JPH02171730A - Nonlinear optical material and nonlinear optical element - Google Patents

Nonlinear optical material and nonlinear optical element

Info

Publication number
JPH02171730A
JPH02171730A JP32605788A JP32605788A JPH02171730A JP H02171730 A JPH02171730 A JP H02171730A JP 32605788 A JP32605788 A JP 32605788A JP 32605788 A JP32605788 A JP 32605788A JP H02171730 A JPH02171730 A JP H02171730A
Authority
JP
Japan
Prior art keywords
nonlinear optical
compds
optical element
hydroxy
optical material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32605788A
Other languages
Japanese (ja)
Inventor
Yoshitaka Morita
森田 美貴
Hidetaka Ninomiya
英隆 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP32605788A priority Critical patent/JPH02171730A/en
Priority to US07/384,984 priority patent/US4909598A/en
Priority to EP19890113752 priority patent/EP0353607A3/en
Publication of JPH02171730A publication Critical patent/JPH02171730A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high nonlinear optical effect without having absorption of visible light by constituting the nonlinear optical material of the compds. selected from 3-hydroxy-4-methoxynitrobenzene, p-nitrobenzonitrile, p- nitrobenzaldehyde, etc. CONSTITUTION:The nonlinear optical element is formed by using the nonlinear optical material consisting of the compds. selected from the 3-hydroxy-4- methoxynitrobenzene, p-nitrobenzonitrile, p-nitrobenzaldehyde, etc. These compds. can have substituents within the range where the high nonlinear optical effect, the absorptivity of visible light and crystallinity are not largely impaired. The formation of the nonlinear optical element in various forms such as blending of the compds. in polymers and liquid crystal molecules, etc. The intensity of second harmonic waves can be measured by using an Nd:YAG laser 1 and integrating the output voltage of a photomultiplier 6 by a boxcar integrator 7. The nonlinear optical material and nonlinear optical element which have no absorption of visible light and exhibit the high nonlinear optical effect are obtd. in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、レーザー光の高調波の発生、パラメトリック
増幅等に用いる有機非線形光学材料及び有機非線形光学
素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to organic nonlinear optical materials and organic nonlinear optical elements used for generation of harmonics of laser light, parametric amplification, and the like.

[発明の背景] レーザー光等の強い光を物質に照射した時に辺著に現れ
る非線形光学効果は、第二次高調波発生(SHG) 、
第三次高調波発生(THG) 、強度変調、スイッチン
グ、光メモリー等に応用できるものであり、非線形光学
効果を有する非線形光学材料の次世代光デバイスへの応
用が注目を集めている。
[Background of the Invention] Nonlinear optical effects that appear prominently when materials are irradiated with intense light such as laser light are second harmonic generation (SHG),
It can be applied to third harmonic generation (THG), intensity modulation, switching, optical memory, etc., and the application of nonlinear optical materials having nonlinear optical effects to next-generation optical devices is attracting attention.

近年、該非線形光学材料の探索研究が活発に進められて
おり、特に、SHG効果については、有機系材料が、従
来知られていたニオブ酸リチウム(LiNb03)、燐
酸二水素カリウム(KDP)等の無機系材料に比べ、非
線形光学定数、応答速度、耐久性等の点において桁違い
に高い性能を持つ可能性があると指摘されている。(例
えば[有機非線形光学材料」加藤政雄、中西へ部監修、
シー・エム・シー社 1985年刊) また、非線形光学材料の結晶成長、非線形光学材料を用
いたデバイス等についても盛んに研究されており、特に
、5)(G、THGを利用した波長変換素子となる、高
い変換効率を有し、位相のそろった光を出すことのでき
る光導波路デバイスを得ることが強く望まれている。
In recent years, exploration research into nonlinear optical materials has been actively progressing, and in particular, regarding the SHG effect, organic materials such as previously known lithium niobate (LiNb03) and potassium dihydrogen phosphate (KDP) have been developed. It has been pointed out that they may have orders of magnitude higher performance than inorganic materials in terms of nonlinear optical constants, response speed, durability, etc. (For example, [Organic Nonlinear Optical Materials] Masao Kato, Supervised by Nakanishihe Department,
(CMC Publishing, 1985) In addition, there is active research into crystal growth of nonlinear optical materials, devices using nonlinear optical materials, etc., and in particular 5) (wavelength conversion elements using G and THG) It is strongly desired to obtain an optical waveguide device which has high conversion efficiency and can emit light with uniform phase.

SHG効果をもつ化合物として、例えば2−メチル−4
−二トロアニリン(MNA) 、2−アセトアミド−4
−ニトロ−N、N−ジメチルアニリン(DAN)、2−
アセトアミド−4−二トロー1−ピロリジノベンゼン(
PAN)、2−(α−メチルベンジル)アミノ−5−ニ
トロピリジン(MBA−NP>等が知られている。
Examples of compounds with SHG effect include 2-methyl-4
-nitroaniline (MNA), 2-acetamide-4
-Nitro-N,N-dimethylaniline (DAN), 2-
Acetamido-4-nitro-1-pyrrolidinobenzene (
PAN), 2-(α-methylbenzyl)amino-5-nitropyridine (MBA-NP>, etc.) are known.

これらは、従来から知られているSHG効果をもつ化合
物の中でも非線形光学効果が大きく優れた材料であるが
、これらに代表される有機非線形光学材料は、光導波路
のコアにするに十分な大きさの単結晶が得に<<、波長
変換素子とするために光導波路とすることは非常に困難
であった。
These are materials with a large and excellent nonlinear optical effect among the conventionally known compounds with the SHG effect, but the organic nonlinear optical materials represented by these materials are large enough to be used as the core of an optical waveguide. In particular, it was extremely difficult to use a single crystal as an optical waveguide for use as a wavelength conversion element.

例えば、従来ファイバー型光導波路デバイスとするため
には屈折率の低い材料でできた中空ファイバー中に、屈
折率の高い非線形光学材料を溶融して注入した後、ブリ
ッジマン−ストックバーガー法等で単結晶化する方法が
とられている。(参考図書口、S、Chela 、 J
、2yss  : Non1inearOptical
 Properties or Organic Mo
1eculesand Crystals Vol、1
; ACADE旧CPRESS INCしかし、従来知
られている優れた非線形光学効果を示す有機非線形光学
材料は、総じてこのような方法では単結晶になりに<<
優れた光導波路のコアを形成することは困難である1例
えば、PAN、MBA−NPは溶融すると分解して単結
晶を得ることができない。
For example, conventionally, in order to create a fiber-type optical waveguide device, a nonlinear optical material with a high refractive index is melted and injected into a hollow fiber made of a material with a low refractive index, and then a simple method such as the Bridgman-Stockberger method is used. A method of crystallization is used. (Reference Library, S., Chela, J.
, 2yss: Non1inear Optical
Properties or OrganicMo
1eculesand Crystals Vol, 1
ACADE Formerly CPRESS INC However, conventionally known organic nonlinear optical materials that exhibit excellent nonlinear optical effects generally cannot be made into single crystals by this method.
It is difficult to form the core of an excellent optical waveguide. For example, PAN and MBA-NP decompose when melted, making it impossible to obtain a single crystal.

また、情報記録媒体の大容量化、高密度化の要求に応え
る形で光記録媒体の研究が盛んに行われているが、これ
ら光記録媒体の記録密度は光源の波長に依存するので(
記録密度限界は光源波長が短くなると、その2乗に反比
例して増大する。)、より短波な光源を得るために波長
変換素子への期待は大きいものがある(例えば半導体レ
ーザーの発振域である近赤外光から青色光を得る等)が
、従来の優れた有機非線形光学材料の多く(例えばMN
A、DAN)は黄色に着色しており青色光の透過率が低
いため、青色光を発生する波長変換素子として用いるに
は不利であった。
In addition, research into optical recording media is being actively conducted in response to demands for larger capacity and higher density information recording media, but since the recording density of these optical recording media depends on the wavelength of the light source (
As the light source wavelength becomes shorter, the recording density limit increases in inverse proportion to the square of the wavelength. ), there are great expectations for wavelength conversion elements to obtain shorter wavelength light sources (for example, to obtain blue light from near-infrared light, which is the oscillation range of semiconductor lasers), but conventional excellent organic nonlinear optics Many of the materials (e.g. MN
A, DAN) was colored yellow and had low transmittance for blue light, so it was disadvantageous to use as a wavelength conversion element that generates blue light.

従って、単結晶になり易く、可視領域、特に、青色光の
光透過率が高い有機非線形光学材料の出現が強く望まれ
ていた。
Therefore, it has been strongly desired to develop an organic nonlinear optical material that is easily formed into a single crystal and has high light transmittance in the visible region, particularly blue light.

有機化合物の非線形性の起源は分子内π電子であり、2
次の非線形分子分極率βは、該化合物が電子供与性基お
よび電子吸引性基の両方を有するとき、特に大きくなる
The origin of nonlinearity in organic compounds is the intramolecular π electrons, and 2
The following nonlinear molecular polarizability β becomes particularly large when the compound has both an electron-donating group and an electron-withdrawing group.

しかしながら、p−ニトロアニリンで代表されるように
、分子レベルの非線形分極が大きくても、結晶の状態で
は全<SHGを示さなかったり、示してもSHGの小さ
いものが数多くみられ、化合物が優れた非線形光学効果
を示すかどうかは化合物の2次の非線形分子分極率βか
らでは判断することができない。
However, even if the nonlinear polarization at the molecular level is large, as typified by p-nitroaniline, there are many compounds that do not exhibit total <SHG in the crystalline state, or even if they do, the SHG is small, making the compound superior. Whether or not a compound exhibits a nonlinear optical effect cannot be determined from the second-order nonlinear molecular polarizability β of the compound.

本発明者らは、化合物の非線形光学効果、結晶化、可視
光の透過率について研究を行った結果、高い非線形光学
効果を示し、可視光の吸収がなく、容易に光導波路とす
るのに十分な大きさの結晶を形成する化合物を見出だし
た。
The present inventors conducted research on the nonlinear optical effect, crystallization, and visible light transmittance of the compound, and found that it has a high nonlinear optical effect, no absorption of visible light, and is sufficient to be easily used as an optical waveguide. We have discovered a compound that forms crystals of a large size.

[発明の目的] 本発明の目的は、光導波路とするのに十分な大きさの単
結晶を容易に形成し、かつ、可視光の吸収がなく、高い
非線形光学効果を示す非線形光学材料および非線形光学
素子を提供することにある。
[Objective of the Invention] The object of the present invention is to provide a nonlinear optical material that can easily form a single crystal large enough to be used as an optical waveguide, does not absorb visible light, and exhibits a high nonlinear optical effect; An object of the present invention is to provide an optical element.

[発明の構成] 本発明の上記目的は、 (1) 3−ヒドロキシ−4−メトキシニトロベンゼン
、P−ニトロベンゾニトリル、p−ニトロベンズアルデ
ヒド、m−ニトロフェノール、ρ−ニトロベンジルブロ
マイド、3−ブロモ−4′−クロロ−4−二トロベンゾ
フェノン、4−ニトロフタルイミド、4−ヒドロキシ−
3−メトキシベンゾニトリル、4−アミノ−1−ナフタ
レンカルボニトリル、フェニルローヒドロキシベンゾエ
イトから選ばれた化合物よりなることを特徴とする特線
形光学材料。
[Structure of the Invention] The above objects of the present invention are: (1) 3-hydroxy-4-methoxynitrobenzene, P-nitrobenzonitrile, p-nitrobenzaldehyde, m-nitrophenol, ρ-nitrobenzyl bromide, 3-bromo- 4'-chloro-4-nitrobenzophenone, 4-nitrophthalimide, 4-hydroxy-
A special linear optical material comprising a compound selected from 3-methoxybenzonitrile, 4-amino-1-naphthalenecarbonitrile, and phenylrohydroxybenzoate.

(2) 上記(1)項記載の非線形光学材料からなる非
線形光学材料素子。
(2) A nonlinear optical material element made of the nonlinear optical material described in item (1) above.

によって達成された。achieved by.

以下本発明について説明する。The present invention will be explained below.

本発明で用いられる化合物は、 (1) 3−ヒドロキシ−4−メトキシニトロベンゼン (2) p−ニトロベンゾニトリル (3) p−ニトロベンズアルデヒド (4) m−二トロフェノール (5) P−ニトロベンジルブロマイド(6) 3−ブ
ロモ−4′−クロロ−4−ニトロベンゾフェノン r (7)4−ニトロフタルイミド (8) 4−ヒドロキシ−3−メトキシベンゾニトリル (9) 4−アミノ−1−ナフタレンカルボニトリル (10)  フェニルp−ヒドロキシベンゾエイトであ
る。
The compounds used in the present invention are (1) 3-hydroxy-4-methoxynitrobenzene (2) p-nitrobenzonitrile (3) p-nitrobenzaldehyde (4) m-ditrophenol (5) P-nitrobenzyl bromide (6) 3-bromo-4'-chloro-4-nitrobenzophenone (7) 4-nitrophthalimide (8) 4-hydroxy-3-methoxybenzonitrile (9) 4-amino-1-naphthalenecarbonitrile (10) ) Phenyl p-hydroxybenzoate.

上記化合物は、上記化合物の有する高い非線形光学効果
、可視光の吸収性、結晶性を大きく害さない範囲で置換
基を有することができる。
The above compound can have a substituent within a range that does not significantly impair the high nonlinear optical effect, visible light absorption, and crystallinity of the above compound.

特許請求の範囲に記載の化合物は、上記置換基を有する
ものをも意味する。
The compounds described in the claims also refer to compounds having the above substituents.

本発明の化合物は、単結晶、粉末、溶液、支持体上に沈
積した薄膜(ラングミュア−プロジェット膜、蒸着膜な
ど)あるいはポリマーや液晶分子中にブレンドした形等
種々の形態で非線形光学素子とすることができる。また
、本発明の化合物をポリマーにペンダントしたり、包接
化合物あるいは付加物として用いることも可能である。
The compounds of the present invention can be used in nonlinear optical elements in various forms such as single crystals, powders, solutions, thin films deposited on supports (Langmuir-Prodgett films, vapor-deposited films, etc.), or blended into polymers or liquid crystal molecules. can do. It is also possible to pendant the compound of the present invention to a polymer, or use it as an inclusion compound or adduct.

素子の形態は公知の導波路形状をとることができる9例
えば特開昭63−77035号公報で示されているよう
に、ファイバー形状、溝形状また単結晶の周囲をクラツ
ド材で囲んだ形状がある。
The shape of the element can be a known waveguide shape.9 For example, as shown in Japanese Patent Application Laid-Open No. 63-77035, a fiber shape, a groove shape, or a shape in which a single crystal is surrounded by a cladding material are used. be.

本発明の非線形光学素子は、レーザー光の波長変換(高
調波の発生等)、強度変調、スイッチング等に用いるこ
とができる。
The nonlinear optical element of the present invention can be used for wavelength conversion of laser light (generation of harmonics, etc.), intensity modulation, switching, and the like.

[実施例] 以下、実施例を示すが、本発明の実施態様はこれらに限
定されない。
[Example] Examples will be shown below, but the embodiments of the present invention are not limited thereto.

実施例l 5HG効果を判定するのに一般的に行われている粉末法
〔S、に、Kurtz、 T、T、Perry  ; 
J、AppPhys、、 39.3798 (1968
) )を用いて本発明の化合物を評価した。
Example 1 A commonly used powder method for determining 5HG effects [S, Kurtz, T, T, Perry;
J. AppPhys., 39.3798 (1968
) ) was used to evaluate the compounds of the present invention.

第1図はこの測定系を示す説明図である。FIG. 1 is an explanatory diagram showing this measurement system.

第1図において、1はNd : YAGレーザ−,2は
試料、3は集光レンズ、4は赤外線カットフィルター、
5はモノクロメータ−16は光電子増信管、7はボック
スカー積分器を示す。
In Fig. 1, 1 is a Nd: YAG laser, 2 is a sample, 3 is a condenser lens, 4 is an infrared cut filter,
5 is a monochromator, 16 is a photomultiplier, and 7 is a boxcar integrator.

入射基本波としてビーム径2 aat+ 、繰り返し1
0pps 、パルス@10ns 、パルスエネルギー2
01JのQスイッチNd : YAGレーザー光(波長
1064nn。
Beam diameter 2 aat+ as incident fundamental wave, repetition 1
0pps, pulse @10ns, pulse energy 2
Q switch Nd of 01J: YAG laser light (wavelength 1064 nn).

米国Quantel Internationa1社Y
G660A使用)を用いた。
US Quantel International 1 Company Y
G660A) was used.

ガラスセル中に充填した粉末の試料に入射基本波を垂直
に照射し、発生した第2次高調波(532nl緑色光)
を集光し、赤外線カットフィルターおよびモノクロメー
タ−で基本波を分離して光電子増倍管で検知した。第2
次高調波の強度は光電子増倍管の出力電圧をボックスカ
ー積分器で積分することにより測定した。
The second harmonic (532nl green light) generated by vertically irradiating the incident fundamental wave onto a powder sample filled in a glass cell
The fundamental wave was separated using an infrared cut filter and a monochromator, and detected using a photomultiplier tube. Second
The intensity of the harmonics was measured by integrating the output voltage of the photomultiplier tube with a boxcar integrator.

入射基本波を試料に照射する際には、開光依存性を除く
ため円偏光を入射した。
When the sample was irradiated with the incident fundamental wave, circularly polarized light was used to eliminate the dependence on the light intensity.

標準試料に尿素を用いて尿素の第2次高調波を1とした
時の相対強度を求め、試料の評価を行った。
Using urea as a standard sample, the relative intensity was determined when the second harmonic of urea was set to 1, and the sample was evaluated.

これらの結果を表−1に示す。These results are shown in Table-1.

以下余白 表−1 また、青色光(波長430nl近傍)の透過率を調べる
ために、本発明の化合物のメタノール溶液(濃度0.0
2ffilr/ a+I )の透過スペクトルを分光光
度計(■日立製作所製U−3410’)で測定しな、最
も長波長側にあるピークの1%になる値を吸収カーブよ
り読みとり吸収端とした。
Margin Table-1 Below: In order to examine the transmittance of blue light (wavelength around 430nl), a methanol solution of the compound of the present invention (concentration 0.0nl) was prepared.
The transmission spectrum of 2ffilr/a+I) was measured using a spectrophotometer (U-3410' manufactured by Hitachi, Ltd.), and the value corresponding to 1% of the peak on the longest wavelength side was read from the absorption curve and taken as the absorption edge.

これらの結果を表−2に示す。These results are shown in Table-2.

表−2 ”;(1):3−ヒドロキシ−4−メトキシニトロベン
ゼン(2):p−二トロペンゾニトリル (3):p−二トロベンズアルデヒド (4):m−二トロフェノール (5) :ρ−ニトロベンジルブロマイド(6):3−
ブロモ−4′−クロロ−4−ニトロベンゾフェノン(7
):4−ニトロフタルイミド <8):4−ヒドロキシ−3−メトキシベンゾニトリル
<9):4−アミノ−1−ナフタレンカルボニトリル(
10) :フェニルp−しドロキシベンゾエイト”;3
80強度は尿素を1としたときの相対値で示した°1;
表−1と同じ 実施例2 本発明の化合物を融点より10℃高い温度まで加熱し、
融液を外径1.0市、内径7μm、長さ 50IuIの
ホウケイ酸ガラス製の中空ガラスファイバーに毛細管現
象を用いて注入した。
Table 2 ”; (1): 3-Hydroxy-4-methoxynitrobenzene (2): p-nitropenzonitrile (3): p-nitrobenzaldehyde (4): m-nitrophenol (5): ρ-Nitrobenzyl bromide (6): 3-
Bromo-4'-chloro-4-nitrobenzophenone (7
): 4-nitrophthalimide <8): 4-hydroxy-3-methoxybenzonitrile <9): 4-amino-1-naphthalenecarbonitrile (
10): Phenyl p-droxybenzoate"; 3
80 Intensity is expressed as a relative value when urea is set to 1°1;
Example 2 Same as Table 1 The compound of the present invention is heated to a temperature 10°C higher than the melting point,
The melt was injected into a hollow glass fiber made of borosilicate glass with an outer diameter of 1.0 mm, an inner diameter of 7 μm, and a length of 50 IuI using capillary action.

その後、ブリッジマン−ストックバーガー法を用い、化
合物の融点より5℃高い温度に保たれた加熱炉より、化
合物の注入された中空ガラスファイバーを、1時間当り
1鮨の引上げ速度で引上げ、室温で冷却し結晶化した。
Thereafter, using the Bridgman-Stockberger method, the hollow glass fiber injected with the compound was pulled from a heating furnace maintained at a temperature 5°C higher than the melting point of the compound at a pulling rate of 1 sushi per hour. It was cooled and crystallized.

偏光顕微鏡で単結晶になっている部分の長さを測定した
The length of the single crystal portion was measured using a polarizing microscope.

これらの結果を表−3に示す。These results are shown in Table 3.

以下余白 表−3 表−1と同じ A:得られた単結晶の長さ10酎以上 B:得られた単結晶の長さ1州以上10間未満C:得ら
れた単結晶の長さ0.2−以上111wI未満 D:溶融時に材料が分解し、単結晶が得られない 実施例3 実施例2で得られた化合物(1) (8)の単結晶 ファイバーを約3 ll+uの長さに切り出し、入射基
本波として繰り返し10pps 、パルスQ 10ns
 、パルスエネルギー320IIJのQスイッチNd 
: YAGレーザ−(米[11Quantel  In
ternationa1社YG660A。
Margin table-3 below Same as Table-1 A: Length of the obtained single crystal 10 or more B: Length of the obtained single crystal 1 or more but less than 10 C: Length of the obtained single crystal 0 .2- or more and less than 111 wI D: The material decomposes during melting and a single crystal cannot be obtained. Example 3 The single crystal fiber of compound (1) (8) obtained in Example 2 was made into a length of about 3 ll+u. Cut out, repeat as incident fundamental wave 10pps, pulse Q 10ns
, Q-switch Nd with pulse energy 320 IIJ
: YAG laser (USA [11Quantel In
ternationa1 YG660A.

波長1064nn)を使用し、これを減衰させ集光して
単結晶ファイバーの端面より導波させたところスクリー
ン上にリング状の第2次高調波(緑色光)が観測された
When this was attenuated and focused and guided from the end face of a single crystal fiber, a ring-shaped second harmonic (green light) was observed on the screen.

[発明の効果] 本発明によれば、光導波路とするのに十分な大きさの単
結晶が容易に得られ、可視光の吸収がなく、高い非線形
光学効果を示す非線形光学材料および非線形光学素子を
提供することができる。
[Effects of the Invention] According to the present invention, a nonlinear optical material and a nonlinear optical element that can easily obtain a single crystal large enough to be used as an optical waveguide, do not absorb visible light, and exhibit high nonlinear optical effects. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は粉末法による第2次高調波の測定系を示す説明
図である。 第 図
FIG. 1 is an explanatory diagram showing a second harmonic measurement system using the powder method. Diagram

Claims (2)

【特許請求の範囲】[Claims] (1)3−ヒドロキシ−4−メトキシニトロベンゼン、
p−ニトロベンゾニトリル、p−ニトロベンズアルデヒ
ド、m−ニトロフェノール、p−ニトロベンジルブロマ
イド、3−ブロモ−4′−クロロ−4−ニトロベンゾフ
ェノン、4−ニトロフタルイミド、4−ヒドロキシ−3
−メトキシベンゾニトリル、4−アミノ−1−ナフタレ
ンカルボニトリル、フェニルp−ヒドロキシベンゾエイ
トから選ばれた化合物よりなることを特徴とする非線形
光学材料。
(1) 3-hydroxy-4-methoxynitrobenzene,
p-Nitrobenzonitrile, p-nitrobenzaldehyde, m-nitrophenol, p-nitrobenzyl bromide, 3-bromo-4'-chloro-4-nitrobenzophenone, 4-nitrophthalimide, 4-hydroxy-3
- A nonlinear optical material comprising a compound selected from methoxybenzonitrile, 4-amino-1-naphthalenecarbonitrile, and phenyl p-hydroxybenzoate.
(2)請求項(1)記載の非線形光学材料からなる非線
形光学素子。
(2) A nonlinear optical element made of the nonlinear optical material according to claim (1).
JP32605788A 1988-07-30 1988-12-26 Nonlinear optical material and nonlinear optical element Pending JPH02171730A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32605788A JPH02171730A (en) 1988-12-26 1988-12-26 Nonlinear optical material and nonlinear optical element
US07/384,984 US4909598A (en) 1988-07-30 1989-07-24 Non-linear optical device
EP19890113752 EP0353607A3 (en) 1988-07-30 1989-07-26 Non-linear optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32605788A JPH02171730A (en) 1988-12-26 1988-12-26 Nonlinear optical material and nonlinear optical element

Publications (1)

Publication Number Publication Date
JPH02171730A true JPH02171730A (en) 1990-07-03

Family

ID=18183626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32605788A Pending JPH02171730A (en) 1988-07-30 1988-12-26 Nonlinear optical material and nonlinear optical element

Country Status (1)

Country Link
JP (1) JPH02171730A (en)

Similar Documents

Publication Publication Date Title
Ilchenko et al. Nonlinear optics and crystalline whispering gallery mode cavities
Bai-Gang et al. Temperature tunable infrared optical parametric oscillator with periodically poled LiNbO3
Abdeldayem et al. Non-linear optothermal properties of metal-free phthalocyanine
Rotermund et al. Application of periodically poled stoichiometric LiTaO 3 for efficient optical parametric chirped pulse amplification at 1 kHz
US4909598A (en) Non-linear optical device
US5343327A (en) RbNbB2 O6 crystal and its nonlinear optical devices
JP3518604B2 (en) Dopant-doped KTP exhibiting high birefringence suitable for type II phase matching and similar forms
Si et al. Photoinduced phase-matched second-harmonic generation in azodye-doped polymer films
JPH02171730A (en) Nonlinear optical material and nonlinear optical element
US3982136A (en) Ternary ferroelectric fluoride nonlinear devices
US5167000A (en) Optical wavelength converter
US4985178A (en) Nonlinear optical device from 3-methyl-4-methoxy-4&#39;-nitrostilbene
Nikonorov et al. Holographic optical components based on photorefractive crystals and glasses: comparative analysis and development prospects
JPH02203324A (en) Driving method for light wavelength conversion module
JPH05313033A (en) Optical waveguide, manufacture thereof and optical element
JPS6366543A (en) Optical recording method
US5093882A (en) Wavelength conversion device
JPH03179328A (en) Light wavelength converting method
JPH02132423A (en) Nonlinear optical element
JP2763224B2 (en) Organic nonlinear optical material
Ekbote et al. THIRD-ORDER NLO PROPERTIES AND POWER LIMITING BEHAVIOR OF (E)-1-(3-BROMOPHENYL)-3-(4-FLUOROPHENYL) PROP-2-EN-1-ONE UNDER HE-NE CW LASER EXCITATION
JPH0695184A (en) Organic nonlinear optical material and optical functional element using that
JPH0682857A (en) Optical wavelength conversion element
JPH01200235A (en) Nonlinear optical element
JPH05257181A (en) Nonlinear optical material and photofunctional element using it