of the molecule itself is large, large optical nonlinearity can be developed by controlling the orientation of the molecule in the bulk or thin film structure and breaking the central symmetry.

本発明における上記一般式(I)で示される化合物の具
体例を以下に例示する。
Specific examples of the compound represented by the above general formula (I) in the present invention are illustrated below.

1−(4’−N、 N−ジエチルアミノフェニル)−2
−(2’−ヒドロキシプロピルアミノ)−シクロブテン
−3,4−ジオン、[化合物(I−1)] 1−(4’−N、 N−ジエチルアミノフェニル)−2
−(1’−ヒドロキシメチル−2′−フェニルエチルア
ミノ)−シクロブテン−34−ジオン、 [化合物(I−2)] 1−(4’−N−メチル、N−エチルアミノフェニルド
ロキシメチル−2′−フェニルエチルアミノ)−シクロ
ブテン−3,4−ジオン、 [化合物(I−3)] 1、(4’−N−メチル、Nメトキシエチルアミノフェ
ニル)−2−(2’−ヒドロキシプロピルアミノ)、シ
クロブテン−34−ジオン、 [化合物(R4)] 1−(4’−メトキシフェニル)−2−(2−ヒドロキ
シプロピルアミノ)−シクロブテン−3,4−ジオン、
[化合物(I−5)] 1−(4−メトキシフェニル)−2−(1’−ヒドロキ
シメチルプロピルアミノ)−シクロブテン−3,4−ジ
オン、[化合物(I−6)] 1−(4’−メチルチオフェニル ル−2−フェニルエチルアミノ オン、 [化合物(R7)] 1−(3’,4’−ジメトキシフェニル)−2−(2’
−ヒドロキシメチルエチルアミノ)−シクロブテン−3
,4−ジオン、[化合物(I−8)] 1−(3’,4’−ジメトキシフェニル)−2−(2’
−ヒドロキシプロピルアミン)−シクロブテン−3,4
−ジオン、[化合物(I−9)] 1−(3’,4’−ジメトキシフェニル)−2−(1’
−ヒドロキシメチルプロピルアミノ)−シクロブテン−
3,4−ジオン、[化合物(I−10)] 1−(3’,4”−ジメトキシフェニル)−2−(1−
ヒドロキシメチル−2′−フェニルエチルアミノ)−シ
クロブテン−3,4−ジオン、 [化合物(I−11)] 本発明における上記一般式(1)で示される化合物は、
第1図に示す反応式(A)及び(B)のいずれかに従っ
て、収率良く容易に合成することができる。
1-(4'-N, N-diethylaminophenyl)-2
-(2'-Hydroxypropylamino)-cyclobutene-3,4-dione, [Compound (I-1)] 1-(4'-N, N-diethylaminophenyl)-2
-(1'-Hydroxymethyl-2'-phenylethylamino)-cyclobutene-34-dione, [Compound (I-2)] 1-(4'-N-methyl, N-ethylaminophenyl doxymethyl-2 '-Phenylethylamino)-cyclobutene-3,4-dione, [Compound (I-3)] 1, (4'-N-methyl, N-methoxyethylaminophenyl)-2-(2'-hydroxypropylamino) , cyclobutene-34-dione, [Compound (R4)] 1-(4'-methoxyphenyl)-2-(2-hydroxypropylamino)-cyclobutene-3,4-dione,
[Compound (I-5)] 1-(4-methoxyphenyl)-2-(1'-hydroxymethylpropylamino)-cyclobutene-3,4-dione, [Compound (I-6)] 1-(4' -Methylthiophenyl-2-phenylethylaminone, [Compound (R7)] 1-(3',4'-dimethoxyphenyl)-2-(2'
-hydroxymethylethylamino)-cyclobutene-3
,4-dione, [Compound (I-8)] 1-(3',4'-dimethoxyphenyl)-2-(2'
-hydroxypropylamine)-cyclobutene-3,4
-dione, [compound (I-9)] 1-(3',4'-dimethoxyphenyl)-2-(1'
-Hydroxymethylpropylamino)-cyclobutene-
3,4-dione, [Compound (I-10)] 1-(3′,4”-dimethoxyphenyl)-2-(1-
Hydroxymethyl-2'-phenylethylamino)-cyclobutene-3,4-dione, [Compound (I-11)] The compound represented by the above general formula (1) in the present invention is:
It can be easily synthesized with good yield according to either reaction formula (A) or (B) shown in FIG.

まず第1段階の反応として、反応式(A)の場合につい
ては、例えば約5〜50°Cの温度において、式(■)
の化合物、例えばジエチルアニリン約20〜50mmo
lと式(■)のジクロロシクロブテンジオン約20〜1
50mmolを約100〜1000mlのフリーデルク
ラフッ溶剤(例えば2硫化炭素、ニトロベンゼン、塩化
メチレン等)中で混合、撹拌することによって反応を行
う。この反応は触媒、好ましくは、例えば約20〜50
0mmolの塩化アルミニウムの存在下で遂行される。
First, as a first-stage reaction, in the case of reaction formula (A), for example, at a temperature of about 5 to 50°C, formula (■)
compounds, such as about 20-50 mmol of diethylaniline
l and dichlorocyclobutenedione of formula (■) about 20 to 1
The reaction is carried out by mixing and stirring 50 mmol in about 100 to 1000 ml of a Friedelkraff solvent (eg, carbon disulfide, nitrobenzene, methylene chloride, etc.). This reaction is preferably carried out using a catalyst, e.g.
Performed in the presence of 0 mmol aluminum chloride.

反応は約2〜8時間続行され、その後フリーデルクラフ
ッ溶剤を除去して、中間体として、式(IX)のクロロ
シクロブテンジオン誘導体を得る。
The reaction is continued for about 2-8 hours, after which the Friedelkraff solvent is removed to obtain the chlorocyclobutenedione derivative of formula (IX) as an intermediate.

また、反応式(B)の場合については、式(X)のジェ
トキシシクロブテンジオン約20〜100mmolを、
トリエチルオキソニウムフルオロボレート約50〜20
0mmol、ハロゲン化溶剤、例えば塩化メチレン約5
0〜250m1及び式(■)の化合物、例えばジエチル
アニリン約20〜200mmolと共に室温で反応させ
る。6〜12時間撹拌した後、溶剤を減圧除去し、中間
体として、式(XI)のアルコキシシクロブテンジオン
誘導体を得る。
In addition, in the case of reaction formula (B), about 20 to 100 mmol of jetoxycyclobutenedione of formula (X),
Triethyloxonium fluoroborate about 50-20
0 mmol, halogenated solvent, e.g. methylene chloride approx.
0 to 250 ml and about 20 to 200 mmol of a compound of formula (■), for example diethylaniline, at room temperature. After stirring for 6 to 12 hours, the solvent is removed under reduced pressure to obtain an alkoxycyclobutenedione derivative of formula (XI) as an intermediate.

次いで、第2段階の反応として、上記のようにして得ら
れた一般式(IX)又は(XI)で示される化合物を、
不斉炭素を有するアミノ酸誘導体と反応させる。すなわ
ち、一般式(IX)又は(XI)で示される化合物を、
アセトン、テトラヒドロフラン、メタノール、エタノー
ルなどの溶媒に懸濁或いは溶解させる。次いで、この懸
濁液或いは溶液に、一般式(IX)又は(XI)で示さ
れる化合物に対して、当量以上の上記の不斉炭素を有す
るアミノ酸誘導体を、撹拌しながら徐々に加え、反応さ
せる。反応は通常、速やかに進行するが、必要に応じて
加熱することも可能である。反応の進行に伴い、生成物
が析出してくる場合は、濾過し、また、生成物が析出し
ない場合は、濃縮或いは貧溶媒を加え、析出させる。得
られた一般式(I)で示される化合物は、必要により、
アルコール、アセトンなどの溶媒により再結晶させるか
、又は昇華により精製する。
Then, as a second step reaction, the compound represented by the general formula (IX) or (XI) obtained as described above is
React with an amino acid derivative having an asymmetric carbon. That is, a compound represented by general formula (IX) or (XI),
Suspend or dissolve in a solvent such as acetone, tetrahydrofuran, methanol, or ethanol. Next, to this suspension or solution, an equivalent or more amount of the above-mentioned asymmetric carbon-containing amino acid derivative is gradually added to the compound represented by the general formula (IX) or (XI) while stirring, and allowed to react. . The reaction usually proceeds quickly, but it is possible to heat the reaction if necessary. If the product precipitates as the reaction progresses, it is filtered, and if the product does not precipitate, it is concentrated or a poor solvent is added to precipitate it. The obtained compound represented by general formula (I), if necessary,
It is purified by recrystallization with a solvent such as alcohol or acetone, or by sublimation.

本発明における一般式(1)中に、置換基Xを導入し得
る不斉炭素を有するアミノ酸誘導体の具体例を示すと、
S−(+)−2−アミノ−1−プロパツール、R−(−
)−1−アミノ−2−プロパツール、R−(−)−2−
アミノ−1−ブタノール、D−フェニルアラニノール、
L−プロリノール、L−ロイシノール、L−メチオニノ
ール、L−バリノール、L−アラニン−t−ブチルエス
テル、L−プロリン−t−ブチルエステル、L−アラニ
ンメチルエステル、L−プロリンメチルエステル、L−
バリンメチルエステル、L−イソロイシンメチルエステ
ル、L−ロイシンメチルエステル、L−アラニンエチル
エステル、L−フェニルアラニンメチルエステル、L−
プロリンベンジルエステル、L−チロシンエチルエステ
ル、L−ノルアドレナリン、L−メチオニンエチルエス
テル、等のアミノ酸誘導体及びそれらの光学異性体があ
げられる。
Specific examples of amino acid derivatives having an asymmetric carbon into which a substituent X can be introduced into general formula (1) in the present invention are:
S-(+)-2-amino-1-propanol, R-(-
)-1-amino-2-propatool, R-(-)-2-
Amino-1-butanol, D-phenylalaninol,
L-prolinol, L-leucinol, L-methioninol, L-valinol, L-alanine-t-butyl ester, L-proline-t-butyl ester, L-alanine methyl ester, L-proline methyl ester, L-
Valine methyl ester, L-isoleucine methyl ester, L-leucine methyl ester, L-alanine ethyl ester, L-phenylalanine methyl ester, L-
Examples include amino acid derivatives such as proline benzyl ester, L-tyrosine ethyl ester, L-noradrenaline, L-methionine ethyl ester, and optical isomers thereof.

次に、上記一般式(I)で示される化合物の一例につい
て、合成例を示す。
Next, a synthesis example will be shown for an example of the compound represented by the above general formula (I).

(合成例) 1−(4’−N、N−ジエチルアミノフェニル)−2−
(2’−ヒドロキシプロルアミノ)シクロブテン−3,
4−ジオン[例示化合物(ニー1月の合成; 1−(4’−ジエチルアミノフェニル)−2−クロロシ
クロブテン−3,4−ジオン0.8g(3,0mmol
)を15m1のアセトン中に加えて得た溶液中に、R−
(−)−1−アミノ−2−プロパツール1mlを加え、
撹拌しながら、約2時間反応させる。反応の過程で析出
した生成物を濾過し、黄色微結晶0.42g(1,4m
mol)(収率47%)を得る。
(Synthesis example) 1-(4'-N,N-diethylaminophenyl)-2-
(2'-hydroxyproramino)cyclobutene-3,
4-dione [Exemplary compound (synthesis of January 2013) 1-(4'-diethylaminophenyl)-2-chlorocyclobutene-3,4-dione 0.8 g (3,0 mmol
) in 15 ml of acetone, R-
Add 1 ml of (-)-1-amino-2-propatool,
React for about 2 hours while stirring. The product precipitated during the reaction process was filtered, and 0.42 g of yellow microcrystals (1.4 m
mol) (yield 47%).

融点:226°C 極大吸収波長: 406nm(CH2CI2中)元素分
析 CHN 計算値  67.52   7.34  9.27測定
値  67.63   7.22  9.15上記一般
式(I)で示される他の化合物も上記合成例と同様にし
て合成することができる。
Melting point: 226°C Maximum absorption wavelength: 406 nm (in CH2CI2) Elemental analysis CHN Calculated value 67.52 7.34 9.27 Measured value 67.63 7.22 9.15 Others represented by the above general formula (I) The compound can also be synthesized in the same manner as in the above synthesis example.

本発明における上記一般式(1)で示される化合物は、
非線形光学素子の構成材料として使用される。非線形光
学素子としては、例えば、光波長変換素子、光シヤツタ
ー、高速光スイッチング素子、光論理ゲート、光トラン
ジスターなどがあげられる。
The compound represented by the above general formula (1) in the present invention is:
Used as a constituent material of nonlinear optical elements. Examples of nonlinear optical elements include optical wavelength conversion elements, optical shutters, high-speed optical switching elements, optical logic gates, and optical transistors.

(作用) 本発明における上記一般式(1)で示される化合物は、
その中に含まれるシクロブテンジオン環がニトロ基なみ
の強い電子吸引性を有すると共に、長いπ−電子共役系
を持ち、その為、分子全体が電気的に大きく分極した構
造を取り易くなり、高い光非線形性を有するものとなっ
ている。
(Function) The compound represented by the above general formula (1) in the present invention is:
The cyclobutenedione ring contained therein has a strong electron-withdrawing property comparable to that of a nitro group, and also has a long π-electron conjugated system, which makes it easier for the entire molecule to assume a highly electrically polarized structure, resulting in high It has optical nonlinearity.

また、上記一般式(I)中のXとして、不斉炭素原子を
有するアミノ酸誘導体が導入されているので、基底状態
において大きな双極子モーメントを、持つ、−電子共役
系を含む場合であっても、高い光非線形性を有するもの
となっている。
In addition, since an amino acid derivative having an asymmetric carbon atom is introduced as X in the above general formula (I), even if it includes a -electron conjugated system that has a large dipole moment in the ground state. , it has high optical nonlinearity.

更に、上記一般式(1)で示される化合物は、耐熱性、
耐光性、透明性に優れ、安定性や加工性が良いので、非
線形光学素子用材料として活用することができる。
Furthermore, the compound represented by the above general formula (1) has heat resistance,
It has excellent light resistance, transparency, stability, and processability, so it can be used as a material for nonlinear optical elements.

(実施例1) L−(4’−N、N−ジエチルアミノフェニルキシプロ
ピルアミノ)−シクロブテン−3,4oジオン(下記例
示化合物ニーυの粉末をガラスセル中に充填し、これに
Nd:YAGレーザ(波長1,Q64μm、出力180
mJ/パルス)を照射すると、SHGに起因する532
nmの緑色散乱光が発生した。その強度を測定すると尿
素の粉末を同様の条件で測定した値の16倍であった。
(Example 1) Powder of L-(4'-N, N-diethylaminophenylxypropylamino)-cyclobutene-3,4o dione (the exemplified compound niυ shown below) was filled in a glass cell, and a Nd:YAG laser was applied to the glass cell. (Wavelength 1, Q64μm, output 180
mJ/pulse), 532
nm green scattered light was generated. When its strength was measured, it was 16 times the value measured for urea powder under similar conditions.

なお、第2図は、上記の試料を粉末法でSHG強度を評
価するのに用いた光学系のブロック図である。図中、l
li,tNd:YAGレーザ、12はガラスセル中に充
填した粉末のサンプル、13はレンズ、14はフィルタ
ー、15はモノクロメータ−、16は光電子増倍管、1
7はボックスカーインチグレーター、18はオシロスコ
ープである。Nd:YAGレーザ−11より波長1.0
64μmの光をサンプル12に照射し、サンプルから発
生する波長532nmの緑色散乱光を光電子増倍管16
を用いて測定することによりSHG強度を測定した。
Note that FIG. 2 is a block diagram of an optical system used to evaluate the SHG intensity of the above sample using the powder method. In the figure, l
li, tNd: YAG laser, 12 is a powder sample filled in a glass cell, 13 is a lens, 14 is a filter, 15 is a monochromator, 16 is a photomultiplier tube, 1
Reference numeral 7 is a box car inching grator, and 18 is an oscilloscope. Wavelength 1.0 from Nd:YAG laser-11
The sample 12 is irradiated with 64 μm light, and the green scattered light with a wavelength of 532 nm generated from the sample is sent to the photomultiplier tube 16.
The SHG intensity was measured using a .

(実施例2) 下記例示化合物(C2)、(I−3)、(I−4)、(
ニー5)、(I−6)、(ニー7)、(I−8)、(I
−9)、(ニー10)、及び(I−11)を使用し、実
施例1と同様にして、サンプルのSHG強度を測定した
結果を表1に示す。
(Example 2) The following exemplary compounds (C2), (I-3), (I-4), (
Knee 5), (I-6), (Knee 7), (I-8), (I
Table 1 shows the results of measuring the SHG intensity of the samples in the same manner as in Example 1 using -9), (Knee 10), and (I-11).

なお、例示化合物の構造式は次の通りである。The structural formulas of the exemplary compounds are as follows.

(式中*Cは、不斉炭素原子を意味する)例示化合物(
 ニー 2 )  C6H5CH2C*HCH20H】 (発明の効果) 本発明の非線形光学素子用材料は、SHG強度が大きく
、耐熱性、耐光性、透明性に優れ、安定性や加工性がよ
い、又、大きな単結晶が得られやすい。したがって、本
発明の非線形光学素子用材料は、例えば、光波長変換用
素子、光シヤツター、高速光スイッチング素子、光論理
ゲート、光トランジスターなどの構成材料として非常に
優れたものである。
(In the formula, *C means an asymmetric carbon atom) Exemplary compound (
2) C6H5CH2C*HCH20H] (Effects of the invention) The material for nonlinear optical elements of the present invention has high SHG strength, excellent heat resistance, light resistance, and transparency, and has good stability and processability. Crystals are easily obtained. Therefore, the material for nonlinear optical elements of the present invention is very excellent as a constituent material for, for example, optical wavelength conversion elements, optical shutters, high-speed optical switching elements, optical logic gates, optical transistors, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の非線形光学用材料を合成する化学式の
一例を示す。第2図は粉末法でSHG強度を評価するの
に用いる光学系のブロック図である。 11・・・Nd:YAGレーザ−,12・・・サンプル
、14・・・フィルター、15・・・モノクロメータ−
116・・・光電子増倍管、17・・・ボックスカーイ
ンチグレーター、18・・・オシロスコープ。 特許出願人 富士ゼロックス株式会社 代 理 人 小1)富士雄 半月  明 (■)       (VI)           
  (IX)υ (I) (■)        (x)           
  (XI)第1図
FIG. 1 shows an example of a chemical formula for synthesizing the nonlinear optical material of the present invention. FIG. 2 is a block diagram of an optical system used to evaluate SHG intensity using the powder method. 11...Nd:YAG laser-, 12...sample, 14...filter, 15...monochromator-
116...Photomultiplier tube, 17...Box car inching grater, 18...Oscilloscope. Patent applicant: Fuji Xerox Co., Ltd. Agent: 1st grade) Akira Hanzuki Fujio (■) (VI)
(IX)υ (I) (■) (x)
(XI) Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)下記一般式( I )で示される化合物からなる非
線形光学素子用材料。 ▲数式、化学式、表等があります▼( I ) (式中Xは、不斉炭素を有するアミノ酸誘導体から成り
、Ynはフェニル基に結合したn個(nは1〜5迄の数
字を示す)の電子供与性置換基を示す。)
(1) A material for nonlinear optical elements comprising a compound represented by the following general formula (I). ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (I) (In the formula, X consists of an amino acid derivative having an asymmetric carbon, and Yn is n atoms bonded to a phenyl group (n indicates a number from 1 to 5) (indicates an electron-donating substituent)
(2)上記一般式( I )中、Yが次の化学式(II)乃
至(VI)のいずれかで示される電子供与性置換基及び、
それらの組合せである特許請求の範囲第1項に記載の非
線形光学素子用材料。 ▲数式、化学式、表等があります▼(II) R_3O−(III) R_4S−(IV) HO−(V) R_5−(VI) (式中R_1〜R_5は、置換又は未置換のアリキル基
を示し、R_1とR_2は互いに同じでも、異なってい
てもよい。)
(2) In the general formula (I) above, Y is an electron-donating substituent represented by any of the following chemical formulas (II) to (VI);
The material for a nonlinear optical element according to claim 1, which is a combination thereof. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) R_3O-(III) R_4S-(IV) HO-(V) R_5-(VI) (In the formula, R_1 to R_5 represent substituted or unsubstituted alkyl groups. , R_1 and R_2 may be the same or different.)
JP2333172A 1990-11-29 1990-11-29 Materials for nonlinear optical elements Expired - Lifetime JP2896604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2333172A JP2896604B2 (en) 1990-11-29 1990-11-29 Materials for nonlinear optical elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2333172A JP2896604B2 (en) 1990-11-29 1990-11-29 Materials for nonlinear optical elements

Publications (2)

Publication Number Publication Date
JPH04199135A true JPH04199135A (en) 1992-07-20
JP2896604B2 JP2896604B2 (en) 1999-05-31

Family

ID=18263105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2333172A Expired - Lifetime JP2896604B2 (en) 1990-11-29 1990-11-29 Materials for nonlinear optical elements

Country Status (1)

Country Link
JP (1) JP2896604B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309819A (en) * 1994-05-20 1995-11-28 Fuji Xerox Co Ltd Cyclobutene dione derivative, production thereof and nonlinear optical element using the same
US5616802A (en) * 1994-10-19 1997-04-01 Fuji Xerox Co., Ltd. Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
US5659085A (en) * 1994-05-20 1997-08-19 Fuji Xerox Co., Ltd. Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309819A (en) * 1994-05-20 1995-11-28 Fuji Xerox Co Ltd Cyclobutene dione derivative, production thereof and nonlinear optical element using the same
US5659085A (en) * 1994-05-20 1997-08-19 Fuji Xerox Co., Ltd. Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
US5811552A (en) * 1994-05-20 1998-09-22 Fuji Xerox Co., Ltd. Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
US5872256A (en) * 1994-05-20 1999-02-16 Fuji Xerox Co., Ltd. Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
US5616802A (en) * 1994-10-19 1997-04-01 Fuji Xerox Co., Ltd. Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element

Also Published As

Publication number Publication date
JP2896604B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
US4746199A (en) Non-linear optic process using N-(4-nitrophenyl)-2-(hydroxymethyl)-pyrrolidine and deuterated derivatives thereof
JPH04199135A (en) Nonlinear optical element material
JP2762610B2 (en) Squarylium derivative and method for producing the same
US5106997A (en) Squarylium derivatives and preparation thereof
US4987255A (en) Organic nonlinear optical material
JP2789699B2 (en) Materials for nonlinear optical elements
US5872256A (en) Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
JP2836485B2 (en) Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same
JPH03112961A (en) Squarylium derivative and production thereof
JP2819826B2 (en) Cyclobutenedione derivative and method for producing the same
JPH04121717A (en) Novel organic nonlinear optical material and method for converting light wavelength by using this material
JP2819827B2 (en) Cyclobutenedione derivative and method for producing the same
JPH0678282B2 (en) Cyclobutenedione derivative and method for producing the same
US5210302A (en) Cyclobutenedione derivative and process for preparing the same
US5616802A (en) Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
JP2530725B2 (en) Organic nonlinear optical material
JPH06128234A (en) Compound having asymmetric carbon atom and non-linear optical material composed of the compound
JP2539850B2 (en) Nonlinear optical material and nonlinear optical element using the same
JPH04166820A (en) Non-linear optical material and non-linear optical element
JP2539849B2 (en) Nonlinear optical material and nonlinear optical element using the same
JPH01229235A (en) Organic nonlinear optical material and nonlinear optical element using same
EP0355326A2 (en) Nonlinear optical material
JPH02934A (en) Nonlinear optical material
JPS62187828A (en) Nonlinear optical material
JPH05224258A (en) Nonlinear optical material