JPH04166820A - Non-linear optical material and non-linear optical element - Google Patents

Non-linear optical material and non-linear optical element

Info

Publication number
JPH04166820A
JPH04166820A JP29206190A JP29206190A JPH04166820A JP H04166820 A JPH04166820 A JP H04166820A JP 29206190 A JP29206190 A JP 29206190A JP 29206190 A JP29206190 A JP 29206190A JP H04166820 A JPH04166820 A JP H04166820A
Authority
JP
Japan
Prior art keywords
group
nonlinear optical
optical material
linear optical
substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29206190A
Other languages
Japanese (ja)
Inventor
Hidetaka Ninomiya
英隆 二宮
Kazuo Asano
和夫 浅野
Yoshitaka Horii
堀井 美貴
Hiroko Nagasawa
長澤 裕子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP29206190A priority Critical patent/JPH04166820A/en
Publication of JPH04166820A publication Critical patent/JPH04166820A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical material, in which an absorbing end is a short wavelength to provide no absorption substantially in a visible region further to show a high non-linear optical effect, by using a specific compound. CONSTITUTION:A material is formed of a compound expressed by a formula I. In the expression A represent an acceptor quality substituent, X represents O, S, NH and Y represents CH, N and Ar 5 or 6 member annulus group, having aromatization. The acceptor quality substituent, represented by A, is a group with Hammett's sigmap value being 0 or more, with 0 most preferable as X and N most preferable as Y. The 5 or 6 member annulus group, having aromatization, represented by Ar, may be the same annulus group and hetero annulus group, and a phenyl group, having substituent, is preferable as Ar. In this way, an optical material, in which an absorbing end is a short wavelength to provide no absorption substantially in a visible region further to obtain high generation of the second harmonic wave, is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、レーザー光の高調波の発生、パラメトリック
増幅等に用いる有機非線形光学材料及び有機非線形光学
素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to organic nonlinear optical materials and organic nonlinear optical elements used for generation of harmonics of laser light, parametric amplification, and the like.

[発明の背景] レーザー光等の強い光を物質に照射した時に顕著に現れ
る非線形光学効果は、波長変換、強度変調、スイッチン
グ等に応用できるものであり、近年、該非線形光学効果
を有する材料の探索研究が数多く為されている。
[Background of the Invention] The nonlinear optical effect that appears when a material is irradiated with intense light such as a laser beam can be applied to wavelength conversion, intensity modulation, switching, etc., and in recent years, materials that have this nonlinear optical effect have been developed. Many exploratory studies have been conducted.

波長変換、特に2次の非線形光学効果に基づいた第2高
調波発生(Second Harmonic Gene
ration。
Wavelength conversion, especially second harmonic generation based on second-order nonlinear optical effects.
ration.

以下SHGと略す。)では、従来知られていたニオブ酸
リチウム(LiNbO5)、燐酸二水素カリウム(KD
P)等の無機材料に比し、有機化合物か桁違いに高い性
能を有する可能性が指摘されている。(例えば、「有機
非線形光学材料」、加藤政雄、中西へ部監修、シー・エ
ム・シー社。
Hereinafter abbreviated as SHG. ), previously known lithium niobate (LiNbO5) and potassium dihydrogen phosphate (KD
It has been pointed out that organic compounds may have an order of magnitude higher performance than inorganic materials such as P). (For example, "Organic Nonlinear Optical Materials", Masao Kato, supervised by Nakanishihe Department, CMC Corporation.

1985年刊) 有機化合物の非線形性の起源は分子内π電子であり、2
次の非線形分子分極率βは、該化合物が電子供与性基お
よび電子吸引性基の両方を有するとき、特に大きくなる
(published in 1985) The origin of nonlinearity in organic compounds is the intramolecular π electrons, and 2
The following nonlinear molecular polarizability β becomes particularly large when the compound has both an electron-donating group and an electron-withdrawing group.

しかしながら、p−ニトロアニリンで代表されるように
、分子レベルの非線形分極が大きくても、結晶の状態で
は全<SHGを示さなかったり、示してもSHGの小さ
いものが数多くみられる。これは、極性の強い有機物結
晶の分子配列が反転対称になり易いことに起因する。
However, as typified by p-nitroaniline, even if the nonlinear polarization at the molecular level is large, there are many that do not exhibit total<SHG in the crystalline state, or even if they do, the SHG is small. This is due to the fact that the molecular arrangement of highly polar organic crystals tends to have inversion symmetry.

また、情報記録媒体の大容量化、高密度化の要求に応え
る形で光記録媒体の研究が盛んに行われているが、これ
ら光記録媒体の記録密度は光源の波長に依存するので(
記録密度限界は光源波長が短くなると、その2乗に反比
例して増大する。)、より短波な光源を得るために波長
変換素子への期待は大きいものがある。
In addition, research into optical recording media is being actively conducted in response to demands for larger capacity and higher density information recording media, but since the recording density of these optical recording media depends on the wavelength of the light source (
As the light source wavelength becomes shorter, the recording density limit increases in inverse proportion to the square of the wavelength. ), there are great expectations for wavelength conversion elements to obtain shorter wavelength light sources.

しかしながら、既知の高SHG活性の化合物は、例えば
2−メチル−4−ニトロアニリン、m −ニトロアニリ
ン等のように黄色に着色しているため、短波光の透過率
か低く、波長変換で短波光を発生するには不利である。
However, known compounds with high SHG activity, such as 2-methyl-4-nitroaniline, m-nitroaniline, etc., are yellow-colored and have low short-wave light transmittance. It is disadvantageous for this to occur.

従って、可視領域、特に短波光の透過率が高い非線形光
学材料が望まれている。
Therefore, a nonlinear optical material is desired that has high transmittance in the visible region, particularly in short-wavelength light.

[発明の目的] 従って、本発明の目的は、吸収端が短波長で、実質的に
可視領域に吸収を持たず、がっ、高い非線形光学効果を
示す新規な有機非線形光学材料及び有機非線形光学素子
を提供することにある。
[Object of the Invention] Therefore, the object of the present invention is to provide a novel organic nonlinear optical material and an organic nonlinear optical material that have an absorption edge at a short wavelength, have substantially no absorption in the visible region, and exhibit high nonlinear optical effects. The purpose is to provide devices.

[発明の構成] 本発明の上記目的は、 (1)下記−゛般式[I]で表される化合物からなるこ
とを特徴とする非線形光学材料。
[Structure of the Invention] The above objects of the present invention are: (1) A nonlinear optical material comprising a compound represented by the following general formula [I].

一般式[I] Xは、O,5SNHを表し、Yは、CH,Nを表す。General formula [I] X represents O,5SNH, and Y represents CH,N.

Arは、芳香族性を有する5員又は6員環の基を表す。Ar represents a 5- or 6-membered ring group having aromaticity.

] (2)上記(1)項記載の非線形光学材料からなる非線
形光学素子。
] (2) A nonlinear optical element made of the nonlinear optical material described in item (1) above.

によって達成された。achieved by.

以下、本発明をより詳細に説明する。The present invention will be explained in more detail below.

上記一般式[I]において、Aで表されるアクセプター
性置換基は、ハメットによって定義されるσρ値が0以
上の基であり、例えばニトロ基、シアノ基、コハク酸イ
ミド基、ホルミル基、アルコキシカルボニル基、ジシア
ノビニル基が好ましく、特に、ニトロ基、シアノ基好ま
しい。
In the above general formula [I], the acceptor substituent represented by A is a group having a σρ value of 0 or more as defined by Hammett, such as a nitro group, a cyano group, a succinimide group, a formyl group, an alkoxy A carbonyl group and a dicyanovinyl group are preferred, and a nitro group and a cyano group are particularly preferred.

Xとしては、Oが最も好ましく、次いでSが好ましい。As X, O is most preferred, followed by S.

Yとしては、Nが最も好ましい。As Y, N is most preferable.

Arで表される芳香族性を有する5員又は6員環の基は
、同素環基てもよくヘテロ環基てもよく、これら基とし
ては、例えばフェニル基、ピロリル= 5− 基、ピリジニル基が挙げられる。
The aromatic 5- or 6-membered ring group represented by Ar may be a homocyclic group or a heterocyclic group, and examples of these groups include phenyl group, pyrrolyl=5- group, pyridinyl group. Examples include groups.

Arとして好ましいものは、置換基を有するフェニル基
である。置換基としては、ニトロ基、メトキシ基、ヒド
ロキシ基、アミノ基が好ましい。
Preferred as Ar is a phenyl group having a substituent. As the substituent, a nitro group, a methoxy group, a hydroxy group, and an amino group are preferable.

以下に本発明に好ましく用いられる化合物の具体例を示
すが、本発明はこれらに限定されるものではない。
Specific examples of compounds preferably used in the present invention are shown below, but the present invention is not limited thereto.

以下余白 例示化合物 これらの化合物は、−船釣合成法により容易に合成する
ことができる。
The following are exemplified compounds in the margin.These compounds can be easily synthesized by the boat fishing synthesis method.

以下に、例示化合物(1)を例としてこれら化合物の合
成法を具体的に説明する。
Hereinafter, methods for synthesizing these compounds will be specifically explained using Exemplary Compound (1) as an example.

合成例 (I ’)          (n)3gの(I)と
2.7 gのp−ニトロアニリン(II)をエタノール
50m1と酢酸エチル80m1の混合液に溶解し、1夜
放置した。析出した結晶を濾取し、3,1gの例示化合
物(1)を得た。
Synthesis Example (I') (n) 3 g of (I) and 2.7 g of p-nitroaniline (II) were dissolved in a mixture of 50 ml of ethanol and 80 ml of ethyl acetate and left overnight. The precipitated crystals were collected by filtration to obtain 3.1 g of Exemplified Compound (1).

(m、p、162〜1134°C) 得られたものが例示化合物(1)であることはNMR及
びFD−Massにより確認した。
(m, p, 162-1134°C) It was confirmed by NMR and FD-Mass that the obtained product was Exemplified Compound (1).

本発明の化合物は、単結晶、粉末、溶液、支持体上に形
成した薄膜(ラングミュア−ブロジェット膜、蒸着膜な
と)あるいはポリマーや液晶分子中にブレンドした形等
種々の形態で非線形光学素子とすることができる。また
、本発明の化合物をポリマーの構成成分としたり、包接
化合物あるいは付加物として用いることも可能である。
The compounds of the present invention can be used in nonlinear optical elements in various forms, such as single crystals, powders, solutions, thin films formed on supports (Langmuir-Blodgett films, vapor-deposited films, etc.), or blended into polymers or liquid crystal molecules. It can be done. It is also possible to use the compound of the present invention as a constituent component of a polymer, or as an clathrate compound or an adduct.

素子の形態は公知の導波路形状をとることができる。例
えば特開昭63−77035号公報で示されているよう
に、ファイバー形状、平板形状また単結晶の周囲をクラ
ツド材で囲んだ形状がある。
The shape of the element can be a known waveguide shape. For example, as shown in Japanese Unexamined Patent Publication No. 63-77035, there are fiber shapes, flat plate shapes, and shapes in which a single crystal is surrounded by a cladding material.

本発明の非線形光学素子は、レーザー光の波長変換(高
調波の発生等)、強度変調、スイッチング等に用いるこ
とができる。
The nonlinear optical element of the present invention can be used for wavelength conversion of laser light (generation of harmonics, etc.), intensity modulation, switching, and the like.

[実施例] 以下、実施例を示すが、本発明の実施態様、はこれらに
限定されない。
[Example] Examples are shown below, but the embodiments of the present invention are not limited thereto.

実施例1 3HG効果を判定するのに一般的に行われている粉末法
(S、に、Kurtz、 T、T、Perry  ; 
J、Apl。
Example 1 A powder method commonly used to determine the 3HG effect (S, Kurtz, T, T, Perry;
J, Apl.

Phys、、 39.3798 (19Bg) 〕を用
いて本発明の化合物を評価した。
Phys., 39.3798 (19Bg)] was used to evaluate the compounds of the present invention.

光源としてビーム径2mm+繰り返しLOpps 、パ
ルス幅LOns 、パルスエネルギー 20mJのQス
イッチNd : YAGレーザ−(米国 Quante
l  Inter−nationa1社 Y G 6 
B OA、波長101084nを使用して、ガラスセル
中に充填した粉末のサンプルに照射し、発生したSHG
光(532nm緑色光)をフィルターおよびモノクロメ
ータ−で分光し光電子増倍管て検知し、尿素を1とした
時の相対値を求めた。
As a light source, a Q-switch Nd: YAG laser (USA Quante
l Inter-nationa1 company YG 6
B OA, wavelength 101084n was used to irradiate the powder sample filled in the glass cell, and the generated SHG
The light (532 nm green light) was separated using a filter and a monochromator, and detected using a photomultiplier tube, and the relative value when urea was taken as 1 was determined.

以下余白 表−1 表−1から明らかなように、本発明の化合物はSHG強
度も強く、可視吸収が比較的短波長であるから、青色光
にも使用できる優れた非線形光学材料であることが判る
Margin Table 1 below As is clear from Table 1, the compound of the present invention has strong SHG intensity and visible absorption at a relatively short wavelength, so it is an excellent nonlinear optical material that can also be used for blue light. I understand.

実施例2 中空ファイバー中に、実施例1で使用した本発明の化合
物の単結晶を、ブリッジマン−ストックバーガー法を用
い形成させ〔形成条件、高温炉の温度: (化合物の融
点)+(5°C)、低温炉の温度; (化合物の融点)
 −(20℃)、引上げ速度;1m+n/時間〕、非線
形光学素子を作成した。
Example 2 A single crystal of the compound of the present invention used in Example 1 was formed in a hollow fiber using the Bridgman-Stockberger method [formation conditions, temperature of high temperature furnace: (melting point of compound) + (5 °C), the temperature of the low temperature furnace; (melting point of the compound)
- (20° C.), pulling speed: 1 m+n/hour], a nonlinear optical element was created.

ファイバーの端面より波長10[i4r+mのYAGレ
ー−]1− ザー光を入射すると、532nmの第二高調波が観測さ
れた。
When a YAG laser beam with a wavelength of 10 [i4r+m]1- was inputted from the end face of the fiber, a second harmonic of 532 nm was observed.

[発明の効果コ 本発明によれば、吸収端が短波長で、実質的に可視領域
に吸収を持たず、かつ、高いSHGが得られる有機非線
形光学材料及び有機非線形光学素子を提供することがで
きる。
[Effects of the Invention] According to the present invention, it is possible to provide an organic nonlinear optical material and an organic nonlinear optical element that have an absorption edge at a short wavelength, have substantially no absorption in the visible region, and can obtain high SHG. can.

出願人 コ ニ カ 株 式 会 社Applicant Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)下記一般式[ I ]で表される化合物からなるこ
とを特徴とする非線形光学材料。 一般式[ I ] ▲数式、化学式、表等があります▼ [式中、Aは、アクセプター性置換基を表す。 Xは、O、S、NHを表し、Yは、CH、Nを表す。 Arは、芳香族性を有する5員又は6員環の基を表す。 ]
(1) A nonlinear optical material comprising a compound represented by the following general formula [I]. General formula [I] ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [In the formula, A represents an acceptor substituent. X represents O, S, NH, and Y represents CH, N. Ar represents a 5- or 6-membered ring group having aromaticity. ]
(2)請求項(1)記載の非線形光学材料からなる非線
形光学素子。
(2) A nonlinear optical element made of the nonlinear optical material according to claim (1).
JP29206190A 1990-10-31 1990-10-31 Non-linear optical material and non-linear optical element Pending JPH04166820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29206190A JPH04166820A (en) 1990-10-31 1990-10-31 Non-linear optical material and non-linear optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29206190A JPH04166820A (en) 1990-10-31 1990-10-31 Non-linear optical material and non-linear optical element

Publications (1)

Publication Number Publication Date
JPH04166820A true JPH04166820A (en) 1992-06-12

Family

ID=17777031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29206190A Pending JPH04166820A (en) 1990-10-31 1990-10-31 Non-linear optical material and non-linear optical element

Country Status (1)

Country Link
JP (1) JPH04166820A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8188833B2 (en) 2009-04-14 2012-05-29 Panasonic Corporation Variable resistance element and manufacturing method of the same
US8598561B2 (en) 2010-01-18 2013-12-03 Kabushiki Kaisha Toshiba Nonvolatile memory device and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8188833B2 (en) 2009-04-14 2012-05-29 Panasonic Corporation Variable resistance element and manufacturing method of the same
US8598561B2 (en) 2010-01-18 2013-12-03 Kabushiki Kaisha Toshiba Nonvolatile memory device and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP2700475B2 (en) Nonlinear optical materials and elements
JPH04166820A (en) Non-linear optical material and non-linear optical element
JP2789699B2 (en) Materials for nonlinear optical elements
JPH04121717A (en) Novel organic nonlinear optical material and method for converting light wavelength by using this material
JPH0678301B2 (en) Square lilium derivative and method for producing the same
JPH03164722A (en) Organic nonlinear optical material and method for converting wavelength of light with same
JPH03112950A (en) Squarylium derivative and production thereof
JP2896604B2 (en) Materials for nonlinear optical elements
EP0761643B1 (en) Cyclobutenedione derivative, manufacturing method thereof and non-linear optical device containing the same
US5383050A (en) Organic nonlinear optical material
JPH04166819A (en) Non-linear optical material and non-linear optical element
JP2817708B2 (en) Organic nonlinear optical material and organic nonlinear optical element
JPH03196026A (en) Nonlinear optical material and nonlinear optical element
JPH03196028A (en) Nonlinear optical material and nonlinear optical element
JPH02934A (en) Nonlinear optical material
JP2763224B2 (en) Organic nonlinear optical material
JPH04202167A (en) Cyclobutenedione derivative and its production
JPS62191834A (en) Non-linear type optical element and optical device includingthe same
JPH06128234A (en) Compound having asymmetric carbon atom and non-linear optical material composed of the compound
JP3383820B2 (en) Organic nonlinear optical material
JPH02935A (en) Nonlinear optical material
JP2725929B2 (en) Organic nonlinear optical material
JPH01173017A (en) Organic second order non-linear optical material
JPH0240633A (en) Nonlinear optical material and nonlinear optical element
JP2694562B2 (en) Novel organic nonlinear optical material and method of converting light wavelength using the same