JPH0439056B2 - - Google Patents

Info

Publication number
JPH0439056B2
JPH0439056B2 JP62335011A JP33501187A JPH0439056B2 JP H0439056 B2 JPH0439056 B2 JP H0439056B2 JP 62335011 A JP62335011 A JP 62335011A JP 33501187 A JP33501187 A JP 33501187A JP H0439056 B2 JPH0439056 B2 JP H0439056B2
Authority
JP
Japan
Prior art keywords
substituent
nonlinear optical
optical material
asymmetric
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62335011A
Other languages
Japanese (ja)
Other versions
JPH01173017A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62335011A priority Critical patent/JPH01173017A/en
Publication of JPH01173017A publication Critical patent/JPH01173017A/en
Publication of JPH0439056B2 publication Critical patent/JPH0439056B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、光情報処理や光通信などの分野で用
いられる有機2次非線形光学材料に関する。さら
に詳しくは、2次非線形光学効果が大きく、保存
安定性に優れた有機化合物に関する。 [従来の技術] オプトエレクトロニクス分野では、大きな非線
形光学効果を有し高速に応答する材料を見い出
し、より高性能の、または従来実現できなかつた
非線形光学素子の実現が熱望されている。従つ
て、このような高性能材料の開発を目指した探索
研究が数多くなされている。従来、無機材料が探
索の主たる対象であつたが上記要求を満足する材
料を見い出せなかつた。そこで、近年、原理的に
非線形光学効果が大きく、高速に光応答すると期
待されるπ電子共役系を有する有機化合物が注目
されるに至つた。 既に、2次の非線形光学効果を有する有機材料
については、種々の化合物系で精力的に検討され
ており、また総説的な解説も数多くある(ACS
symposium series 233(1983):D.J.Williams A
ngew.Chem.Int.Ed.Engl.23 p690(1984)な
ど)。 現在までに開発された代表的材料には、例え
ば、N−(4−ニトロフエニル)−L−プロリノー
ル(NPP)[特開昭59−21665号公報]、N−[5
−(2−ニトロピリジル)]−L−プロリノール
(PNP)および2−アセチルアミノ−4−ニトロ
−N、N−ジメチルアニリン(DAN)などのベ
ンゼンおよびピリジン誘導体、4′−ジメチルアミ
ノ−N−メチル−4−スチルバゾリウム・メトス
ルフエート(DMSM)などのスチルバゾリウム
類、および4′−ニトロベンジリデン−4−(N、
N−ジメチル)アニリン、4′−ニトロベンジリデ
ン−4−メチルアニリン(Procee dings
(Trudy)of the P.N.Levedeb Physics
Institute,Vol 98(1982),Basov,N.G.Editor
(Consultants Bureau :New York,N.Y.)
Shigorin,V.D p77:“Materials and
Apparatus in QuantumRadio Physics”)、4′−
メチルベンジリデン−4−ニトロアニリンなどの
ベンジリデンアニリン誘導体などがある。 π電子共役系を有する有機化合物の非線形光学
効果はレーザ光入射時のπ電子のゆらぎに起因す
るものとされている。従つて、このゆらぎを大き
くするため、上記代表的材料例に示されるがごと
く、π電子共役系にドナー性、アクセプター性の
置換基を導入することが行なわれる。 一般に、有機化合物の結晶構造は、個々の分子
の構造とパツキング時の水素結合、フアン−デア
ーワールス相互作用および双極子−双極子相互作
用など、分子間凝集力により決定される。 アミノ基とニトロ基など強いドナー性、アクセ
プター性の置換基の組合わせをπ電子共役系に導
入すると分子の持つ双極子モーメントが大きくな
り、結晶形成時の分子間における双極子−双極子
相互作用が強くなる。このような化合物は、強い
双極子−双極子相互作用によつて2分子の双極子
が打ち消し合う構造である中心対称性の結晶を形
成しやすい。 ところがこの様な中心対称性結晶では、2次の
非線形光学効果は発現しない。 従来の研究では、結晶状態で2次非線形光学効
果を発現させる上で問題となる結晶の中心対称性
を崩すために、分子の非対称位置に置換基、特
に、光学活性な置換基や水素結合形成能の大きい
置換基を導入するという工夫がなされており、ベ
ンゼン、ピリジン誘導体では成功例がある。
NPP、PNPおよびDANなどがその代表例であ
る。しかしながら例えば2次の非線形光学効果を
発現させるに最適の分子配向が達成されていると
報告されているNPPの2次非線形光学効果の大
きさは高々ウレアの150倍である。従つて、NPP
よりもさらに大きな2次非線形光学効果を有する
材料の開発を行なおうとする場合には、ベンゼ
ン、ピリジン誘導体よりも大きな2次の超分極率
(分子の2次光非線形性、非中心対称性結晶で初
めて発現する)を持つ構造の化合物で非中心対称
性結晶構造と適切な分子配向を達成する必要があ
つた。 しかし、スチルベン誘導体のごとく、ベンゼン
誘導体(例えばP−ニトロアニリン)に比較して
桁違いに大きな2次の超分極率を持つ長いπ電子
共役系を母骨格として持つ化合物では、双極子モ
ーメントもそれに付随して大きくなるため、結晶
の中心対称性を崩せないか、あるいは例え非中心
対称性にできても2次非線形光学効果を大きく発
現させるに適切な分子配向にはできないことが原
因で、これまで期待に反してベンゼン誘導体以下
の小さな2次非線形光学効果を得るのみであつ
た。 そこで、長いπ電子共役系を母骨格として持つ
化合物の結晶の中心対称性を崩し適切な分子配向
にするために、立体障害の大きな塩構造の導入を
検討した例がある。2次の超分極率が大きく、し
かも非中心対称性の結晶構造を対アニオンの立体
障害性でコントロールして、大きな2次非線形光
学効果を発現できるDMSMがその代表例である。
しかし、これらの化合物では塩構造が吸湿性、結
晶多形など非線形光学材料として好ましからざる
性質をもたらすため、保存安定性、加工性などの
点に問題が残つた。 ドナー性、アクセプター性置換基の導入によつ
て2次の超分極率を大きくできる長いπ電子共役
系を母骨格とするスチルベン誘導体では、
DMSMに見られる様な問題点もなく結晶状態で
大きな2次非線形光学効果を発現する材料が得ら
れると期待されるが、現在までのところNPPを
越える成功例がない。 [発明が解決しようとする問題点] 本発明の目的は、スチルベン誘導体において、
その大きな双極子モーメントのため非中心対称性
結晶構造とすることが困難であるという問題点を
解決し大きな2次の超分極率を生かした大きな2
次非線形光学効果が発現され、かつ、保存安定性
に優れる有機非線形光学材料を提供することにあ
る。 すなわち、本発明者らは、4−位にドナー性置
換基、4′−位にアクセプター性置換基が導入され
たスチルベン誘導体が、大きな2次超分極率を持
ち得ることを量子化学的計算により確認した。そ
こでこの知見に基づき、非対称置換基をスチルベ
ン誘導体のドナー性基が置換されているフエニル
基の非対称部位へ導入したところ、大きな光非線
形性を発現する有機2次非線形光学材料が得られ
ることが実証され、本発明に至つた。 [問題点を解決するための手段] 上記目的を達成するため、本発明は下記の構成
からなる。 「下記一般式[1]で表されるスチルベン誘導体
から成り、かつ、ウレアの10倍以上大きな光非線
形性を有することを特徴とする有機2次非線形光
学材料。 [ただし、D:ハメツトの置換基定数σρで、0.2
≧σρ>−0.4、またはハロゲンから選ばれるドナ
ー性置換基、 A:ハメツトの置換基定数σρで、σρ>0.2から選
ばれるアクセプター性置換基、 R1〜R4:水素または任意の置換基であつて、か
つ、少なくとも1つは非対称部位に導入された非
対称置換基を示す。] 本発明でいうところのスチルベン誘導体は、ハ
メツトの置換基定数σρで、0.2≧σρ≧−0.4または
ハロゲンから選ばれるドナー性置換基を4−位
に、σρ>0.2から選ばれるアクセプター性置換基
を4′−位に、また少なくとも1つの非中心対称性
結晶の形成を容易ならしめる効果を有する非対称
置換基をドナー性基が置換されているフエニル基
の非対称部位に有する。 すなわち本発明の特徴は、 大きな超分極率を持つスチルベン誘導体をπ
電子共役系に選んだこと。 ドナー性およびアクセプター性置換基の組合
せを、分子配向制御が可能な双極子モーメント
の大きさとなるよう選択したこと。加えて、 非対称置換基を非対称部位に導入したこと。 の3つの工夫によつてバルク状態、例えば結晶状
態での中心対称性を崩し、さらに分子の持つ2次
光非線形性を生かし得るバルク構造に配向制御
し、大きな2次非線形光学効果の発現を可能にし
た点にある。 比較例1、2に示すように工夫,のみでは
大きな2次非線形光学効果を発現する結晶を安定
に形成させることは困難である。さらに工夫を
適用することによりはじめて大きな2次非線形光
学効果を発現する結晶を形成しやすくすることに
成功した。 また、この場合、π電子相互作用により、一般
に分子間凝集力もベンゼン誘導体などと比較し強
くなる。すなわち、昇華性が低く、また吸水性も
低くなるのでバルク状態における保存安定性が良
い。表3に、公知例のNPP、PNP、DANととも
に、本発明になる材料の水に対する溶解性を比較
した。 上記保存安定性の良さおよび有機材料の特徴で
ある高速の光応答性の点から、本発明の範囲の材
料のうち、2次非線形光学効果の大きさ自身はウ
レア比10すなわち従来使用されてきたニオブ酸リ
チウム等の無機材料程度の大きさの材料であつて
も用途によつては使用可能である。 本発明でいうドナー性置換基としては、例え
ば、ヒドロキシル基、メトキシ、エトキシ、フエ
ノキシなどのアルコキシ基、ヒドロキシメチル、
ヒドロキシエチルなどのヒドロキシアルキル基、
メチル、エチル、t−ブチルなど鎖状または分岐
状アルキル基、トリメチルシリルなどのアルキル
シリル基、メルカプトメチルなどのメルカプトア
ルキル基、アセチルアミノ基などのアルカノイル
アミノ基、メルカプト基、あるいはハロゲンなど
が挙げられ、また、アクセプター性の置換基とし
ては、ニトロ基、メチルスルフオニルなどのアル
キルスルフオニル基、シアノ基、スルフアモイル
基、メチルスルフアモイルなどのアルキルスルフ
アモイル基、トリフルオロメチル基、ホルミル、
アセチルなどアシル基、トリフルオロメルカプト
メチル基、メチルスルフイニルなどのアルキルス
ルフイニル基、カルボキシ基、メトキシカルボニ
ル、エトキシカルボニルなどのアルコキシカルボ
ニル基、カルバモイル基、メチルカルバモイルな
どのアルキルカルバモイル基、トリフリオロメト
キシ基、あるいはハロゲンなどが挙げられる。ハ
ロゲンは、ドナー性、アクセプター性、両方の性
質を持つているため、どちらの範ちゆうにも入
る。 アクセプター性の置換基として、ニトロ基を導
入することは、その化合物の光非線形性を向上さ
せる上で特に好ましい。また、アクセプター性の
置換基としてニトロ基を導入する場合、ドナー性
の置換基としてヒドロキシル基またはアルコキシ
基を導入すると吸収の長波長化が防げ、かつ、分
子の双極子モーメントを余り大きくしないので特
に好ましい。 非対称置換基は、バルク状態の構造における分
子の配向を2次非線形光学効果を奏するに適切と
なるよう制御するためのものであり、分子パツキ
ングにおいてバルク構造を変えうるだけの分子間
力を有する置換基である。すなわち、分子自体で
も、結晶全体でも中心対称性を崩し、さらに分子
の持つ2次光非線形性を生かし得るバルク構造に
配向制御し得る基をいう。立体障害性の置換基あ
るいは水素結合形成性の置換基はこのようなパツ
キングを変化させる力が大きいので、本発明でい
う非対称置換基として特に有効である。 以上述べた非対称置換基は、分子の電子状態に
大きな影響を与えないものであれば何でも良い。
ただし不必要に大きな置換基は単位体積当りの分
子(母骨格)密度の低下を招き材料の2次非線形
光学効果を小さくするので好ましくない。実施例
では適度の大きさの立体障害性置換基としてメト
キシ基、エトキシ基、メチル基、さらには、非対
称置換基とドナー性基とが連結されている例とし
ては、エチレンオキシ基などが使用されている。 また、同じ理由によつて非対称置換基の数は少
ない方が望ましい。従つて、好ましくはR1〜R4
のうち3つは水素である。 本発明では、非対称置換基をドナー性置換基の
導入されたフエニル基に一つ導入するだけで十分
な効果を与え得ることも見出した。 この場合、ドナー性置換基のオルト位が特に有
効である。この置換位置は分子の電子状態に大き
な影響を与えないで済み、非対称置換基として用
い得る置換基を選択する自由度が大きくなる。 なお、本発明の化合物は、アルデヒドおよびフ
エニル酢酸の誘導体を塩基触媒(たとえばピペリ
ジン)存在下に加熱、脱水脱炭酸縮合させるとい
う一般的なスチルベン系化合物の合成法により得
ることができる。 化合物の重水素化は、近赤外領域での透明性増
大効果などがあるが、重水素化していない化合物
と同等の非線形光学効果を有する。従つて、上記
非線形光学化合物は、その一部または全ての水素
が重水素置換されていてもよい。 本発明の化合物の使用態様としては、バルク単
結晶、薄膜単結晶などが挙げられる。その単結晶
の製造法としては、溶液法、気相法、溶融法が適
用可能である。例えば実施例3の4−メトキシ−
3−メチル−4′−ニトロスチルベン(MMNS)
は、実施例中に示されるように溶液法によるバル
ク単結晶の製造が可能であり、また、この他基板
上での溶融徐冷や基板上への蒸着、昇華などの気
相成長にもとずく薄膜単結晶の作製も可能であ
る。 この様にして作製されたバルク単結晶、薄膜単
結晶などは波長変換素子、パラメトリツク発振
器、光スイツチなどの非線形光学素子およびそれ
らを用いた光情報処理、光通信システムの構築に
有用である。 [実施例] 以下、実施例を用いて本発明を更に詳しく説明
するが、本発明の効力はそれら実施例によつて何
等制限を受けるものではない。 実施例 1 4−ヒドロキシ−3−メトキシ−4′−ニトロス
チルベン(HMNS)。 [合成] 還流冷却器とマグネチツクスターラーとを備え
た100mlの三ツ口フラスコに、 4.56g(30mmol)の3−メトキシ−4−ヒドロ
キシベンズアルデヒド(バニリン)と、5.43g
(30mmol)のp−ニトロフエニル酢酸を入れ、
約18mlのピペリジンを加え油温約120℃で約8時
間撹拌しつつ加熱還流した。 反応溶液は赤黒色に変化した。 クロロホルムを展開溶媒とした薄層クロマトグ
ラフで反応の終了を確認した後、撹はんを止め
た。ピペリジンをロータリーエバポレータにて除
くとタール状物が残るが、これをアセトンに溶か
し、クロロホルムを展開溶媒としたシリカゲルク
ロマトグラフで先端付近の赤色留分を捕集し、溶
媒をロータリーエバポレータにて除くと橙色の粗
結晶が得られた。粗結晶をアセトニトリルで再結
晶すると橙色の角状結晶が得られたので、これを
ろ集し真空乾燥した。 [目的物4.98g(収率61.3%) 融点 179.5〜180.5℃] 同定はIRおよび元素分析(表2参照)により
行つた。 (IR:KBR錠剤法 cm-1) 3430(−OH);2855(−OCH3);1636、970(−
CH=CH−);1506〜1518、1328(−NO2);
1250、1030(−OCH3) 次に、この化合物の2次非線形光学効果の大き
さを調べるために、第2高調波発生(SHG)を
粉末法(S.K.Kurtz,T.T.Perry,J.Appl.Phys
39 3798(1966))により測定した。測定に用いた
光源は、Nd:YAGレーザー(発振波長
1.064μm)で、試料は乳鉢により100μm程度に粉
砕したものを使用した。レーザ照射条件はパルス
幅200nsec、繰返し10Hz、ピークパワー密度約
30MW/cm2で行なつた。 測定結果を表1に示す。本発明によるHMNS
は標準的な既知化合物でるウレアの70倍という大
きなSHGを示した。 また、水に対する溶解性を調べたところ、本発
明によるHMNSは実質的に不溶であつた(表3
参照。) 実施例 2 3−エトキシ−4−ヒドロキシ−4′−ニトロス
チルベン(HENS)。 [合成] 4.98g(30mmol)の3−エトキシ−4−ヒドロ
キシベンズアルデヒドと 5.43g(30mmol)のp−ニトロフエニル酢酸を
用いた他は、実施例1と全く同様にして反応およ
び分離精製を行なつた。 橙色の粗結晶をアセトニトリルで再結晶すると
黄橙色の針状結晶(7×5×3mm程度)が得られ
たので、これをろ集し、真空乾燥した。 [目的物5.90g(収率68.9%) 融点 161〜163℃] 同定はIRおよび元素分析(表2参照)により
行つた。 (IR;KBr錠剤法 cm-1) 3430(−OH);1632、970(−CH=CH−);1502
〜1506、1325 (−NO2);1438(−OCH2CH3);1250、1030(−
OC2H5) 次に、この化合物のSHGの測定結果を表1に
示す。本発明によるHENSは標準的な既知化合
物であるウレアの30倍のSHGを示した。 また、水に対する溶解性を調べたところ、本発
明によるHENSは実質的に不溶であつた(表3
参照)。 実施例 3 4−メトキシ−3−メチル−4′−ニトロスチル
ベン(MMNS)。 [合成] 6.03g(30mmol)の3−メチル−p−アニスア
ルデヒドと5.97g(33mmol)のp−ニトロフエニ
ル酢酸と約5mlのピペリジンを用いた他は、実施
例1と全く同様にして反応を行つた。 得られた赤色のタール状物をベンゼンを展開溶
媒としたシリカゲルクロマトグラフで先端付近の
橙赤色留分を捕集し溶媒をロータリーエバポレー
タにて除くと黄橙色の油状物が得られた。これを
アセトニトリルで結晶化させると黄色の塊状結晶
が得られたので、これをろ集し、真空乾燥した。 [目的物7.12g(収率80.2%) 融点 111〜111.5℃] 同定はIRおよび元素分析(表2参照)により
行つた。 (IR;KBr錠剤法 cm-1) 2960、2865(−OH3);2850(−OCH3);1635、
967(−CH=CH−);1503、1320(−NO2);
1450、1470(−OCH3、−CH3);1240、1024(−
OCH3) 5gのMMNSを50mlのアセトニトリルに熱時溶
解し、放冷後、室温にて溶媒蒸発法で結晶化させ
ると、1ケ月ほどで1×1×1cmほどの黄色の塊
状結晶が得られた。偏光顕微鏡観察により、この
結晶が単結晶であることがわかつた。 次に、この化合物のSHGの測定結果を表1に
示す。本発明によるMMNSは標準的な既知化合
物であるウレアの650倍、すなわち既知材料で最
大のSHGを示すNPPの約4倍という極めて大き
なSHGを示した。図1に粉末粒径とSHG強度の
関係を示す。 MMNSが位相整合性であることがわかつた。 また、水に対する溶解性を調べたところ、本発
明によるMMNSは実質的に不溶であつた(表3
参照)。 実施例 4 5−(p−ニトロスチリル)−2、3−ジヒドロ
ベンゾフラン(EONS) [合成1] 還流冷却器とマグネチツクスターラーとを備え
た500mlの三ツ口フラスコに、25gのホルミル化
剤((クロロメチレン)ジメチルアンモニウムク
ロリド)と200mlのクロロホルムとを加えて撹拌
し、分散させた。23gの2、3−ジヒドロベンゾ
フランを加えて、室温で一夜反応させた。さら
に、5時間加熱還流して反応を完結させた。室温
まで冷却した反応溶液を500mlの0.2N水酸化ナト
リウム水溶液中に注ぎ、激しく撹拌の後、クロロ
ホルム可溶分を抽出した。抽出液を水洗・乾燥
し、クロロホルムを減圧留去して目的のアルデヒ
ド21gを得た。 [合成2] 還流冷却器とマグネチツクスターラーとを備え
た100mlの三ツ口フラスコに、上記[合成1]で
得た6gの5−ホルミル−2、3−ジヒドロベン
ゾフランと7.3gのp−ニトロフエニル酢酸を入
れ、約2mlのピペリジンを加え、油温約120℃で
約1.5時間撹拌しつつ加熱還流した。 室温まで冷却後、固化した反応物をメタノール
から再結晶し、茶黄色固体1.8gを得た。これをシ
クロヘキサン/アセトン(体積比2:1)に熱時
溶解し、活性炭処理した後再結晶させて0.7g(収
率5.3%)の黄色針状晶を得た。融点は、196.5℃
であつた。 同定は、IRおよび元素分析(表2参照)によ
り行なつた。 (IR;KBr錠剤法 cm-1) 2900〜3060(−OH2−CH2−O−);1630(−CH
=CH−);1340(−NO2);1250(C−O−C) 各種測定には、更に酢酸エチルから結晶化さ
せ、真空乾燥したものを用いた。 次に、この化合物のSHGの測定結果を表1に
示す。本発明によるEONSは、標準的な既知化合
物であるウレアの25倍のSHGを示した。 また、水に対する溶解性を調べたところ、本発
明によるEONSは、実質的に不溶であつた(表3
参照)。 比較例 1 4−ヒドロキシ−4′−ニトロスチルベン
(HNS)。 [合成] 3.66g(30mmol)のp−ヒドロキシベンズアル
デヒドと5.43g(30mmol)のp−ニトロフエニル
酢酸を用いた他は、実施例1と全く同様にして反
応および分離精製を行つた。 橙色の粗結晶をクロロホルムで再結晶すると黄
橙色の角状結晶が得られたので、これをろ集し、
真空乾燥した。 [目的物4.33g(収率65.3%) 融点 209〜210℃] 同定はIRおよび元素分析(表2参照)により
行つた。 (IR;KBr錠剤法 cm-1) 3440(−OH);1630、956(−CH=CH−);1502、
1328(−NO2) 次に、この化合物のSHGの測定結果を表1に
示す。HNSは標準的な既知化合物であるウレア
の僅か0.7倍のSHGを示したのみであつた。 水に対する溶解性を調べたところ、HNSは実
質的に不溶であつた(表3参照)。 比較例 2 4−メトキシ−4′−ニトロスチルベン
(MNS)。 [合成] 4.08g(30mmol)のp−アニスアルデヒドと
5.43g(30mmol)のp−ニトロフエニル酢酸を用
いた他は、実施例3と全く同様にして反応および
分離精製を行なつた。 黄色の粗結晶をアセトンで再結晶すると黄橙色
の板状結晶が得られた。これをろ集し、真空乾燥
した。 [目的物6.35g(収率83.0%) 融点 134〜135℃] MNSをベンゼンで再結晶すると黄色の板状結
晶が得られた。 同定はIRおよび元素分析(表2参照)により
行なつた。 (IR;KBr錠剤法 cm-1) 2830(−OCH3);1628、960(−CH=CH−);
1500〜1510、1325(−NO2) 次に、この化合物のSHGの測定結果を表1に
示す。アセトンで再結晶したMNSは標準的な既
知材料であるウレアと同程度のSHGを示したの
みであつた。一方ベンゼンで再結晶したMNSは
ウレアの67倍のSHGを示した。 第2図にこれら2種のMNS結晶を粉末法X線
で解析した結果を示す。『結晶多形』の現象が確
認され、大きな2次非線形光学効果の安定した結
晶作製に不安を残した。 水に対する溶解性を調べたところ、MNSは実
質的に不溶であつた(表3参照)。
[Industrial Application Field] The present invention relates to an organic second-order nonlinear optical material used in fields such as optical information processing and optical communication. More specifically, the present invention relates to an organic compound having a large second-order nonlinear optical effect and excellent storage stability. [Prior Art] In the field of optoelectronics, there is a desire to discover materials that have large nonlinear optical effects and respond at high speed, and to realize higher performance nonlinear optical elements that have not been possible in the past. Therefore, many exploratory studies are being conducted with the aim of developing such high-performance materials. Conventionally, inorganic materials have been the main target of search, but no material satisfying the above requirements has been found. Therefore, in recent years, organic compounds having a π-electron conjugated system, which are expected to have a large nonlinear optical effect and a high-speed photoresponse in principle, have attracted attention. Organic materials with second-order nonlinear optical effects have already been actively studied in various compound systems, and there are many general explanations (ACS
symposium series 233 (1983): DJ Williams A
ngew.Chem.Int.Ed.Engl.23 p690 (1984) etc.). Representative materials developed to date include, for example, N-(4-nitrophenyl)-L-prolinol (NPP) [JP-A-59-21665], N-[5
Benzene and pyridine derivatives such as -(2-nitropyridyl)]-L-prolinol (PNP) and 2-acetylamino-4-nitro-N,N-dimethylaniline (DAN), 4'-dimethylamino-N- Stilbazoliums such as methyl-4-stilbazolium methosulfate (DMSM), and 4′-nitrobenzylidene-4-(N,
N-dimethyl)aniline, 4'-nitrobenzylidene-4-methylaniline (Procee dings
(Trudy) of the PNLevedeb Physics
Institute, Vol 98 (1982), Basov, NGEditor
(Consultants Bureau: New York, NY)
Shigorin, VD p77: “Materials and
Apparatus in QuantumRadio Physics”), 4′−
Examples include benzylidene aniline derivatives such as methylbenzylidene-4-nitroaniline. The nonlinear optical effect of organic compounds having a π-electron conjugated system is said to be caused by the fluctuation of π-electrons upon incidence of laser light. Therefore, in order to increase this fluctuation, donor and acceptor substituents are introduced into the π-electron conjugated system, as shown in the above representative material examples. Generally, the crystal structure of an organic compound is determined by the structure of each molecule and intermolecular cohesive forces such as hydrogen bonding during packing, Van-der Waals interaction, and dipole-dipole interaction. When a combination of strong donor and acceptor substituents, such as an amino group and a nitro group, is introduced into a π-electron conjugated system, the dipole moment of the molecule increases, and the dipole-dipole interaction between molecules during crystal formation increases. becomes stronger. Such a compound tends to form a centrosymmetric crystal, which is a structure in which the dipoles of two molecules cancel each other out due to strong dipole-dipole interaction. However, such a centrosymmetric crystal does not exhibit second-order nonlinear optical effects. In conventional research, substituents, especially optically active substituents and hydrogen bond formation, are added to the asymmetric positions of the molecule in order to break the central symmetry of the crystal, which is a problem in producing second-order nonlinear optical effects in the crystalline state. Efforts have been made to introduce substituents with high potency, and there have been success stories with benzene and pyridine derivatives.
Representative examples include NPP, PNP and DAN. However, for example, the magnitude of the second-order nonlinear optical effect of NPP, which is reported to have achieved the optimum molecular orientation for producing the second-order nonlinear optical effect, is at most 150 times that of urea. Therefore, NPP
When trying to develop a material that has a second-order nonlinear optical effect even larger than that of benzene or pyridine derivatives, it is necessary to develop a material that has a second-order hyperpolarizability (second-order optical nonlinearity of molecules, It was necessary to achieve a non-centrosymmetric crystal structure and appropriate molecular orientation in a compound with a structure (first developed in the field). However, in compounds such as stilbene derivatives, which have a long π-electron conjugated system as a parent skeleton that has an order of magnitude higher second-order hyperpolarizability than benzene derivatives (e.g., P-nitroaniline), the dipole moment also changes accordingly. This is due to the fact that the central symmetry of the crystal cannot be broken, or even if it can be made non-centrosymmetric, it is not possible to achieve an appropriate molecular orientation to greatly express the second-order nonlinear optical effect. Contrary to expectations, only small second-order nonlinear optical effects smaller than that of benzene derivatives were obtained. Therefore, in order to break the central symmetry of the crystal of a compound that has a long π-electron conjugated system as its parent skeleton and achieve appropriate molecular orientation, there are examples of studies that have considered the introduction of a salt structure with large steric hindrance. A typical example is DMSM, which has a large second-order hyperpolarizability and can control a non-centrosymmetric crystal structure using the steric hindrance of the counter anion to produce a large second-order nonlinear optical effect.
However, the salt structure of these compounds brings about properties that are unfavorable for nonlinear optical materials, such as hygroscopicity and crystalline polymorphism, so problems remain in terms of storage stability and processability. In stilbene derivatives whose parent skeleton is a long π-electron conjugated system that can increase the second-order hyperpolarizability by introducing donor and acceptor substituents,
It is expected that a material that exhibits a large second-order nonlinear optical effect in a crystalline state without the problems seen in DMSM can be obtained, but so far there has been no success story that surpasses NPP. [Problems to be Solved by the Invention] The object of the present invention is to solve the following problems in a stilbene derivative:
It solves the problem that it is difficult to form a non-centrosymmetric crystal structure due to its large dipole moment, and takes advantage of its large second-order hyperpolarizability.
An object of the present invention is to provide an organic nonlinear optical material that exhibits a second-order nonlinear optical effect and has excellent storage stability. That is, the present inventors have demonstrated through quantum chemical calculations that a stilbene derivative in which a donor substituent is introduced at the 4-position and an acceptor substituent is introduced at the 4'-position can have a large second-order hyperpolarizability. confirmed. Based on this knowledge, it was demonstrated that by introducing an asymmetric substituent into the asymmetric site of the phenyl group substituted with the donor group of a stilbene derivative, an organic secondary nonlinear optical material that exhibits large optical nonlinearity could be obtained. This led to the present invention. [Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration. "An organic secondary nonlinear optical material comprising a stilbene derivative represented by the following general formula [1] and having optical nonlinearity 10 times or more greater than that of urea. [However, D: substituent constant σρ of the hook, 0.2
≧σρ>−0.4, or a donor substituent selected from halogen, A: Hammett's substituent constant σρ, and an acceptor substituent selected from σρ>0.2, R 1 to R 4 : hydrogen or any substituent and at least one represents an asymmetric substituent introduced at an asymmetric site. ] The stilbene derivative as referred to in the present invention has a donor substituent selected from 0.2≧σρ≧−0.4 or halogen at the 4-position, and an acceptor substituent selected from σρ>0.2, with Hammett's substituent constant σρ. at the 4'-position, and at least one asymmetric substituent having the effect of facilitating the formation of non-centrosymmetric crystals is present at the asymmetric site of the phenyl group substituted with the donor group. In other words, the feature of the present invention is that a stilbene derivative with large hyperpolarizability is
The selection of electronic conjugated systems. The combination of donor and acceptor substituents was selected to provide a dipole moment size that allows for control of molecular orientation. In addition, an asymmetric substituent was introduced into an asymmetric site. Through these three techniques, the central symmetry in the bulk state, for example, the crystalline state, is broken, and the orientation is controlled to create a bulk structure that takes advantage of the second-order optical nonlinearity of the molecule, making it possible to produce large second-order nonlinear optical effects. It is in the point that I made it. As shown in Comparative Examples 1 and 2, it is difficult to stably form a crystal that exhibits a large second-order nonlinear optical effect only by making improvements. By applying further innovations, they succeeded in making it easier to form crystals that exhibit large second-order nonlinear optical effects. Furthermore, in this case, the intermolecular cohesive force is generally stronger compared to benzene derivatives and the like due to the π-electron interaction. That is, since the sublimation property and the water absorption property are also low, the storage stability in the bulk state is good. Table 3 compares the solubility of the materials of the present invention in water with the known examples of NPP, PNP, and DAN. From the viewpoint of the above-mentioned good storage stability and high-speed photoresponsiveness, which is a characteristic of organic materials, among the materials within the scope of the present invention, the magnitude of the second-order nonlinear optical effect itself is urea ratio 10, that is, the conventionally used material. Even materials as large as inorganic materials such as lithium niobate can be used depending on the purpose. Examples of donor substituents in the present invention include hydroxyl groups, alkoxy groups such as methoxy, ethoxy, and phenoxy, hydroxymethyl,
hydroxyalkyl groups such as hydroxyethyl,
Examples include chain or branched alkyl groups such as methyl, ethyl, and t-butyl, alkylsilyl groups such as trimethylsilyl, mercaptoalkyl groups such as mercaptomethyl, alkanoylamino groups such as acetylamino, mercapto groups, and halogens. Acceptor substituents include nitro groups, alkylsulfonyl groups such as methylsulfonyl, cyano groups, sulfamoyl groups, alkylsulfamoyl groups such as methylsulfamoyl, trifluoromethyl groups, formyl,
Acyl groups such as acetyl, trifluoromercaptomethyl groups, alkylsulfinyl groups such as methylsulfinyl, carboxy groups, alkoxycarbonyl groups such as methoxycarbonyl and ethoxycarbonyl, carbamoyl groups, alkylcarbamoyl groups such as methylcarbamoyl, triflio Examples include lomethoxy group and halogen. Since halogen has both donor and acceptor properties, it falls into both categories. It is particularly preferable to introduce a nitro group as an acceptor substituent in order to improve the optical nonlinearity of the compound. In addition, when introducing a nitro group as an acceptor substituent, introducing a hydroxyl group or an alkoxy group as a donor substituent prevents the absorption from becoming longer wavelength, and also prevents the dipole moment of the molecule from becoming too large. preferable. Asymmetric substituents are used to control the orientation of molecules in the bulk structure so that they are suitable for producing second-order nonlinear optical effects, and are substituents that have intermolecular forces that can change the bulk structure during molecular packing. It is the basis. In other words, it is a group that can break the central symmetry of both the molecule itself and the entire crystal and control the orientation into a bulk structure that can take advantage of the second-order optical nonlinearity of the molecule. A sterically hindered substituent or a hydrogen bond-forming substituent has a strong ability to change such packing, and is therefore particularly effective as the asymmetric substituent referred to in the present invention. Any asymmetric substituent mentioned above may be used as long as it does not significantly affect the electronic state of the molecule.
However, unnecessarily large substituents are not preferable because they lead to a decrease in the molecule (matrix skeleton) density per unit volume and reduce the second-order nonlinear optical effect of the material. In the Examples, a methoxy group, an ethoxy group, a methyl group is used as a sterically hindered substituent of an appropriate size, and an ethyleneoxy group is used as an example in which an asymmetric substituent and a donor group are connected. ing. Furthermore, for the same reason, it is desirable that the number of asymmetric substituents be small. Therefore, preferably R 1 to R 4
Three of them are hydrogen. In the present invention, it has also been found that a sufficient effect can be obtained by simply introducing one asymmetric substituent into a phenyl group into which a donor substituent has been introduced. In this case, the ortho position of the donor substituent is particularly effective. This substitution position does not have a large effect on the electronic state of the molecule, and the degree of freedom in selecting a substituent that can be used as an asymmetric substituent is increased. The compound of the present invention can be obtained by a general method for synthesizing stilbene compounds, in which aldehyde and phenylacetic acid derivatives are subjected to heating, dehydration, decarboxylation, and condensation in the presence of a base catalyst (for example, piperidine). Deuterated compounds have the effect of increasing transparency in the near-infrared region, but have nonlinear optical effects equivalent to non-deuterated compounds. Therefore, in the nonlinear optical compound, some or all of the hydrogens may be replaced with deuterium. Examples of usage modes of the compound of the present invention include bulk single crystals and thin film single crystals. As a method for producing the single crystal, a solution method, a gas phase method, and a melting method can be applied. For example, 4-methoxy-
3-Methyl-4'-nitrostilbene (MMNS)
As shown in the examples, it is possible to produce bulk single crystals by a solution method, and in addition, it is possible to produce bulk single crystals by a solution method, or by vapor phase growth such as melting and slow cooling on a substrate, vapor deposition on a substrate, or sublimation. It is also possible to produce thin film single crystals. Bulk single crystals, thin film single crystals, etc. produced in this manner are useful for constructing nonlinear optical elements such as wavelength conversion elements, parametric oscillators, and optical switches, as well as optical information processing and optical communication systems using them. [Examples] Hereinafter, the present invention will be explained in more detail using Examples, but the effectiveness of the present invention is not limited in any way by these Examples. Example 1 4-Hydroxy-3-methoxy-4'-nitrostilbene (HMNS). [Synthesis] In a 100 ml three-necked flask equipped with a reflux condenser and magnetic stirrer, add 4.56 g (30 mmol) of 3-methoxy-4-hydroxybenzaldehyde (vanillin) and 5.43 g.
(30 mmol) of p-nitrophenyl acetic acid was added,
About 18 ml of piperidine was added, and the mixture was heated to reflux at an oil temperature of about 120° C. while stirring for about 8 hours. The reaction solution turned red-black. After confirming the completion of the reaction using thin layer chromatography using chloroform as a developing solvent, stirring was stopped. When piperidine is removed using a rotary evaporator, a tar-like substance remains. If this is dissolved in acetone, the red fraction near the tip is collected using a silica gel chromatograph using chloroform as the developing solvent, and the solvent is removed using a rotary evaporator. Orange crude crystals were obtained. When the crude crystals were recrystallized with acetonitrile, orange angular crystals were obtained, which were collected by filtration and dried under vacuum. [Target product 4.98g (yield 61.3%) Melting point 179.5-180.5°C] Identification was performed by IR and elemental analysis (see Table 2). (IR: KBR tablet method cm -1 ) 3430 (-OH); 2855 (-OCH 3 ); 1636, 970 (-
CH=CH-); 1506-1518, 1328 ( -NO2 );
1250, 1030 (−OCH 3 ) Next, in order to investigate the magnitude of the second-order nonlinear optical effect of this compound, second harmonic generation (SHG) was performed using a powder method (SKKurtz, TTPerry, J.Appl.Phys.
39 3798 (1966)). The light source used for the measurement was a Nd:YAG laser (oscillation wavelength
1.064 μm), and the sample was ground to about 100 μm in a mortar. Laser irradiation conditions are pulse width 200nsec, repetition rate 10Hz, peak power density approx.
It was conducted at 30MW/ cm2 . The measurement results are shown in Table 1. HMNS according to the invention
showed 70 times higher SHG than the standard known compound urea. Furthermore, when the solubility in water was investigated, the HMNS according to the present invention was found to be substantially insoluble (Table 3
reference. ) Example 2 3-Ethoxy-4-hydroxy-4'-nitrostilbene (HENS). [Synthesis] The reaction and separation and purification were carried out in exactly the same manner as in Example 1, except that 4.98 g (30 mmol) of 3-ethoxy-4-hydroxybenzaldehyde and 5.43 g (30 mmol) of p-nitrophenyl acetic acid were used. When the orange crude crystals were recrystallized with acetonitrile, yellow-orange needle-shaped crystals (approximately 7 x 5 x 3 mm) were obtained, which were collected by filtration and vacuum-dried. [Objective 5.90g (yield 68.9%) Melting point 161-163°C] Identification was performed by IR and elemental analysis (see Table 2). (IR; KBr tablet method cm -1 ) 3430 (-OH); 1632, 970 (-CH=CH-); 1502
~1506, 1325 (−NO 2 ); 1438 (−OCH 2 CH 3 ); 1250, 1030 (−
OC 2 H 5 ) Next, the SHG measurement results of this compound are shown in Table 1. HENS according to the present invention exhibited 30 times more SHG than the standard known compound urea. Furthermore, when the solubility in water was examined, HENS according to the present invention was found to be substantially insoluble (Table 3
reference). Example 3 4-Methoxy-3-methyl-4'-nitrostilbene (MMNS). [Synthesis] The reaction was carried out in exactly the same manner as in Example 1, except that 6.03 g (30 mmol) of 3-methyl-p-anisaldehyde, 5.97 g (33 mmol) of p-nitrophenyl acetic acid, and about 5 ml of piperidine were used. The orange-red fraction near the tip of the resulting red tar-like substance was collected using a silica gel chromatograph using benzene as a developing solvent, and the solvent was removed using a rotary evaporator to obtain a yellow-orange oil. When this was crystallized with acetonitrile, yellow bulk crystals were obtained, which were collected by filtration and dried under vacuum. [Target object 7.12g (yield 80.2%) Melting point 111-111.5°C] Identification was performed by IR and elemental analysis (see Table 2). (IR; KBr tablet method cm -1 ) 2960, 2865 (-OH 3 ); 2850 (-OCH 3 ); 1635,
967 (-CH=CH-); 1503, 1320 ( -NO2 );
1450, 1470 (−OCH 3 , −CH 3 ); 1240, 1024 (−
OCH 3 ) When 5g of MMNS is dissolved in 50ml of acetonitrile while hot, left to cool, and crystallized by solvent evaporation at room temperature, yellow lumpy crystals of about 1 x 1 x 1 cm are obtained in about 1 month. Ta. Polarized light microscopy revealed that this crystal was a single crystal. Next, Table 1 shows the measurement results of SHG of this compound. MMNS according to the present invention exhibited an extremely large SHG of 650 times that of urea, which is a standard known compound, or about 4 times that of NPP, which shows the highest SHG among known materials. Figure 1 shows the relationship between powder particle size and SHG strength. It was found that MMNS is phase consistent. Furthermore, when the solubility in water was examined, the MMNS according to the present invention was found to be substantially insoluble (Table 3
reference). Example 4 5-(p-nitrostyryl)-2,3-dihydrobenzofuran (EONS) [Synthesis 1] In a 500 ml three-neck flask equipped with a reflux condenser and a magnetic stirrer, 25 g of formylating agent ((chloromethylene)dimethylammonium chloride) and 200 ml of chloroform were added and stirred to disperse. 23g of 2,3-dihydrobenzofuran was added and reacted overnight at room temperature. Furthermore, the reaction was completed by heating under reflux for 5 hours. The reaction solution cooled to room temperature was poured into 500 ml of 0.2N aqueous sodium hydroxide solution, and after vigorous stirring, the chloroform soluble content was extracted. The extract was washed with water and dried, and chloroform was distilled off under reduced pressure to obtain 21 g of the desired aldehyde. [Synthesis 2] In a 100 ml three-neck flask equipped with a reflux condenser and a magnetic stirrer, put 6 g of 5-formyl-2,3-dihydrobenzofuran obtained in [Synthesis 1] above and 7.3 g of p-nitrophenyl acetic acid, and add about 2 ml. of piperidine was added thereto, and the mixture was heated to reflux while stirring at an oil temperature of about 120°C for about 1.5 hours. After cooling to room temperature, the solidified reaction product was recrystallized from methanol to obtain 1.8 g of a brown-yellow solid. This was dissolved under heat in cyclohexane/acetone (volume ratio 2:1), treated with activated carbon, and then recrystallized to obtain 0.7 g (yield 5.3%) of yellow needles. Melting point is 196.5℃
It was hot. Identification was performed by IR and elemental analysis (see Table 2). (IR; KBr tablet method cm -1 ) 2900 to 3060 (-OH 2 -CH 2 -O-); 1630 (-CH
=CH-); 1340 ( -NO2 ); 1250 (C-O-C) For various measurements, crystallization from ethyl acetate and vacuum drying was used. Next, Table 1 shows the measurement results of SHG of this compound. EONS according to the invention exhibited 25 times more SHG than the standard known compound urea. Furthermore, when the solubility in water was examined, the EONS according to the present invention was found to be substantially insoluble (Table 3
reference). Comparative Example 1 4-Hydroxy-4'-nitrostilbene (HNS). [Synthesis] The reaction and separation and purification were carried out in exactly the same manner as in Example 1, except that 3.66 g (30 mmol) of p-hydroxybenzaldehyde and 5.43 g (30 mmol) of p-nitrophenyl acetic acid were used. When the orange crude crystals were recrystallized with chloroform, yellow-orange angular crystals were obtained, which were collected by filtration.
Vacuum dried. [Target product 4.33g (yield 65.3%) Melting point 209-210°C] Identification was performed by IR and elemental analysis (see Table 2). (IR; KBr tablet method cm -1 ) 3440 (-OH); 1630, 956 (-CH=CH-); 1502,
1328( -NO2 ) Next, Table 1 shows the measurement results of SHG of this compound. HNS exhibited only 0.7 times as much SHG as the standard known compound urea. When the solubility in water was examined, HNS was found to be substantially insoluble (see Table 3). Comparative Example 2 4-Methoxy-4'-nitrostilbene (MNS). [Synthesis] 4.08g (30mmol) of p-anisaldehyde and
The reaction and separation and purification were carried out in exactly the same manner as in Example 3, except that 5.43 g (30 mmol) of p-nitrophenyl acetic acid was used. When the yellow crude crystals were recrystallized with acetone, yellow-orange plate crystals were obtained. This was collected by filtration and vacuum dried. [Target product 6.35g (yield 83.0%) Melting point 134-135°C] When MNS was recrystallized with benzene, yellow plate-like crystals were obtained. Identification was performed by IR and elemental analysis (see Table 2). (IR; KBr tablet method cm -1 ) 2830 (-OCH 3 ); 1628, 960 (-CH=CH-);
1500-1510, 1325( -NO2 ) Next, Table 1 shows the measurement results of SHG of this compound. MNS recrystallized with acetone showed only the same level of SHG as urea, a standard known material. On the other hand, MNS recrystallized with benzene showed 67 times more SHG than urea. Figure 2 shows the results of powder X-ray analysis of these two types of MNS crystals. The phenomenon of ``crystal polymorphism'' was confirmed, leaving concerns about the stable production of crystals with large second-order nonlinear optical effects. When the solubility in water was examined, MNS was found to be substantially insoluble (see Table 3).

【表】【table】

【表】【table】

【表】【table】

【表】 [発明の効果] 本発明によれば、 大きな超分極率を持つスチルベン誘導体をπ
電子共役系に選んだこと、 ドナー性およびアクセプター性置換基の組合
わせを、非対称置換が可能な双極子モーメント
の大きさとなるように選択したこと、 加えて、 非対称置換基を非対称部位に導入したこと、
の3つの工夫によつてバルク状態、例えば結晶
状態での中心対称性を崩し、さらに分子の持つ
2次光非線形性を生かし得るバルク構造に配向
制御し、大きな2次非線形光学効果を発現する
有機2次非線形光学材料を提供することができ
る。 また、スチルベン誘導体の場合、強いπ電子
相互作用により分子間凝集力もベンゼン誘導体
などと比較し大きくなり、より昇華性および吸
水性の低いバルク状態における保存安定性に優
れる実用的な有機2次非線形光学材料を提供す
ることができる。
[Table] [Effects of the Invention] According to the present invention, a stilbene derivative having a large hyperpolarizability is
The combination of donor and acceptor substituents was selected to have a dipole moment size that allowed asymmetric substitution, and in addition, the asymmetric substituent was introduced into the asymmetric site. thing,
Through these three techniques, the central symmetry of the bulk state, for example, the crystalline state, can be broken, and the orientation can be controlled to create a bulk structure that takes advantage of the second-order optical nonlinearity of the molecules. A second order nonlinear optical material can be provided. In addition, in the case of stilbene derivatives, the intermolecular cohesive force is greater than that of benzene derivatives due to strong π-electron interactions, and practical organic secondary nonlinear optics has excellent storage stability in the bulk state with lower sublimation and water absorption. material can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のMMNSにおける粉末粒径と
SHG強度の関係を示す。第2図は、比較例MNS
のアセトンAとベンゼンBから得られた結晶の粉
末法X線による解析結果を示す。
Figure 1 shows the powder particle size and MMNS of the present invention.
The relationship between SHG intensity is shown. Figure 2 shows a comparative example MNS
The results of powder method X-ray analysis of crystals obtained from acetone A and benzene B are shown below.

Claims (1)

【特許請求の範囲】 1 下記一般式[1]で表されるスチルベン誘導
体から成り、かつ、ウレアの10倍以上大きな光非
線形性を有することを特徴とする有機2次非線形
光学材料。 [ただし、D:ハメツトの置換基定数σρで、0.2
≧σρ>−0.4、またはハロゲンから選ばれるドナ
ー性置換基、 A:ハメツトの置換基定数σρで、σρ>0.2から選
ばれるアクセプター性置換基、 R1〜R4:水素または任意の置換基であつて、か
つ、少なくとも1つは非対称部位に導入された非
対称置換基を示す。] 2 ドナー性置換基Dが、ヒドロキシル基または
アルコキシ基であることを特徴とする特許請求の
範囲第1項記載の有機2次非線形光学材料。 3 アクセプター性置換基Aがニトロ基であるこ
とを特徴とする特許請求の範囲第1項記載の有機
2次非線形光学材料。 4 式[1]におけるR1〜R4のうちの3つが水
素であることを特徴とする特許請求の範囲第1項
記載の有機2次非線形光学材料。 5 非対称置換基を導入する非対称部位がドナー
性置換基Dのオルト位であることを特徴とする特
許請求の範囲第1項または第4項記載の有機2次
非線形光学材料。 6 非対称置換基が立体障害性の置換基であるこ
とを特徴とする特許請求の範囲第1項記載の有機
2次非線形光学材料。 7 スチルベン誘導体が、4−メトキシ−3−メ
チル−4′−ニトロスチルベンであることを特徴と
する特許請求の範囲第1項記載の有機2次非線形
光学材料。 8 スチルベン誘導体が、4−ヒドロキシ−3−
メトキシ−4′−ニトロスチルベンであることを特
徴とする特許請求の範囲第1項記載の有機2次非
線形光学材料。 9 スチルベン誘導体の、一部または全ての水素
が重水素化されていることを特徴とする特許請求
の範囲第1項記載の有機2次非線形光学材料。
[Scope of Claims] 1. An organic secondary nonlinear optical material comprising a stilbene derivative represented by the following general formula [1] and having optical nonlinearity 10 times or more greater than that of urea. [However, D: substituent constant σρ of the hook, 0.2
≧σρ>−0.4, or a donor substituent selected from halogen, A: Hammett's substituent constant σρ, and an acceptor substituent selected from σρ>0.2, R 1 to R 4 : hydrogen or any substituent and at least one represents an asymmetric substituent introduced at an asymmetric site. 2. The organic secondary nonlinear optical material according to claim 1, wherein the donor substituent D is a hydroxyl group or an alkoxy group. 3. The organic secondary nonlinear optical material according to claim 1, wherein the acceptor substituent A is a nitro group. 4. The organic secondary nonlinear optical material according to claim 1, wherein three of R 1 to R 4 in formula [1] are hydrogen. 5. The organic secondary nonlinear optical material according to claim 1 or 4, wherein the asymmetric site into which the asymmetric substituent is introduced is the ortho position of the donor substituent D. 6. The organic secondary nonlinear optical material according to claim 1, wherein the asymmetric substituent is a sterically hindered substituent. 7. The organic secondary nonlinear optical material according to claim 1, wherein the stilbene derivative is 4-methoxy-3-methyl-4'-nitrostilbene. 8 The stilbene derivative is 4-hydroxy-3-
The organic secondary nonlinear optical material according to claim 1, which is methoxy-4'-nitrostilbene. 9. The organic secondary nonlinear optical material according to claim 1, wherein some or all of the hydrogens in the stilbene derivative are deuterated.
JP62335011A 1987-12-28 1987-12-28 Organic second order non-linear optical material Granted JPH01173017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335011A JPH01173017A (en) 1987-12-28 1987-12-28 Organic second order non-linear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335011A JPH01173017A (en) 1987-12-28 1987-12-28 Organic second order non-linear optical material

Publications (2)

Publication Number Publication Date
JPH01173017A JPH01173017A (en) 1989-07-07
JPH0439056B2 true JPH0439056B2 (en) 1992-06-26

Family

ID=18283736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335011A Granted JPH01173017A (en) 1987-12-28 1987-12-28 Organic second order non-linear optical material

Country Status (1)

Country Link
JP (1) JPH01173017A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961631A (en) * 1988-02-11 1990-10-09 E. I Du Pont De Nemours And Company Nonlinear optical devices from derivatives of stilbene
DE68918866T2 (en) * 1989-06-27 1995-02-16 Toray Industries SECOND-ORDER NON-LINEAR OPTICAL ELEMENT.
WO1991003458A1 (en) * 1989-09-01 1991-03-21 E.I. Du Pont De Nemours And Company Nonlinear optical device from 3-methyl-4-methoxy-4'-nitrostilbene

Also Published As

Publication number Publication date
JPH01173017A (en) 1989-07-07

Similar Documents

Publication Publication Date Title
JP2700475B2 (en) Nonlinear optical materials and elements
JPH0439056B2 (en)
US4987255A (en) Organic nonlinear optical material
JP2762610B2 (en) Squarylium derivative and method for producing the same
JP2887833B2 (en) Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same
JPS62210431A (en) Non linear optical material
JPH0678301B2 (en) Square lilium derivative and method for producing the same
Wu et al. Design and syntheses of efficient and thermally stable diamino chromophores for NLO application
JPH0618946A (en) Organic nonlinear optical material
Akiyama et al. Modification of DAST-based compounds toward enhanced terahertz-wave generation
JP2545646B2 (en) Non-linear optical material
JP2550777B2 (en) Steroid ketone-based compound, production method thereof, nonlinear optical material and nonlinear optical element
US5443758A (en) Non-linear optical material containing steroidal ketone compound
JPH04202165A (en) Cyclobutenedione derivative and its production
JP2980298B2 (en) Organic nonlinear optical material
US5169986A (en) Organic nonlinear optical material
JP2783869B2 (en) Nonlinear optical element
JPH0496026A (en) Nonlinear optical material
JPH02935A (en) Nonlinear optical material
JPH01163723A (en) Organic nonlinear optical material
JPH0386854A (en) Schiff base compound
JPH07225401A (en) Nonlinear optical material
JPH06130434A (en) Organic nonlinear optical material
JPH055913A (en) Organic nonlinear optical material
JPH03114031A (en) Organic nonlinear optical material