JP2819826B2 - Cyclobutenedione derivative and method for producing the same - Google Patents
Cyclobutenedione derivative and method for producing the sameInfo
- Publication number
- JP2819826B2 JP2819826B2 JP33317490A JP33317490A JP2819826B2 JP 2819826 B2 JP2819826 B2 JP 2819826B2 JP 33317490 A JP33317490 A JP 33317490A JP 33317490 A JP33317490 A JP 33317490A JP 2819826 B2 JP2819826 B2 JP 2819826B2
- Authority
- JP
- Japan
- Prior art keywords
- general formula
- derivative represented
- cyclobutenedione
- optical
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、非線形光学材料として有用で、かつ新規な
シクロブテンジオン誘導体及びその製造方法に関する。The present invention relates to a novel cyclobutenedione derivative useful as a nonlinear optical material and a method for producing the same.
(従来の技術) 光通信や光情報処理の分野では、非線形光学素子が重
要な役割りを果たす。非線形光学素子に使用する非線形
光学材料は、周波数の異なる2種類の入射光の和及び差
の周波数を発生する光混合、周波数の異なる2種類の光
となる光パラメトリック、また、光媒体の屈折率を変化
させるポッケルス効果やカー効果、或いは入射光の二次
高調波(SHG)又は三次高調波(THG)への変換、更に光
双安定など、光信号処理の上で極めて重要な作用を行う
物質である。従来、この様な非線形光学材料としては、
主として無機系の物が使用されていた。(Prior Art) In the fields of optical communication and optical information processing, nonlinear optical elements play an important role. Non-linear optical materials used for the non-linear optical element include light mixing for generating sum and difference frequencies of two types of incident light having different frequencies, optical parametric as two types of light having different frequencies, and a refractive index of an optical medium. A substance that plays a very important role in optical signal processing, such as the Pockels effect or Kerr effect, which changes the wavelength, or the conversion of incident light to the second harmonic (SHG) or third harmonic (THG), as well as optical bistability. It is. Conventionally, as such a nonlinear optical material,
Mainly inorganic materials were used.
無機系の非線形光学材料については、KDP(KH2PO4)
およびニオブ酸リチウム(LiNbO3)などの無機化合物の
結晶が知られているが、要求を十分に満足するに足るも
のではなかった。For inorganic nonlinear optical materials, KDP (KH 2 PO 4 )
Crystals of inorganic compounds such as lithium niobate and lithium niobate (LiNbO 3 ) are known, but have not been sufficient to satisfy the requirements.
一方、有効系の非線形光学材料については、近年、オ
プトエレクトロニクス分野における新しい光学素子用材
料として注目され、年々その研究が盛んになってきてい
る。特に、π電子共役系を有する有機化合物は、その分
子単体の性能の大きさと高速の応答性から、材料探索の
ための研究が数多くなされている。On the other hand, effective nonlinear optical materials have recently attracted attention as new optical element materials in the field of optoelectronics, and have been actively studied every year. In particular, organic compounds having a π-electron conjugate system have been extensively studied for material search because of the high performance and high-speed response of the molecule itself.
一般に、有機非線形光学材料の結晶は、無機非線形光
学材料の結晶に比べて、SHGの係数が10〜100倍大きく、
光応答速度も1000倍程度速く、また光損傷に対する閾値
も大きいことが知られている。Generally, a crystal of an organic nonlinear optical material has a SHG coefficient 10 to 100 times larger than a crystal of an inorganic nonlinear optical material,
It is known that the light response speed is about 1000 times faster and the threshold value for light damage is large.
最近、明らかにされた有機非線形光学材料としは、2
−メチル−4−ニトロアニリン、m−ニトロアニリン、
N−(4−ニトロフェニル)−L−プロリノール、2−
アセチルアミノ−4−ニトロ−N、N−ジメチルアニリ
ン、4−ジメチルアミノ−4′−ニトロスチルベン、
4′−ジメチルアミノ−N−メチル−4−スチルバゾリ
ウムメチルスルフェート及び4′−メチルベンジリデン
−4−ニトロアニリンなどの有機化合物があげられる。
これらπ電子共役系を有する有機化合物の光非線形性
は、電磁波としてのレーザー光と有機化合物のπ電子と
の相互作用に起因するものであって、この相互作用は、
π電子共役系に電子吸引性、電子供給性の置換基を導入
することにより、更に大きくすることができる。Recently disclosed organic nonlinear optical materials include:
-Methyl-4-nitroaniline, m-nitroaniline,
N- (4-nitrophenyl) -L-prolinol, 2-
Acetylamino-4-nitro-N, N-dimethylaniline, 4-dimethylamino-4'-nitrostilbene,
Organic compounds such as 4'-dimethylamino-N-methyl-4-stilbazolium methyl sulfate and 4'-methylbenzylidene-4-nitroaniline.
The optical nonlinearity of these organic compounds having a π-electron conjugated system is caused by the interaction between laser light as an electromagnetic wave and the π-electrons of the organic compound.
The size can be further increased by introducing an electron-withdrawing and electron-supplying substituent into the π-electron conjugated system.
ところが、この様な有機化合物においては、一般に双
極子モーメントが大きくなり、結晶時の双極子−双極子
相互作用が強くなって、2分子の双極子が互いに打ち消
し合う構造である中心対称性の結晶を形成し易くなる。
応用面で重要な2次の非線形光学効果については、この
様な中心対称性結晶では発現しないという問題がある。
そこで、結晶状態で光非線形性を発現させる上で問題と
なる中心対称性を崩すために、水素結合能を有する置換
基や不斉炭素原子を有する光学活性な置換基を、π電子
共役形を有する有機化合物に分子設計時に導入するとい
う工夫がなされている。本発明者は、このような不斉炭
素原子を有する光学活性置換基をπ電子共役系に導入
し、従来よりも大きな非線形効果を示す材料の具体例を
特願平1−248108号に開示したが、さらに大きな非線形
効果の向上が望まれている。However, such organic compounds generally have a large dipole moment, a strong dipole-dipole interaction during crystallization, and a centrally symmetric crystal having a structure in which two dipoles cancel each other. Is easy to form.
There is a problem that the second-order nonlinear optical effect which is important in application is not exhibited in such a centrosymmetric crystal.
Therefore, in order to break down the central symmetry, which is a problem in expressing optical nonlinearity in a crystalline state, a π-electron conjugated form is required to substitute a substituent having hydrogen bonding ability or an optically active substituent having an asymmetric carbon atom. It has been devised to introduce the compound into the organic compound at the time of molecular design. The present inventors have introduced such an optically active substituent having an asymmetric carbon atom into a π-electron conjugated system, and disclosed a specific example of a material exhibiting a larger nonlinear effect than the conventional one in Japanese Patent Application No. 1-248108. However, it is desired to further improve the nonlinear effect.
(発明が解決しようとする課題) 一般に、非線形光学素子用材料として必要とされる特
性は、光非線形性の大きさ、光の透過性、耐レーザ損傷
強度、結晶性、位相整合性、加工性、機械的強度、吸湿
性及び硬度等があげられる。(Problems to be Solved by the Invention) In general, the properties required as a material for a nonlinear optical element include the magnitude of optical nonlinearity, light transmission, laser damage resistance, crystallinity, phase matching, and workability. , Mechanical strength, hygroscopicity and hardness.
従来から知られている有機非線形光学素子用材料の中
から、以上のような実用上必要とされる諸特性を満足す
るものを選択することは極めて困難であった。It has been extremely difficult to select a material that satisfies the above-mentioned various properties required for practical use from conventionally known materials for organic nonlinear optical elements.
本発明は、従来の技術における上記のような実状に鑑
みてなされたものである。The present invention has been made in view of the above situation in the related art.
従って、本発明の目的は、従来より知られている非線
形光学素子用材料における問題点を改善し、より大きな
非線形光学効果を有し、保存安定性、加工性及び透明性
が改良された実用的な有機非線形光学素子用材料を提供
することにある。Accordingly, an object of the present invention is to improve the problems in the conventionally known materials for nonlinear optical elements, to have a larger nonlinear optical effect, and to improve the storage stability, processability and transparency of practical use. It is an object of the present invention to provide a material for organic nonlinear optical elements.
(課題を解決するための手段) 本発明者は、分子の双極子モーメントが大きく、結晶
時に中心対称性を形成しやすい化合物系であっても、分
子に適切な置換基を導入することにより、特に、2次の
非線形光学効果の大きい有機非線形光学素子用材料が得
られることを見出し、本発明を完成した。(Means for Solving the Problems) The present inventor has proposed that by introducing an appropriate substituent into a molecule, even in a compound system in which the dipole moment of the molecule is large and central symmetry is easily formed during crystallization, In particular, they have found that a material for an organic nonlinear optical element having a large second-order nonlinear optical effect can be obtained, and have completed the present invention.
本発明の上記目的は、下記一般式(I)で示される新
規なシクロブテンジオン誘導体によって達成される。The above object of the present invention is achieved by a novel cyclobutenedione derivative represented by the following general formula (I).
本発明の上記一般式(I)で示されるシクロブテンジ
オン誘導体中に含まれるシクロブテンジオン環は、下記
実施例中で示す極大吸収波長(分子内) (式中、R1はアルキル基を表わし、ZはO又はSを表わ
す。又R2は、次式のいずれかを表わし、C*は不斉炭素
原子を表わす) 電荷移動吸収帯)からも分かるように、ニトロ基並の強
い電子吸引性を有すると共に、長いπ電子共役系を持
つ。そのため、分子全体が電気的に大きく分極した構造
を取り易くなり、高い非線形性発現の原因になってい
る。The cyclobutenedione ring contained in the cyclobutenedione derivative represented by the general formula (I) of the present invention has a maximum absorption wavelength (intramolecular) shown in the following examples. (Wherein, R 1 represents an alkyl group, Z represents O or S. R 2 represents any of the following formulas, and C * represents an asymmetric carbon atom.) As can be seen from the charge transfer absorption band, it has a strong electron-withdrawing property similar to a nitro group and a long π-electron conjugate system. Therefore, it is easy for the whole molecule to have a structure that is electrically largely polarized, which causes high nonlinearity.
また、上記一般式(I)で示されるシクロブテンジオ
ン誘導体においては、不斉炭素原子を有するアミノ酸誘
導体が置換基として導入されている場合には、分子自体
の双極子モーメントが大きい場合であっても、バルク構
造における分子の配向を制御し、中心対称姓を崩すこと
により、更に大きな高非線形性を発現させることにな
る。In the cyclobutenedione derivative represented by the above general formula (I), when an amino acid derivative having an asymmetric carbon atom is introduced as a substituent, the dipole moment of the molecule itself is large. However, by controlling the orientation of molecules in the bulk structure and breaking the central symmetry, even higher non-linearity will be developed.
本発明の上記一般式(I)で示されるシクロブテンジ
オン誘導体は、次に示す反応式によって容易に、かつ収
率よく合成することができる。The cyclobutenedione derivative of the present invention represented by the above general formula (I) can be easily synthesized in good yield by the following reaction formula.
すなわち、一般式(II)で示されるシクロブテンジオ
ン誘導体をアセトン、テトラヒドロフラン、メタノー
ル、エタノール等の溶媒に懸濁或るいは溶解させ、次い
で、得られた懸濁液又は溶液中に、上記シクロブテンジ
オン誘導体に対して当量以上の一般式(III)で示され
るアミノ酸誘導体を、撹拌しながら徐々に加えて反応さ
せる。反応は、通常、速やかに進行するが、必要に応じ
て加熱することも可能である。反応の進行に伴い、生成
物が析出してくる場合は、濾過、また、生成物が析出し
てこない場合は、濃縮するか、或いは適当 (式中、Xは塩素原子、臭素原子、メトキシ基又はエト
キシ基を表わし、R1はアルキル基を表わし、ZはO又は
Sを表わし、R2は次式のいずれかを表わし、C*は不斉
炭素原子を表わす) な貧溶媒を加えて析出させればよい。得られた結晶は、
必要によりアルコール、アセトン等の溶媒により再結晶
させ、或いは昇華により精製する。That is, the cyclobutenedione derivative represented by the general formula (II) is suspended or dissolved in a solvent such as acetone, tetrahydrofuran, methanol, ethanol, and the like. An amino acid derivative represented by the general formula (III) in an amount equivalent to or more than the dione derivative is gradually added with stirring to react. The reaction usually proceeds promptly, but can be heated if necessary. If the product precipitates with the progress of the reaction, it is filtered, and if the product does not precipitate, it is concentrated or (In the formula, X represents a chlorine atom, a bromine atom, a methoxy group or an ethoxy group, R 1 represents an alkyl group, Z represents O or S, R 2 represents any of the following formulas, and C * represents Represents an asymmetric carbon atom) What is necessary is just to precipitate by adding a poor solvent. The resulting crystals are
If necessary, it is recrystallized with a solvent such as alcohol or acetone, or purified by sublimation.
上記一般式(III)で示されるアミノ酸誘導体の代わ
りに、その酸付加塩、例えば、塩酸塩、臭素酸塩、p−
トルエンスルホン酸塩等を原料として使用し、トリエチ
ルアミン、N−メチルモルホリン等の塩基性化合物の共
存下に、一般式(II)で示されるシクロブテンジオン誘
導体と、上記した方法と同様にして反応させて合成する
こともできる。Instead of the amino acid derivative represented by the general formula (III), an acid addition salt thereof, for example, hydrochloride, bromate, p-
Using a toluenesulfonic acid salt or the like as a raw material and reacting with a cyclobutenedione derivative represented by the general formula (II) in the same manner as described above in the presence of a basic compound such as triethylamine or N-methylmorpholine. Can also be synthesized.
なお、上記一般式(II)で示されるシクロブテンジオ
ン誘導体は、例えばアニソールとジクロロシクロブテン
ジオンを、塩化アルミニウムの存在下フリーデルクラフ
ツ溶剤(例えば2硫化炭素、ニトロベンゼン、塩化メチ
レン等)中で混合、撹拌することによって、クロロシク
ロブテンジオン誘導体を得る方法、或いは、ジアルコキ
シシクロブンテンジオンを、トリアルキルオキソニウム
塩及びハロゲン化溶剤と共に、アニソールと反応させて
アルコキシシクロブテンジオン誘導体を得る方法、等に
よって製造することができる。The cyclobutenedione derivative represented by the general formula (II) is obtained by mixing anisole and dichlorocyclobutenedione in a Friedel-Crafts solvent (eg, carbon disulfide, nitrobenzene, methylene chloride, etc.) in the presence of aluminum chloride. A method of obtaining a chlorocyclobutenedione derivative by stirring, or a method of reacting dialkoxycyclobutenedione with a trialkyloxonium salt and a halogenated solvent with anisole to obtain an alkoxycyclobutenedione derivative, And the like.
(実施例1) 1−(4′−メチルチオフェニル)−2−(1′−ヒド
ロキシメチル−2′−フエニルエチルアミノ)−シクロ
ブテン−3,4−ジオンの合成 下記構造式(II−1)で示される化合物1g(4.2mmo
l)のアセトン溶液30mlに、D−フエニルアラニノール 1gを添加し、約2時間撹拌を続けた。反応終了後、貧溶
媒として20mlの水を加え冷蔵庫中に静置した。その後、
析出した黄色結晶を補集することにより、下記構造式
(I−1)で示される、1−(4′−メチルチオフェニ
ル)−2−(1′−ヒドロキシメチル−2′−フエニル
エチルアミノ)−シクロブテン−3,4−ジオン1.2g(3.4
mmol)を黄色の結晶として得た。収率は81%であった。(Example 1) Synthesis of 1- (4'-methylthiophenyl) -2- (1'-hydroxymethyl-2'-phenylethylamino) -cyclobutene-3,4-dione The following structural formula (II-1) 1 g of the compound represented by (4.2 mmo
l) To 30 ml of acetone solution, add D-phenylalaninol 1 g was added and stirring continued for about 2 hours. After completion of the reaction, 20 ml of water was added as a poor solvent, and the mixture was allowed to stand in a refrigerator. afterwards,
By collecting the precipitated yellow crystals, 1- (4'-methylthiophenyl) -2- (1'-hydroxymethyl-2'-phenylethylamino) represented by the following structural formula (I-1) is obtained. -Cyclobutene-3,4-dione 1.2 g (3.4
mmol) were obtained as yellow crystals. The yield was 81%.
融点:191℃ 極大吸収波長(λmax):366nm(CH2Cl2中) 元素分析 C H N 計算値 67.96 5.42 3.96 測定値 67.85 5.40 3.88 (実施例2〜9) 原料物質として、第1表〜第3表の一般式(II)の欄
に記載のシクロブテンジオン誘導体と、一般式(III)
の欄に記載のアミノ酸誘導体とを使用する以外は、実施
例1に記載の場合と同様にして、第1表〜第3表の一般
式(I)の欄に記載の目的生成物を合成した。 Melting point: 191 ° C. Maximum absorption wavelength (λmax): 366 nm (in CH 2 Cl 2 ) Elemental analysis C H N Calculated value 67.96 5.42 3.96 Measured value 67.85 5.40 3.88 (Examples 2 to 9) A cyclobutenedione derivative described in the column of general formula (II) in Table 3 and a general formula (III)
In the same manner as in Example 1 except that the amino acid derivative described in the column of Table 1 was used, the target product described in the column of the general formula (I) in Tables 1 to 3 was synthesized. .
得られた生成物について、元素分析値、極大吸収波長
(λmax in CH2Cl2)及び融点を測定した。その結果を
第4表に示す。About the obtained product, the elemental analysis value, the maximum absorption wavelength (λmax in CH 2 Cl 2 ) and the melting point were measured. Table 4 shows the results.
(応用例) 実施例1に記載の上記構造式(I−1)で示される化
合物を、ガラスセル中に充填した粉末のサンプルに、N
d:YAGレーザ(波長1.064μm、出力180mJ/パルス)を照
射すると、SHGに起因する532nmの強い緑色散乱光が、効
率よく発生した。(Application Example) A powder sample in which the compound represented by the above structural formula (I-1) described in Example 1 was filled in a glass cell was charged with N.
When irradiated with a d: YAG laser (wavelength 1.064 μm, output 180 mJ / pulse), strong green scattered light of 532 nm due to SHG was efficiently generated.
(発明の効果) 本発明の上記一般式で示されるシクロブテンジオン誘
導体は、新規な化合物であって、高い非線形性を示し、
また、耐熱性、耐光性、保存安定性及び加工性に優れた
物質であるので、非線形光学素子、例えば、光波長変換
素子、光シャッター、高速光スイッチング素子、光論理
ゲート、光トランジスター等の作製に使用することがで
きる。(Effect of the Invention) The cyclobutenedione derivative of the present invention represented by the above general formula is a novel compound, and exhibits high nonlinearity.
In addition, since it is a material having excellent heat resistance, light resistance, storage stability, and processability, it is possible to fabricate nonlinear optical elements, for example, optical wavelength conversion elements, optical shutters, high-speed optical switching elements, optical logic gates, optical transistors, and the like. Can be used for
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07M 7:00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C07M 7:00
Claims (3)
ジオン誘導体。 (式中、R1はアルキル基を表わし、ZはO又はSを表わ
す。又R2は、次式のいずれかを表わし、C*は不斉炭素
原子を表わす) 1. A cyclobutenedione derivative represented by the following general formula (I). (Wherein, R 1 represents an alkyl group, Z represents O or S. R 2 represents any of the following formulas, and C * represents an asymmetric carbon atom.)
ジオン誘導体と、下記一般式(III)で示されるアミノ
酸誘導体を反応させることを特徴とする特許請求の範囲
第1項に記載のシクロブテンジオン誘導体の製造方法。 (式中Xは塩素原子、臭素原子、メトキシ基又はエトキ
シ基を表わし、R1はアルキル基を表わす) NH2R2 (III) (式中、R2は次式のいずれかをを表わし、C*は不斉炭
素原子を表わす) 2. A cyclobutenedione derivative represented by the following general formula (II) is reacted with an amino acid derivative represented by the following general formula (III): A method for producing a butenedione derivative. (Where X represents a chlorine atom, a bromine atom, a methoxy group or an ethoxy group, and R 1 represents an alkyl group) NH 2 R 2 (III) (where R 2 represents any of the following formulas, C * represents an asymmetric carbon atom)
ジオン誘導体と、前記一般式(III)で示されるアミノ
酸誘導体の酸付加塩を、塩基性化合物の存在下で反応さ
せることを特徴とする特許請求の範囲第1項に記載のシ
クロブテンジオン誘導体の製造方法。3. The method according to claim 1, wherein the cyclobutenedione derivative represented by the general formula (II) is reacted with an acid addition salt of the amino acid derivative represented by the general formula (III) in the presence of a basic compound. The method for producing a cyclobutenedione derivative according to claim 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33317490A JP2819826B2 (en) | 1990-11-29 | 1990-11-29 | Cyclobutenedione derivative and method for producing the same |
US07/759,661 US5210302A (en) | 1990-11-29 | 1991-09-13 | Cyclobutenedione derivative and process for preparing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33317490A JP2819826B2 (en) | 1990-11-29 | 1990-11-29 | Cyclobutenedione derivative and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04202165A JPH04202165A (en) | 1992-07-22 |
JP2819826B2 true JP2819826B2 (en) | 1998-11-05 |
Family
ID=18263130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33317490A Expired - Lifetime JP2819826B2 (en) | 1990-11-29 | 1990-11-29 | Cyclobutenedione derivative and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2819826B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2836485B2 (en) * | 1994-05-20 | 1998-12-14 | 富士ゼロックス株式会社 | Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same |
JP2887833B2 (en) * | 1994-05-20 | 1999-05-10 | 富士ゼロックス株式会社 | Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same |
JPH08119914A (en) * | 1994-10-19 | 1996-05-14 | Fuji Xerox Co Ltd | Cyclobutendione derivative, its production and nonlinear optical element using the same |
KR100752036B1 (en) * | 2001-07-27 | 2007-08-28 | 주식회사유한양행 | 4-Amino-3-cyclobutene-1,2-dione derivatives and processes for the preparation thereof |
-
1990
- 1990-11-29 JP JP33317490A patent/JP2819826B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04202165A (en) | 1992-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2762610B2 (en) | Squarylium derivative and method for producing the same | |
JP2819826B2 (en) | Cyclobutenedione derivative and method for producing the same | |
JP2819827B2 (en) | Cyclobutenedione derivative and method for producing the same | |
US5106997A (en) | Squarylium derivatives and preparation thereof | |
JPH03112961A (en) | Squarylium derivative and production thereof | |
JPH0678282B2 (en) | Cyclobutenedione derivative and method for producing the same | |
JP2887833B2 (en) | Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same | |
JPS63113429A (en) | Organic nonlinear optical material | |
JP2836485B2 (en) | Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same | |
JP2896604B2 (en) | Materials for nonlinear optical elements | |
US5210302A (en) | Cyclobutenedione derivative and process for preparing the same | |
EP0761643B1 (en) | Cyclobutenedione derivative, manufacturing method thereof and non-linear optical device containing the same | |
JP2799101B2 (en) | Organic nonlinear optical material | |
EP0355326B1 (en) | Nonlinear optical material | |
JP2530725B2 (en) | Organic nonlinear optical material | |
JPH08119914A (en) | Cyclobutendione derivative, its production and nonlinear optical element using the same | |
JP2539850B2 (en) | Nonlinear optical material and nonlinear optical element using the same | |
JPH06130434A (en) | Organic nonlinear optical material | |
JPH01273020A (en) | Organic nonlinear optical material | |
JPH09136866A (en) | Cyclobutenedione derivative, its production and nonlinear optical element containing the derivative | |
JPH03179329A (en) | Nonlinear optical material and nonlinear optical element | |
JPH0729991B2 (en) | 1- (4-methylstyryl) -3- (4-nitrostyryl) benzene and its production method | |
JPH0729992B2 (en) | 1- (4-methoxystyryl) -3- (4-nitrostyryl) benzene and its production method | |
JPH03142419A (en) | Nonlinear optical element | |
JPH02934A (en) | Nonlinear optical material |