JPH01173017A - Organic second order non-linear optical material - Google Patents

Organic second order non-linear optical material

Info

Publication number
JPH01173017A
JPH01173017A JP62335011A JP33501187A JPH01173017A JP H01173017 A JPH01173017 A JP H01173017A JP 62335011 A JP62335011 A JP 62335011A JP 33501187 A JP33501187 A JP 33501187A JP H01173017 A JPH01173017 A JP H01173017A
Authority
JP
Japan
Prior art keywords
substituent
nonlinear optical
optical material
asymmetric
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62335011A
Other languages
Japanese (ja)
Other versions
JPH0439056B2 (en
Inventor
Tetsuya Goto
哲哉 後藤
Tetsuya Tsunekawa
哲也 恒川
Keiichi Egawa
江川 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Toray Industries Inc
Original Assignee
Nippon Telegraph and Telephone Corp
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Toray Industries Inc filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62335011A priority Critical patent/JPH01173017A/en
Publication of JPH01173017A publication Critical patent/JPH01173017A/en
Publication of JPH0439056B2 publication Critical patent/JPH0439056B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain a large second order non-linear optical effect, and also, to raise the preservation stability by allowing the title material to have a large optical non-linearity consisting of a stilbene derivative. CONSTITUTION:The title material consists of a stilbene derivative shown by formula I, and has a large non-linearity of >=10 times of urea. In the formula I, D, A and R<1>-R<4> denote a Hammett's substituent constant sigmap and a donor property substituent selected from 0.2>=sigmap>-0.4 halogen, a Hammett's substitu ent constant sigmap and an acceptor property substituent selected from sigmaps>0.2, and hydrogen or arbitrary substituents, at least one of which is an asymmetrical substituent which has been led into an asymmetrical part, respectively. As a result, the center symmetric property in a bulk state, for instance, in a crystal state is broken down, and also, it is brought to orientation control to a bulk structure which can utilize a secondary optical non-linearity which a molecular has, and a large secondary non-linear optical effect can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光情報処理や光通信などの分野で用いられる
有1ls2次非線形光学材お1に関する。ざらに詳しく
は、2次非線形光学効果が大きく、保存安定性に優れた
有機化合物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a second-order nonlinear optical material 1 used in fields such as optical information processing and optical communication. More specifically, the present invention relates to an organic compound having a large second-order nonlinear optical effect and excellent storage stability.

[従来の技術] オプトエレクトロニクス分野では、大きな非線形光学効
果を有し高速に応答する材料を見い出し、より高性能の
、または従来実現できなかった非線形光学素子の実現が
熱望されている。従って、このような高性能材料の開発
を自損した探索研究が数多くなされている。従来、無機
材料が探索の主たる対象であったが上記要求を満足する
材料を見い出せなかった。そこで、近年、原理的に非線
形光学効果が大ぎく、高速に光応答すると期待されるπ
電子共役系を有する有機化合物が注目されるに至った。
[Prior Art] In the field of optoelectronics, materials that have a large nonlinear optical effect and respond at high speed have been discovered, and it is eagerly awaited to realize higher performance or nonlinear optical elements that have not been possible in the past. Therefore, many exploratory research efforts have been made to the detriment of developing such high-performance materials. Conventionally, inorganic materials have been the main target of exploration, but no material satisfying the above requirements has been found. Therefore, in recent years, π is expected to have a large nonlinear optical effect and a fast optical response in principle.
Organic compounds with electronic conjugated systems have attracted attention.

既に、2次の非線形光学効果を有する有機材料について
は、種々の化合物系で精力的に検討されており、また総
説的な解説も数多くある(AC3symposium 
5eries 233(1983) ; D、J、Wi
 Iliams Angew、Chem、Int、Ed
、Engl、23 p690 (1984)など)。
Organic materials with second-order nonlinear optical effects have already been actively studied in various compound systems, and there are many general explanations (AC3 symposium).
5eries 233 (1983); D, J, Wi
Williams Angew, Chem, Int, Ed
, Engl., 23 p690 (1984), etc.).

現在までに開発された代表的材料には、例えば、N−(
4−ニトロフェニル)−1−プロリノール(NPP)[
特開昭59−21665号公報]、N−[5−(2−ニ
トロピリジル)]−]L−プロリノールPNP)および
2−アセデルアミノ−4−ニトロ−N、N−ジメチルア
ニリン(DAN)などのベンゼンおよびピリジン誘導体
、4′−ジメチルアミノ−N−メチル−4−スチルバゾ
リウム・メトスルフェート(DMSM>などのスチルバ
ゾリウム類、および4−一二トロペンジリデン−4−(
N、N−ジメチル)アニリン、4−m:トロベンジリデ
ンー4−メチルアニリン(PrOCeedings(T
rudy) of the P、N、Levedeb 
Physics In5titute、Vol 9B(
1982)、Ba5ov、N、G、Editor(Co
nsultants BtJrealJ  :NeW 
York、N、Y、) shigortn、v、o p
77:“HaterialS and Apparat
tjS in QuantUIIIRadiOPhys
ics ” ) 、4 =−メチルベンジリデン−4=
ニトロアニリンなどのベンジリデンアニリン誘導体など
がある。
Representative materials developed to date include, for example, N-(
4-nitrophenyl)-1-prolinol (NPP) [
JP-A-59-21665], N-[5-(2-nitropyridyl)]-]L-prolinol PNP) and 2-acedelamino-4-nitro-N,N-dimethylaniline (DAN). benzene and pyridine derivatives, stilbazoliums such as 4'-dimethylamino-N-methyl-4-stilbazolium methosulfate (DMSM), and 4-ditropenezylidene-4-(
N,N-dimethyl)aniline, 4-m:trobenzylidene-4-methylaniline (PrOCeedings (T
rudy) of the P,N,Levedeb
Physics Institute, Vol 9B (
1982), Ba5ov, N.G., Editor (Co.
nsultants BtJrealJ :New
York, N, Y, ) shigortn, v, op
77: “HaterialS and Apparat
tjS in QuantUIIIRadiOPhys
ics”), 4=-methylbenzylidene-4=
Examples include benzylideneaniline derivatives such as nitroaniline.

π電子共役系を有する有機化合物の非線形光学効果はレ
ーザ光入射時のπ電子のゆらぎに起因するものとされて
いる。従って、このゆらぎを大きくするため、上記代表
的材料例に示されるがごとく、π電子共役系にドナー性
、アクセプター性の置換基を導入することが行なわれる
The nonlinear optical effect of organic compounds having a π-electron conjugated system is said to be caused by the fluctuation of π-electrons upon incidence of laser light. Therefore, in order to increase this fluctuation, substituents having donor properties and acceptor properties are introduced into the π-electron conjugated system, as shown in the above representative material examples.

一般に、有機化合物の結晶構造は、個々の分子の構造と
バッキング時の水素結合、ファンーデアーワ、−ルス相
互作用および双極子−双極子相互作用など、分子間凝集
力により決定される。
In general, the crystal structure of an organic compound is determined by the structure of each molecule and intermolecular cohesive forces such as hydrogen bonding during backing, Van-der-Waa, Luss interactions, and dipole-dipole interactions.

アミノ基とニトロ基なと強いドナー性、アクセプター性
の置換基の組合わせをπ電子共役系に導入すると分子の
持つ双極子モーメントが大きくなり、結晶形成時の分子
間における双極子−双極子相互作用が強くなる。このよ
うな化合物は、強い双極子−双極子相互作用によって2
分子の双極子が打ち消し合う構造である中心対称性の結
晶を形成しやすい。
When a combination of substituents with strong donor and acceptor properties, such as an amino group and a nitro group, is introduced into a π-electron conjugated system, the dipole moment of the molecule increases, and the dipole-dipole interaction between molecules during crystal formation increases. The effect becomes stronger. Such compounds have two
It tends to form centrosymmetric crystals, a structure in which the dipoles of the molecules cancel each other out.

ところがこの様な中心対称性結晶では、2次の非線形光
学効果は発現しない。
However, such a centrosymmetric crystal does not exhibit second-order nonlinear optical effects.

従来の研究では、結晶状態で2次非線形光学効果を発現
させる上で問題となる結晶の中心対称性を崩すために、
分子の非対称位置に置換基、特に、光学活性な置換基や
水素結合形成能の大きい置換基を導入するという工夫が
なされており、ベンゼン、ピリジン誘導体では成功例が
ある。NPP、PNPおよびDANなどがその代表例で
ある。しかしながら例えば2次の非線形光学効果を発現
させるに最適の分子配向が達成されていると報告されて
いるNPPの2次非線形光学効果の大きざは高々ウレア
の150倍である。従って、NPPよりもさらに大きな
2次非線形光学効果を有する材料の開発を行なおうとす
る場合には、ベンゼン。
In conventional research, in order to break the central symmetry of the crystal, which is a problem in expressing the second-order nonlinear optical effect in the crystal state,
Efforts have been made to introduce substituents, particularly optically active substituents and substituents with a high ability to form hydrogen bonds, at asymmetric positions in the molecule, and there have been successful examples of this in the case of benzene and pyridine derivatives. Representative examples include NPP, PNP, and DAN. However, it has been reported that, for example, NPP has achieved the optimum molecular orientation for producing a second-order nonlinear optical effect, and the magnitude of the second-order nonlinear optical effect is at most 150 times that of urea. Therefore, when trying to develop a material that has a larger second-order nonlinear optical effect than NPP, benzene is recommended.

ピリジン誘導体よりも大きな2次の超分極率(分子の2
次光非線形性、非中心対称性結晶で初めて発現する)を
持つ構造の化合物で非中心対称性結晶溝道と適切な分子
配向を達成する必要があった。
Higher second-order hyperpolarizability than pyridine derivatives (two-dimensional hyperpolarizability of the molecule)
It was necessary to achieve non-centrosymmetric crystal grooves and appropriate molecular orientation in a compound with a structure that has second-order optical nonlinearity, which first appears in non-centrosymmetric crystals.

しかし、スチルベン誘導体のごとく、ベンゼン誘導体く
例えばp−二トロアニリン)に比較して桁違いに大きな
2次の超分極率を持つ長いπ電子共役系を母骨格として
持つ化合物では、双極子モーメントもそれに付随して大
きくなるため、結晶の中心対称性を崩せないか、あるい
は例え非中心対称性にできても2次非線形光学効果を大
きく発現させるに適切な分子配向にはできないことが原
因で、これまで期待に反してベンゼン誘導体以下の小さ
な2次非線形光学効果を1qるのみであった。
However, in compounds such as stilbene derivatives, which have a long π-electron conjugated system as a parent skeleton that has an order of magnitude higher second-order hyperpolarizability than benzene derivatives (e.g., p-nitroaniline), the dipole moment also changes accordingly. This is due to the fact that the central symmetry of the crystal cannot be broken, or even if it can be made non-centrosymmetric, it is not possible to achieve an appropriate molecular orientation to greatly express the second-order nonlinear optical effect. Contrary to expectations, only 1q of small second-order nonlinear optical effects were observed, which is less than that of benzene derivatives.

そこで、長いπ電子共役系を母骨格として持つ化合物の
結晶の中心対称性を崩し適切な分子配向にするために、
立体障害の大きな塩構造の導入を検討した例がある。2
次の超分極率が大きく、しかも非中心対称性の結晶構造
を対アニオンの立体障害性でコントロールして、大きな
2次非線形光学効果を発現できるDMSMがその代表例
である。
Therefore, in order to break the central symmetry of the crystal of a compound that has a long π-electron conjugated system as a parent skeleton and achieve an appropriate molecular orientation,
There is an example of considering the introduction of a salt structure with large steric hindrance. 2
A typical example is DMSM, which has a large hyperpolarizability and can exhibit a large second-order nonlinear optical effect by controlling the non-centrosymmetric crystal structure with the steric hindrance of the counter anion.

しかし、これらの化合物では塩構造が吸湿性、結晶多形
など非線形光学材料として好ましからざる性質をもたら
すため、保存安定性、加工性などの点に問題が残った。
However, the salt structure of these compounds brings about properties that are undesirable as nonlinear optical materials, such as hygroscopicity and crystalline polymorphism, so problems remain in terms of storage stability and processability.

ドナー性、アクセプター性置換基の導入によって2次の
超分極率を大きくできる長いπ電子共役系を母骨格とす
るスチルベン誘導体では、DMSMに見られる様な問題
点もなく結晶状態で大きな2次非線形光学効果を発現す
る材料が得られると期待されるが、現在までのところN
PPを越える成功例がない。
Stilbene derivatives with a long π-electron conjugated system as a parent skeleton that can increase second-order hyperpolarizability by introducing donor and acceptor substituents do not have the problems seen in DMSM, and exhibit large second-order nonlinearity in the crystalline state. It is expected that materials that exhibit optical effects will be obtained, but so far, N
There are no examples of success exceeding PP.

[発明が解決しようとする問題点] 本発明の目的は、スチルベン誘導体において、その大き
な双極子モーメントのため非中心対称性結品構造とする
ことが困難であるという問題点を解決し大きな2次の超
分極率°を生かした大きな2次非線形光学効果が発現さ
れ、かつ、保存安定性に優れる有機非線形光学材料を提
供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to solve the problem that it is difficult to form a non-centrosymmetric structure in a stilbene derivative due to its large dipole moment. An object of the present invention is to provide an organic nonlinear optical material that exhibits a large second-order nonlinear optical effect by taking advantage of the hyperpolarizability of , and has excellent storage stability.

すなわち、本発明者らは、4−位にドナー性置換基、4
′−位にアクセプター性置換基が導入されたスチルベン
誘導体が、大きな2次超分極率を持ち得ることを量子化
学的計算により確認した。
That is, the present inventors added a donor substituent at the 4-position,
It was confirmed through quantum chemical calculations that stilbene derivatives with an acceptor substituent introduced at the '-position can have large second-order hyperpolarizability.

そこでこの知見に基づき、非対称置換基をスチルベン誘
導体のドナー性基が置換されているフェニル基の非対称
部位へ導入したところ、大きな光非線形性を発現する有
機2次非線形光学材料が得られることが実証され、本発
明に至った。
Based on this knowledge, it was demonstrated that by introducing an asymmetric substituent into the asymmetric site of the phenyl group substituted with the donor group of a stilbene derivative, an organic secondary nonlinear optical material that exhibits large optical nonlinearity could be obtained. This led to the present invention.

[問題点を解決するための手段] 上記目的を達成するため、本発明は下記の構成からなる
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration.

「 下記一般式[1]で表されるスチルベン誘導体から
成り、かつ、ウレアの10倍以上大きな光非線形性を有
することを特徴とする有機2次非線形光学材料。
"An organic secondary nonlinear optical material comprising a stilbene derivative represented by the following general formula [1] and having optical nonlinearity 10 times or more greater than that of urea.

[ただし、D=ハメットの置換基定数σpで、0.2≧
σp>−0,4、またはハロゲンから選ばれるドナー性
置換基、 A:ハメットの置換基定数σpで、σp>0.2から選
ばれるアクセプター性置換基、 R1〜R4:水素または任意の置換基であって、かつ、
少なくとも1つは非対称部位に導入された非対称置換基
を示す。] 本発明でいうところのスチルベン誘導体は、ハメットの
置換基定数σpで、0.2≧σp >−0゜4またはハ
ロゲンから選ばれるドナー性置換基を4−位に、σp>
0.2から選ばれるアクセプター性置換基を4−一位に
、また少なくとも1つの非中心対称性結晶の形成を容易
ならしめる効果を有する非対称置換基をドナー性基が置
換されているフェニル基の非対称部位に右する。
[However, D = Hammett's substituent constant σp, 0.2≧
Donor substituent selected from σp>-0,4 or halogen, A: Acceptor substituent selected from σp>0.2 with Hammett's substituent constant σp, R1 to R4: Hydrogen or any substituent and
At least one represents an asymmetric substituent introduced at an asymmetric site. ] The stilbene derivative as referred to in the present invention has a donor substituent selected from Hammett's substituent constant σp of 0.2≧σp >−0°4 or halogen at the 4-position, and σp>
A phenyl group in which the donor group is substituted with an acceptor substituent selected from 0.2 at the 4-1 position and an asymmetric substituent having the effect of facilitating the formation of at least one non-centrosymmetric crystal. Right to the asymmetrical area.

すなわち本発明の特徴は、 ■ 大きな超分極率を持つスチルベン誘導体をπ電子共
役系に選んだこと。
That is, the features of the present invention are as follows: (1) A stilbene derivative with large hyperpolarizability was selected as the π-electron conjugated system.

■ ドナー性およびアクセプター性置換基の組合わせを
、分子配向制御が可能な双極子モーメントの大きざとな
るよう選択したこと。加えて、■ 非対称置換基を非対
称部位に導入したこと。
■ The combination of donor and acceptor substituents is selected to provide a dipole moment size that allows for control of molecular orientation. In addition, ■ introducing an asymmetric substituent into an asymmetric site;

の3つの工夫(よってバルク状態、例えば結晶状゛  
 態での中心対称性を崩し、さらに分子の持つ2次光非
線形性を生かし1qるバルク構造に配向制御し、大きな
2次非線形光学効果の発現を可能にした点にある。
(Therefore, the bulk state, e.g. crystalline state)
The central symmetry of the molecule is broken, and the second-order optical nonlinearity of the molecule is utilized to control the orientation into a 1q bulk structure, making it possible to produce a large second-order nonlinear optical effect.

比較例1.2に示すように工夫■■のみでは大きな2次
非線形光学効果を発現する結晶を安定に形成させること
は困難である。ざらに工夫■を適用することによりはじ
めて大きな2次非線形光学効果を発現する結晶を形成し
やすくすることに成功した。
As shown in Comparative Example 1.2, it is difficult to stably form a crystal that exhibits a large second-order nonlinear optical effect only by making improvements. By applying a rough idea (■), we succeeded in making it easier to form a crystal that exhibits a large second-order nonlinear optical effect.

また、この場合、π電子相互作用により、一般に分子間
凝集力もベンゼン誘導体などと比較し強くなる。すなわ
ち、昇華性が低く、また吸水性も低くなるのでバルク状
態における保存安定性が良い。表3に、公知例のNPP
、PNP、DANとともに、本発明になる材料の水に対
する溶解性を比較した。
Furthermore, in this case, the intermolecular cohesive force is generally stronger compared to benzene derivatives and the like due to the π-electron interaction. That is, since the sublimation property and the water absorption property are also low, the storage stability in the bulk state is good. Table 3 shows known examples of NPP
, PNP, and DAN, the solubility of the material of the present invention in water was compared.

上記保存安定性の良さおよび有機月利の特徴である高速
の光応答性の点から、本発明の範囲の材料のうち、2次
非線形光学効果の大きさ自身はウレア比10すなわち従
来使用されてきたニオブ酸リチウム等の無機材料程度の
大きざの材料であっても用途によっては使用可能である
From the viewpoint of the above-mentioned good storage stability and high-speed photoresponsiveness, which is a characteristic of organic materials, among the materials within the scope of the present invention, the magnitude of the second-order nonlinear optical effect itself is urea ratio 10, that is, compared to conventionally used materials. Even materials as large as inorganic materials such as lithium niobate can be used depending on the purpose.

本発明でいうドナー性置換基としては、例えば、ヒドロ
キシル基、メトキシ、エトキシ、フェノキシなどのアル
コキシ基、ヒドロキシメチル、ヒドロキシエチルなどの
ヒトOキシアルキル基、メチル、エチル、t−ブチルな
ど鎖状または分岐状アルキル基、トリメチルシリルなど
のアルキルシリル基、メルカプトメチルなどのメルカプ
トアルキル基、アセチルアミノ基などのアルカノイルア
ミノげられ、また、アクセプター性の置換基としては、
ニトロ基、メチルスルフォニルなどのアルキルスルフォ
ニル基、シアノ基、スルファモイル基、メチルスルファ
モイルなどのアルキルスルファモイル基、トリフルオロ
メチル基、ホルミル、アセチルなどのアシル基、トリフ
ルオロメルカプトメチルィニル基、カルボキシ基、メト
キシカルボニル、エトキシカルボニルなどのアルコキシ
カルボニル基、カルバモイル基、メチルカルバモイルな
どのアルキルカルバモイル基、トリフルオロメトキシ基
、あるいはハロゲンなどが挙げられる。ハロゲンは、ド
ナー性、アクセプター性、両方の性質を持っているため
、どちらの範ちゅうにも入る。
Examples of donor substituents in the present invention include hydroxyl groups, alkoxy groups such as methoxy, ethoxy, and phenoxy, human O-oxyalkyl groups such as hydroxymethyl and hydroxyethyl, and linear or branched alkyl groups, alkylsilyl groups such as trimethylsilyl, mercaptoalkyl groups such as mercaptomethyl, alkanoylamino groups such as acetylamino groups, and as acceptor substituents,
Nitro group, alkylsulfonyl group such as methylsulfonyl, cyano group, sulfamoyl group, alkylsulfamoyl group such as methylsulfamoyl, trifluoromethyl group, formyl, acyl group such as acetyl, trifluoromercaptomethylinyl group, Examples include a carboxy group, an alkoxycarbonyl group such as methoxycarbonyl and ethoxycarbonyl, a carbamoyl group, an alkylcarbamoyl group such as methylcarbamoyl, a trifluoromethoxy group, and a halogen. Halogen has both donor and acceptor properties, so it falls into both categories.

アクセプター性の置換基として、ニトロ基を導入するこ
とは、その化合物の光非線形性を向上させる上で特に好
ましい。また、アクセプター性の置換基としてニトロ基
を導入する場合、ドナー性の置換基としてヒドロキシル
基またはアルコキシ基を導入すると吸収の長波長化が防
げ、かつ、分子の双極子モーメントを余り大きくしない
ので特に好ましい。
It is particularly preferable to introduce a nitro group as an acceptor substituent in order to improve the optical nonlinearity of the compound. In addition, when introducing a nitro group as an acceptor substituent, introducing a hydroxyl group or an alkoxy group as a donor substituent prevents the absorption from becoming longer wavelength, and also prevents the dipole moment of the molecule from becoming too large. preferable.

非対称置換基は、バルク状態の構造における分子の配向
を2次非線形光学効果を奏するに適切となるよう制御す
るためのものであり、分子バッキングにおいてバルク構
造を変えうるだけの分子間力を有する置換基である。す
なわち、分子自体でも、結晶全体でも中心対称性を崩し
、ざらに分子の持つ2次光非線形性を生かし得るバルク
構造に配向制御し1qる基をいう。立体障害性の置換基
あるいは水素結合形成性の置換基はこのようなバッキン
グを変化させる力が大きいので、本発明でいう非対称置
換基として特に有効である。
Asymmetric substituents are used to control the orientation of molecules in the bulk structure so that they are suitable for producing second-order nonlinear optical effects, and are substituents that have intermolecular forces that can change the bulk structure in the molecular backing. It is the basis. In other words, it is a group that breaks the central symmetry of both the molecule itself and the crystal as a whole, and controls the orientation into a bulk structure that can take advantage of the second-order optical nonlinearity of the molecule. A sterically hindered substituent or a hydrogen bond-forming substituent has a strong ability to change such backing, and is therefore particularly effective as the asymmetric substituent referred to in the present invention.

以上述べた非対称置換基は、分子の電子状態に大きな影
響を与えないものであれば何でも良い。
Any asymmetric substituent mentioned above may be used as long as it does not significantly affect the electronic state of the molecule.

ただし不必要に大きな置換基は単位体積当りの分子(母
骨格)密度の低下を招き材料の2次非線形光学効果を小
さくするので好ましくない。実施例では適度の大きさの
立体障害性置換基としてメトキシ基、エトキシ基、メチ
ル基が使用されている。
However, unnecessarily large substituents are not preferable because they lead to a decrease in the molecule (matrix skeleton) density per unit volume and reduce the second-order nonlinear optical effect of the material. In the examples, methoxy, ethoxy, and methyl groups are used as sterically hindering substituents of appropriate size.

また、同じ理由によって非対称置換基の数は少ない方が
望ましい。従って、好ましくはR1〜R4のうち3つは
水素である。
Furthermore, for the same reason, it is desirable that the number of asymmetric substituents be small. Therefore, preferably three of R1 to R4 are hydrogen.

本発明では、非対称置換基をドナー性置換基の導入され
たフェニル基に一つ導入するだけで十分な効果を与え得
ることも見出した。
In the present invention, it has also been found that a sufficient effect can be obtained by simply introducing one asymmetric substituent into a phenyl group into which a donor substituent has been introduced.

この場合、ドナー性置換基のオルト位が特に有効である
。この置換位置は分子の電子状態に大きな影響を与えな
いで済み、非対称置換基として用い得る置換基を選択す
る自由度が大きくなる。
In this case, the ortho position of the donor substituent is particularly effective. This substitution position does not have a large effect on the electronic state of the molecule, and the degree of freedom in selecting a substituent that can be used as an asymmetric substituent is increased.

なお、本発明の化合物は、アルデヒドおよびフェニル酢
酸の誘導体を塩基触媒(たとえばピペリジン)存在下に
加熱、脱水脱炭酸縮合させるという一般的なスヂルベン
系化合物の合成法により得ることができる。
The compound of the present invention can be obtained by a general method for synthesizing dirubene compounds, which involves heating, dehydrating, decarboxylating, and condensing aldehyde and phenylacetic acid derivatives in the presence of a base catalyst (for example, piperidine).

化合物の重水素化は、近赤外領域での透明性増大効果な
どがあるが、重水素化していない化合物と同等の非線形
光学効果を有する。従って、上記非線形光学化合物は、
その一部または全ての水素が重水素置換されていてもよ
い。
Deuterated compounds have the effect of increasing transparency in the near-infrared region, but have nonlinear optical effects equivalent to non-deuterated compounds. Therefore, the above nonlinear optical compound is
Some or all of the hydrogens may be replaced with deuterium.

本発明の化合物の使用態様としては、バルク単結晶、薄
膜単結晶などが挙げられる。その単結晶の製造法として
は、溶液法、気相法、溶融法が適用可能である。例えば
実施例3の4−メトキシ−3−メチル−4′−ニトロス
チルベン(MMNS)は、実施例中に示されるように溶
液法によるバルク単結晶の製造が可能であり、また、こ
の仙基板上での溶融徐冷や基板上への蒸着、昇華などの
気相成長にもとずく薄膜単結晶の作製も可能である。
Examples of usage modes of the compound of the present invention include bulk single crystals and thin film single crystals. As a method for producing the single crystal, a solution method, a gas phase method, and a melting method can be applied. For example, for 4-methoxy-3-methyl-4'-nitrostilbene (MMNS) in Example 3, it is possible to produce a bulk single crystal by a solution method as shown in the example, and It is also possible to produce a thin film single crystal based on vapor phase growth such as slow melt cooling, vapor deposition on a substrate, or sublimation.

この様にして作製されたバルク単結晶、薄膜単結晶など
は波長変換素子、パラメトリック発振器、光スィッチな
どの非線形光学素子およびそれらを用いた光情報処理、
光通信システムの構築に有用である。
Bulk single crystals, thin film single crystals, etc. produced in this way can be used for nonlinear optical elements such as wavelength conversion elements, parametric oscillators, and optical switches, and for optical information processing using them.
It is useful for constructing optical communication systems.

[実施例] 以下、実施例を用いて1本発明を更に詳しく説明するが
、本発明の効力はそれら実施例によって何等υl限を受
けるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail using Examples, but the effectiveness of the present invention is not limited in any way by these Examples.

実施例1 4−ヒドロキシ−3−メトキシ−4′−ニトロスチルベ
ン(HMNS)。
Example 1 4-Hydroxy-3-methoxy-4'-nitrostilbene (HMNS).

[合成] 還流冷却器とマグネチツクスターラーとを備えた100
m1の三ツロフラスコに、 4.560 (30mmo I >の3−メトキシ−4
−ヒドロキシベンズアルデヒド(バニリン)と、5.4
3g(30mmo I >(7)p−ニトロ:)工二ル
酢酸を入れ、約18m1のピペリジンを加え油温約12
0℃で約8時間攪拌しつつ加熱速流した。
[Synthesis] 100 equipped with a reflux condenser and a magnetic stirrer
ml of 3-methoxy-4 in a three-meter flask, 4.560 (30 mmol
- hydroxybenzaldehyde (vanillin), 5.4
Add 3 g (30 mmo I > (7) p-nitro:)-diyl acetic acid, add about 18 ml of piperidine, and bring the oil temperature to about 12
The mixture was heated rapidly at 0° C. with stirring for about 8 hours.

反応溶液は赤黒色に変化した。The reaction solution turned red-black.

クロロホルムを展開溶媒とした薄層クロマトグラフで反
応の終了を確認した俊、攪はんを止めた。
When Shun confirmed the completion of the reaction using thin layer chromatography using chloroform as the developing solvent, he stopped stirring.

ピペリジンをロータリーエバポレータにて除くとタール
状物が残るが、これをアセトンに溶かし、クロロホルム
を展開溶媒としたシリカゲルクロマトグラフで先端付近
の赤色留分を捕集し、溶媒をロータリーエバポレータに
て除くと橙色の粗結晶が得られた。粗結晶をアセトニト
リルで再結品すると橙色の角状結品が得られたので、こ
れをろ果し真空乾燥した。
When piperidine is removed using a rotary evaporator, a tar-like substance remains, but this is dissolved in acetone, the red fraction near the tip is collected using a silica gel chromatograph using chloroform as the developing solvent, and the solvent is removed using a rotary evaporator. Orange crude crystals were obtained. When the crude crystals were re-crystallized with acetonitrile, orange angular crystals were obtained, which were filtered and vacuum-dried.

[目的物4.98Q (収率61.3%)融点 179
.5〜180.5°C] 同定はIRおよび元素分析(表2参照)により行った。
[Target product 4.98Q (yield 61.3%) Melting point 179
.. 5-180.5°C] Identification was performed by IR and elemental analysis (see Table 2).

(IR:KBr錠剤法 cm−1) 3430 (OH):2855 (−0CHz):16
36.970 (−CH=CH−): 1506〜15
18.1328 (−NO2) : 1250゜103
0(0CH3) 次に、この化合物の2次非線形光学効果の大きさを調べ
るために、第2高調波発生(SHG)を粉末法(S、に
、にurtz、 T、 T、 Perry、 J、 A
ppl、 Phys 39379B (1966))に
より測定した。測定に用いた光源は、Nd:YAGレー
ザ−(発娠波長1.064μm)で、試おIは乳鉢によ
り100μm程度に粉砕したものを使用した。レーザ照
射条件はパルス幅2 Q Q n5eC,繰返し10H
2、ピークパワー密度的30MW/airで行なった。
(IR: KBr tablet method cm-1) 3430 (OH): 2855 (-0CHz): 16
36.970 (-CH=CH-): 1506-15
18.1328 (-NO2): 1250°103
0(0CH3) Next, in order to investigate the magnitude of the second-order nonlinear optical effect of this compound, second harmonic generation (SHG) was performed using a powder method (S, T, T, Perry, J, A
ppl, Phys 39379B (1966)). The light source used for the measurement was a Nd:YAG laser (wavelength: 1.064 μm), and the sample I was ground to about 100 μm in a mortar. Laser irradiation conditions are pulse width 2 Q Q n5eC, repetition 10H.
2. Conducted at a peak power density of 30 MW/air.

測定結果を表1に示す。本発明によるHMNSは標準的
な既知化合物であるウレアの70倍という大きなSHG
を示した。
The measurement results are shown in Table 1. HMNS according to the present invention has a SHG that is 70 times larger than that of the standard known compound urea.
showed that.

また、水に対する溶解性を調べたところ、本発明による
HMNSは実質的に不溶であった(表3参照)。
Further, when the solubility in water was examined, the HMNS according to the present invention was found to be substantially insoluble (see Table 3).

実施例2 3−エトキシ−4−ヒドロキシ−4′−ニトロスチルベ
ン(HENS)。
Example 2 3-Ethoxy-4-hydroxy-4'-nitrostilbene (HENS).

[合成] 4.980 (30mmo l )の3−エトキシ−4
−ヒドロキシベンズアルデヒドと 5.43G (30mmo I >のp−ニトロフェニ
ル酢酸を用いた他は、実施例1と全く同様にして反応お
よび分離精製を行なった。
[Synthesis] 4.980 (30 mmol) of 3-ethoxy-4
-Hydroxybenzaldehyde and p-nitrophenylacetic acid of 5.43G (30 mmo I>) were used, but the reaction and separation and purification were carried out in exactly the same manner as in Example 1.

橙色の粗結晶をアセトニトリルで再結晶すると黄橙色の
針状精品(7X5X3M程度)が1qられたので、これ
をろ果し、真空乾燥した。
When the orange crude crystals were recrystallized with acetonitrile, 1 q of yellow-orange needle-like crystals (approximately 7 x 5 x 3 M) were obtained, which were filtered and vacuum-dried.

[目的物5.90g(収率68.9%)融点 161〜
b 同定はIRおよび元素分析(表2参照)により行った。
[Target product 5.90g (yield 68.9%) Melting point 161~
b Identification was performed by IR and elemental analysis (see Table 2).

(IR:KBr錠剤法 cm−’) 3430  (−OH)   :  1 632. 9
70  (−CH=CI−1−):1502〜1506
.1325(−NO2)  :  1 43B  (−
00日>CH3)  :  1 250、1030 (
−0021−(5) 次に、この化合物のSHGの測定結果を表1に示す。本
発明によるHENSは標準的な既知化合物であるウレア
の30倍のSHGを示した。
(IR: KBr tablet method cm-') 3430 (-OH): 1 632. 9
70 (-CH=CI-1-): 1502-1506
.. 1325 (-NO2): 1 43B (-
00 days > CH3): 1 250, 1030 (
-0021-(5) Next, Table 1 shows the SHG measurement results of this compound. HENS according to the invention exhibited 30 times more SHG than the standard known compound urea.

また、水に対する溶解性を調べたところ、本発明による
HENSは実質的に不溶であった(表3参照)。
Further, when the solubility in water was examined, HENS according to the present invention was found to be substantially insoluble (see Table 3).

実施例3 4−メトキシ−3−メチル−4′−ニトロスチルベン(
MMNS)。
Example 3 4-methoxy-3-methyl-4'-nitrostilbene (
MMNS).

[合成] 6.03g(33mmo I )の3−メチ/l/−p
−アニスアルデヒドと5.97にl (33mmo l
 )のp−ニトロフェニル酢酸と約5mlのピペリジン
を用いた他は、実施例1と全く同様にして反応を行った
[Synthesis] 6.03g (33mmol I) of 3-methy/l/-p
- anisaldehyde and 5.97 l (33 mmol l
) p-nitrophenylacetic acid and about 5 ml of piperidine were used, but the reaction was carried out in exactly the same manner as in Example 1.

得られた赤色のタール状物をベンゼンを展開溶媒とした
シリカゲルクロマトグラフで先端付近の橙赤色留分を捕
集し溶媒をロータリーエバポレータにて除くと黄橙色の
油状物が得られた。これをアセトニトリルで結晶化させ
ると黄色の塊状結晶が得られたので、これをろ果し、真
空乾燥した。
The orange-red fraction near the tip of the resulting red tar-like substance was collected using a silica gel chromatograph using benzene as a developing solvent, and the solvent was removed using a rotary evaporator to obtain a yellow-orange oil. When this was crystallized with acetonitrile, yellow lumpy crystals were obtained, which were filtered and dried under vacuum.

[目的物7.12Q(収率80.2%)融点 ]1]〜
111.5°Cコ 同定はIRおよび元素分析(表2参照)により行った。
[Target product 7.12Q (yield 80.2%) melting point] 1] ~
Identification was performed by IR and elemental analysis (see Table 2).

(IR:KBr錠剤法 cm−’) 2960.2865 (−CH3); 2B50(−0
Cf−h)   :  1 635. 967  (−
CH=CH−):1503.1320 (−NO2):
1450゜1470 (−0CI−h、二〇H3):1
240,1024(−0CH3) 5qのMMNSを5qmlのアセトニトリルに熱時溶解
し、放冷後、室温にて溶媒蒸発法で結晶化させると、1
ケ月はどで1X1x1cmはどの黄色の塊状結晶が得ら
れた。偏光顕微鏡観察により、この結晶が単結晶である
ことがわかった。
(IR: KBr tablet method cm-') 2960.2865 (-CH3); 2B50(-0
Cf-h): 1 635. 967 (-
CH=CH-): 1503.1320 (-NO2):
1450°1470 (-0CI-h, 20H3): 1
240,1024(-0CH3) When 5q of MMNS is dissolved in 5qml of acetonitrile while hot, allowed to cool, and crystallized by solvent evaporation method at room temperature, 1
A yellow mass of crystals measuring 1 x 1 x 1 cm was obtained. Observation with a polarized light microscope revealed that this crystal was a single crystal.

次に、この化合物の5t−IGの測定結果を表1に示す
。本発明によるMMNSは標準的な既知化合物であるウ
レアの650倍、すなわち既知材料で最大のSHGを示
すNPPの約4倍という極めて大きなS HGを示した
。図1に粉末粒径とSHG強度の関係を示す。
Next, Table 1 shows the measurement results of 5t-IG of this compound. MMNS according to the present invention exhibited an extremely large SHG of 650 times that of urea, a standard known compound, or about 4 times that of NPP, which exhibits the highest SHG among known materials. Figure 1 shows the relationship between powder particle size and SHG strength.

MMNSが位相整合性であることがわかった。It was found that MMNS is phase consistent.

また、水に対する溶解性を調べたところ、本発明による
MMNSは実質的に不溶であった(表3参照〉。
Further, when the solubility in water was examined, the MMNS according to the present invention was found to be substantially insoluble (see Table 3).

比較例1 4−ヒドロキシ−4′−ニトロスチルベン。Comparative example 1 4-Hydroxy-4'-nitrostilbene.

(トINS> [合成] 3.66g(30mmo l >(7)p−ヒドロキシ
ベンズアルデヒドと5.430 (30mmo l >
のp−ニトロフェニル酢酸を用いた他は、実施例1と全
く同様にして反応および分離精製を行った。
(Synthesis) 3.66 g (30 mmol > (7) p-hydroxybenzaldehyde and 5.430 (30 mmol >
The reaction and separation and purification were carried out in exactly the same manner as in Example 1, except that p-nitrophenylacetic acid was used.

橙色の粗結晶をクロロホルムで再結晶すると黄橙色の角
状結晶が得られたので、これをろ果し、真空乾燥した。
When the orange crude crystals were recrystallized with chloroform, yellow-orange angular crystals were obtained, which were filtered and dried under vacuum.

[目的物4.33g(収率65.3%)融点 209〜
b 同定はIRおよび元素分析(表2参照)により行った。
[Target product 4.33g (yield 65.3%) Melting point 209~
b Identification was performed by IR and elemental analysis (see Table 2).

(IR:KBr錠剤法 cm−’ ) 3440  (−0H)   :  1 630. 9
65  (−CH=CH−):1502,132B (
−NO2)次に、この化合物のSHGの測定結果を表1
に示す。HNSは標準的な既知化合物であるウレアの僅
か0.7倍のSHGを示したのみであった。
(IR: KBr tablet method cm-') 3440 (-0H): 1630. 9
65 (-CH=CH-):1502,132B (
-NO2) Next, the SHG measurement results of this compound are shown in Table 1.
Shown below. HNS exhibited only 0.7 times as much SHG as the standard known compound, urea.

水に対する溶解性を調べたところ、HNSは実質的に不
溶であった(表3参照)。
When the solubility in water was examined, HNS was found to be substantially insoluble (see Table 3).

比較例2 4−メトキシ−4′−ニトロスチルベン(MNS)。Comparative example 2 4-Methoxy-4'-nitrostilbene (MNS).

[合成] 4.080 (30mmo I >のp−アニスアルデ
ヒドと5.43(J (30mmo I >のp−ニト
ロフェニル酢酸を用いた他は、実施例3と全く同様にし
て反応および分離精製を行なった。
[Synthesis] The reaction and separation and purification were carried out in the same manner as in Example 3, except that p-anisaldehyde of 4.080 (30 mmo I >) and p-nitrophenylacetic acid of 5.43 (J (30 mmo I >) were used. I did it.

黄色の粗結晶をアセトンで再結晶すると黄橙色の板状結
晶が得られた。これをろ集し、真空乾燥した。
When the yellow crude crystals were recrystallized with acetone, yellow-orange plate crystals were obtained. This was collected by filtration and vacuum dried.

[目的物6.35CI (収率83.0%)融点 13
4〜b MNSをベンゼンで再結晶すると黄色の板状結晶が1q
られた。
[Target object 6.35CI (Yield 83.0%) Melting point 13
4-b When MNS is recrystallized with benzene, 1q of yellow plate crystals are obtained.
It was done.

同定はIRおよび元素分析(表2参照)により行なった
Identification was performed by IR and elemental analysis (see Table 2).

(IR:KBr錠剤法 cm−1) 2830 (−0CHx): 1628.960(−C
H=CH−)   :  1 500〜1510.13
25(−NO2) 次に、この化合物のSHGの測定結果を表1に示す。ア
セトンで再結晶したMNSは標準的な既知材料であるウ
レアと同程度のS HGを示したのみであった。一方ベ
ンゼンで再結晶したMNSはウレアの67倍のSHGを
示した。
(IR: KBr tablet method cm-1) 2830 (-0CHx): 1628.960 (-C
H=CH-): 1 500-1510.13
25(-NO2) Next, Table 1 shows the SHG measurement results of this compound. MNS recrystallized with acetone showed only the same level of SHG as the standard known material urea. On the other hand, MNS recrystallized with benzene showed 67 times more SHG than urea.

第2図にこれら2種のMNS結晶を粉末法X線で解析し
た結果を示す。「結晶多形」の現象が確認され、大きな
2次非線形光学効果の安定した結晶作製に不安を残した
FIG. 2 shows the results of powder X-ray analysis of these two types of MNS crystals. The phenomenon of "crystal polymorphism" was confirmed, leaving concerns about the ability to produce stable crystals with large second-order nonlinear optical effects.

水に対する溶解性を調べたところ、MNSは実質的に不
溶であった(表3参照)。
When the solubility in water was examined, MNS was found to be substantially insoluble (see Table 3).

表20合成有機非線形光学化合物の元素(CI−IN)
分析結果 Q/100m1  未満を示す。
Table 20 Elements of synthetic organic nonlinear optical compounds (CI-IN)
Analysis result shows less than Q/100m1.

ただし測定温度は25℃である。However, the measurement temperature was 25°C.

[発明の効果] 本発明によれば、 ■ 大きな超分極率を持つスチルベン誘導体をπ電子共
役系に選んだこと、 ■ ドナー性およびアクセプター性置換基の組合わせを
、非対称置換が可能な双極子モーメントの大きざとなる
ように選択したこと、 加えて、 ■ 非対称置換基を非対称部位に導入したこと、の3つ
の工夫によってバルク状態、例えば結晶状態での中心対
称性を崩し、さらに分子の持つ2次光非線形性を生かし
得るバルク構造に配向制御し、大きな2次非線形光学効
果を発現する有機2次非線形光学材料を提供することが
できる。
[Effects of the Invention] According to the present invention, ■ a stilbene derivative with large hyperpolarizability is selected as a π-electron conjugated system; ■ a combination of donor and acceptor substituents is made into a dipole capable of asymmetric substitution; The central symmetry in the bulk state, for example, the crystalline state, is broken by the following three measures: 1) selection to increase the size of the moment; and 1) introducing an asymmetric substituent into the asymmetric site. It is possible to provide an organic second-order nonlinear optical material that exhibits a large second-order nonlinear optical effect by controlling the orientation to a bulk structure that can take advantage of second-order optical nonlinearity.

また、スチルベン誘導体の場合、強いπ電子相互作用に
より分子間凝集力もベンゼン誘導体などと比較し大きく
なり、より昇華性および吸水性の低いバルク状態におけ
る保存安定性に優れる実用的な有機2次非線形光学材料
を提供することができる。
In addition, in the case of stilbene derivatives, the intermolecular cohesive force is greater than that of benzene derivatives due to strong π-electron interactions, and practical organic secondary nonlinear optics has excellent storage stability in the bulk state with lower sublimation and water absorption. material can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のMMNSにおける粉末粒径と380
強度の関係を示す。 第2図は、比較例MNSのアセトン(A>とベンゼン(
B)から得られた結晶の粉末法X線による解析結果を示
す。
Figure 1 shows the powder particle size and 380 mm in the MMNS of the present invention.
Shows the strength relationship. Figure 2 shows acetone (A>) and benzene (
The results of powder method X-ray analysis of the crystal obtained from B) are shown.

Claims (9)

【特許請求の範囲】[Claims] (1)下記一般式[1]で表されるスチルベン誘導体か
ら成り、かつ、ウレアの10倍以上大きな光非線形性を
有することを特徴とする有機2次非線形光学材料。 ▲数式、化学式、表等があります▼[1] [ただし、D:ハメットの置換基定数σpで、0.2≧
σp>−0.4、またはハロゲンから選ばれるドナー性
置換基、 A:ハメットの置換基定数σpで、σp>0.2から選
ばれるアクセプター性置換基、 R^1〜R^4:水素または任意の置換基であって、か
つ、少なくとも1つは非対称部位に導入された非対称置
換基を示す。]
(1) An organic secondary nonlinear optical material comprising a stilbene derivative represented by the following general formula [1] and having optical nonlinearity 10 times or more greater than that of urea. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [1] [However, D: Hammett's substituent constant σp, 0.2≧
Donor substituent selected from σp>-0.4 or halogen, A: Acceptor substituent selected from σp>0.2 with Hammett's substituent constant σp, R^1 to R^4: Hydrogen or It is an arbitrary substituent, and at least one represents an asymmetric substituent introduced into an asymmetric site. ]
(2)ドナー性置換基Dが、ヒドロキシル基またはアル
コキシ基であることを特徴とする特許請求の範囲第(1
)項記載の有機2次非線形光学材料。
(2) Claim No. 1, characterized in that the donor substituent D is a hydroxyl group or an alkoxy group.
) The organic secondary nonlinear optical material described in item 2.
(3)アクセプター性置換基Aがニトロ基であることを
特徴とする特許請求の範囲第(1)項記載の有機2次非
線形光学材料。
(3) The organic secondary nonlinear optical material according to claim (1), wherein the acceptor substituent A is a nitro group.
(4)式[1]におけるR^1〜R^4のうちの3つが
水素であることを特徴とする特許請求の範囲第(1)項
記載の有機2次非線形光学材料。
(4) The organic secondary nonlinear optical material according to claim (1), wherein three of R^1 to R^4 in formula [1] are hydrogen.
(5)非対称置換基を導入する非対称部位がドナー性置
換基Dのオルト位であることを特徴とする特許請求の範
囲第(1)項または第(4)項記載の有機2次非線形光
学材料。
(5) The organic secondary nonlinear optical material according to claim (1) or (4), characterized in that the asymmetric site into which the asymmetric substituent is introduced is the ortho position of the donor substituent D. .
(6)非対称置換基が立体障害性の置換基であることを
特徴とする特許請求の範囲第(1)項記載の有機2次非
線形光学材料。
(6) The organic secondary nonlinear optical material according to claim (1), wherein the asymmetric substituent is a sterically hindered substituent.
(7)スチルベン誘導体が、4−メトキシ−3−メチル
−4′−ニトロスチルベンであることを特徴とする特許
請求の範囲第(1)項記載の有機2次非線形光学材料。
(7) The organic secondary nonlinear optical material according to claim (1), wherein the stilbene derivative is 4-methoxy-3-methyl-4'-nitrostilbene.
(8)スチルベン誘導体が、4−ヒドロキシ−3−メト
キシ−4′−ニトロスチルベンであることを特徴とする
特許請求の範囲第(1)項記載の有機2次非線形光学材
料。
(8) The organic secondary nonlinear optical material according to claim (1), wherein the stilbene derivative is 4-hydroxy-3-methoxy-4'-nitrostilbene.
(9)スチルベン誘導体の、一部または全ての水素が重
水素化されていることを特徴とする特許請求の範囲第(
1)項記載の有機2次非線形光学材料。
(9) Part or all of the hydrogen in the stilbene derivative is deuterated.
1) Organic second-order nonlinear optical material described in item 1).
JP62335011A 1987-12-28 1987-12-28 Organic second order non-linear optical material Granted JPH01173017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335011A JPH01173017A (en) 1987-12-28 1987-12-28 Organic second order non-linear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335011A JPH01173017A (en) 1987-12-28 1987-12-28 Organic second order non-linear optical material

Publications (2)

Publication Number Publication Date
JPH01173017A true JPH01173017A (en) 1989-07-07
JPH0439056B2 JPH0439056B2 (en) 1992-06-26

Family

ID=18283736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335011A Granted JPH01173017A (en) 1987-12-28 1987-12-28 Organic second order non-linear optical material

Country Status (1)

Country Link
JP (1) JPH01173017A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961631A (en) * 1988-02-11 1990-10-09 E. I Du Pont De Nemours And Company Nonlinear optical devices from derivatives of stilbene
WO1991003458A1 (en) * 1989-09-01 1991-03-21 E.I. Du Pont De Nemours And Company Nonlinear optical device from 3-methyl-4-methoxy-4'-nitrostilbene
US5220451A (en) * 1989-06-27 1993-06-15 Toray Industries, Inc. Second-order nonlinear optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961631A (en) * 1988-02-11 1990-10-09 E. I Du Pont De Nemours And Company Nonlinear optical devices from derivatives of stilbene
US5220451A (en) * 1989-06-27 1993-06-15 Toray Industries, Inc. Second-order nonlinear optical device
WO1991003458A1 (en) * 1989-09-01 1991-03-21 E.I. Du Pont De Nemours And Company Nonlinear optical device from 3-methyl-4-methoxy-4'-nitrostilbene

Also Published As

Publication number Publication date
JPH0439056B2 (en) 1992-06-26

Similar Documents

Publication Publication Date Title
AU666486B2 (en) Nonlinear optical materials containing polar disulfone-functionalized molecules
JP2700475B2 (en) Nonlinear optical materials and elements
US4987255A (en) Organic nonlinear optical material
JPH01173017A (en) Organic second order non-linear optical material
US5106997A (en) Squarylium derivatives and preparation thereof
JP2887833B2 (en) Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same
JPH03112950A (en) Squarylium derivative and production thereof
EP0761643B1 (en) Cyclobutenedione derivative, manufacturing method thereof and non-linear optical device containing the same
US5210302A (en) Cyclobutenedione derivative and process for preparing the same
US5659085A (en) Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
JPH04202167A (en) Cyclobutenedione derivative and its production
JPH0440429A (en) Nonlinear optical material
US5110988A (en) Nonlinear optical material
JPH04202165A (en) Cyclobutenedione derivative and its production
US5169986A (en) Organic nonlinear optical material
US5443758A (en) Non-linear optical material containing steroidal ketone compound
JPH0496026A (en) Nonlinear optical material
JPH02935A (en) Nonlinear optical material
JP2538073B2 (en) Non-linear optical material
JPH04202166A (en) Cyclobutenedione derivative and its production
JPH04166820A (en) Non-linear optical material and non-linear optical element
JPH0436731A (en) Novel aromatic nonlinear optical material
JPH04161932A (en) Non-linear optical material
EP0465155A2 (en) Non-linear optical material containing steroidal ketone compound
JP2980298B2 (en) Organic nonlinear optical material