JPH01200235A - Nonlinear optical element - Google Patents

Nonlinear optical element

Info

Publication number
JPH01200235A
JPH01200235A JP2547288A JP2547288A JPH01200235A JP H01200235 A JPH01200235 A JP H01200235A JP 2547288 A JP2547288 A JP 2547288A JP 2547288 A JP2547288 A JP 2547288A JP H01200235 A JPH01200235 A JP H01200235A
Authority
JP
Japan
Prior art keywords
mnba
nonlinear optical
crystal
waveguide
obtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2547288A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matagi
宏至 股木
Tetsuya Goto
哲哉 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2547288A priority Critical patent/JPH01200235A/en
Publication of JPH01200235A publication Critical patent/JPH01200235A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Abstract

PURPOSE:To obtain a high-performance waveguide type nonlinear optical element by using a crystal layer having the cleavage face of prescribed 4'- nitrobenzylideneaniline-3-acetoamino-4-methoxyaniline (MNBA). CONSTITUTION:The single crystal of the MNBA is obtd. by heating and dissolving the crystal powder of the MNBA expressed by the formula and cooling the soln. down to room temp. then evaporating the same slowly at room temp. A smooth thin sheet having a large area is obtd. without depending upon the difference in conditions for crystallization when such single crystal is cloven at the (100) face. The contact surface of the thin single crystal sheet 1 of the MNBA is swellen with higher alcohol such as isopropyl alcohol having slight solubility in the MNBA and is brought into pressurized contact the top of soda glass 2 or the like having a low refractive index. The crystal orientation is so selected as to draw out the large nonlinear optical effect inherent to the MNBA to the max. possible extent and the waveguide element having good characteristics is obtd. without requiring special processing techniques according to such constitution.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は非線形光学素子、詳しくは、非線形光学材料と
して4′−二トロペンジリデンアニリン−3−アセトア
ミノ−4−メトキシアニリン(以下MNBAと略す)を
用いた導波路形の非線形光学素子に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a nonlinear optical element, and more particularly, to a nonlinear optical material that uses 4'-nitropenzylideneaniline-3-acetamino-4-methoxyaniline (hereinafter abbreviated as MNBA). ) is related to a waveguide-type nonlinear optical element using.

[従来の技術] 非線形光学効果を応用した素子として、第2高調波発生
(以下SHGと略す)によってレーザ光の波長を172
に変換するSHG素子や、パラメトリック発振によって
レーザ光の波長を連続的に変換するパラメトリック発振
器、などの波長変換素子、電気光学効果を用いた光スィ
ッチや光変調素子、光双安定素子などが提案されてきた
[Prior art] As an element that applies nonlinear optical effects, the wavelength of laser light is increased to 172 by second harmonic generation (hereinafter abbreviated as SHG).
Wavelength conversion devices such as SHG devices that convert laser light into wavelengths, parametric oscillators that continuously convert the wavelength of laser light through parametric oscillation, optical switches and optical modulation devices that use electro-optic effects, and optical bistable devices have been proposed. It's here.

非線形光学効果の大きさは、非線形光学材料の非線形光
学定数の大きさだけでなく、レーザ光のパワー密度が高
いほど大きくなるので、従来がら、これらの素子を導波
路形にしてレーザ光を狭い領域に閉じこめてパワー密度
を高めることが試みられてきた。さらに、バルクな結晶
中では位相不整合であるため、効率良く非線形光学効果
を発現できないような材料でも、導波路構造にすれば位
相整合可能になることも良く知られており(伊東ら、電
子通信学会論文誌、’ 87/2、VOl 、 J70
−C,224頁)、導波路形の非線形光学素子の実現が
広く模索されている。このような試みの結果として、L
iNbO3の平板中に導波路を形成してSHG索子とし
た例が良く知られている(特開昭60−57825号公
報、同60−11202号公報など〉。
The size of the nonlinear optical effect depends not only on the size of the nonlinear optical constant of the nonlinear optical material, but also as the power density of the laser beam increases. Attempts have been made to increase the power density by confining it within a region. Furthermore, it is well known that even materials that cannot efficiently produce nonlinear optical effects due to phase mismatching in bulk crystals can be made phase-matched by creating a waveguide structure (Ito et al., Journal of the Communication Society, '87/2, VOl, J70
-C, p. 224), the realization of waveguide-type nonlinear optical elements is being widely sought. As a result of such attempts, L
It is well known that a waveguide is formed in a flat plate of iNbO3 to form an SHG cable (JP-A-60-57825, JP-A-60-11202, etc.).

一方、非線形光学効果が大きな材料として、2−メチル
−4−ニトロアニリン、N−(4−ニトロフェニル)−
(L)−プロリノール、などの有機材料が良く知られて
おり、これらの有機材料を用いた導波井形非線形光学素
子の実現も試みられている(D、 J、 Willia
ms編;  rNOnlinearOptical P
roperties of Organic and 
PolymericMaterials J  (AC
3symposium 5iries No、233 
))。
On the other hand, 2-methyl-4-nitroaniline, N-(4-nitrophenyl)-
Organic materials such as (L)-prolinol are well known, and attempts have been made to realize waveguide-shaped nonlinear optical elements using these organic materials (D, J, William
ms edition; rNOnlinear Optical P
properties of organic and
Polymeric Materials J (AC
3symposium 5iries No, 233
)).

また、非線形光学効果を有する結晶を導波路層として用
いる導波路形の非線形光学素子の構成として、第4図に
示すように(第4図中、2は透明平板、11は非線形光
学材料の導波路層を示す。)非線形光学材料そのものが
導波路層として機能する方式(特開昭60−57825
号公報、同60−112023号公報など)と、第5図
に示すように(第5図中、12は装荷層、7は導波路層
を示す。)、非線形光学効果を有していない通常の導波
路の上にトップ層として非線形光学材料が装荷され、通
常の導波路を導波してきた光が一旦非線形光学材料(装
荷層)に移って導波した後再び通常の導波路に戻るとい
う構成(H,ItOh、ら: Applied 0pt
ics、 VOl、25.1491頁(198B) )
の2つの方式が良く知られている。
In addition, as a configuration of a waveguide-type nonlinear optical element using a crystal having a nonlinear optical effect as a waveguide layer, as shown in FIG. ) A method in which the nonlinear optical material itself functions as a waveguide layer (Japanese Patent Laid-Open No. 60-57825
As shown in FIG. 5 (in FIG. 5, 12 is a loaded layer and 7 is a waveguide layer), there are ordinary A nonlinear optical material is loaded as a top layer on top of the waveguide, and the light that has been guided through the normal waveguide is transferred to the nonlinear optical material (loaded layer) and guided, and then returns to the normal waveguide. Configuration (H, ItOh, et al: Applied 0pt
ics, VOl, 25.1491 pages (198B))
Two methods are well known.

[発明が解決しようとする課題] しかしながら、かかる従来の技術においては、次のよう
な欠点があった。
[Problems to be Solved by the Invention] However, such conventional technology has the following drawbacks.

■ 有機材料は非線形光学効果が無機材料に比べて桁ち
がいに大きいものが多く見出だされているのにもかかわ
らず、導波路化するために必要な大きなサイズの結晶が
得にくい。
■ Despite the fact that many organic materials have been found to have an order of magnitude greater nonlinear optical effect than inorganic materials, it is difficult to obtain the large-sized crystals needed to form waveguides.

■ 第4図、第5図に示すいずれの方式においても、非
線形光学結晶が接する面は波長以下の精度で平滑でない
と、散乱による導波損失が大きくなって効率の良い非線
形光学効果を発現できない。
■ In both of the systems shown in Figures 4 and 5, if the surface in contact with the nonlinear optical crystal is not smooth with an accuracy below the wavelength, the waveguide loss due to scattering will increase and an efficient nonlinear optical effect cannot be achieved. .

しかし、一般に有機結晶には脆いものが多く、研磨など
の加工が困難であるという問題点があった。
However, there is a problem in that many organic crystals are generally brittle and processing such as polishing is difficult.

さらに、導波路として満足できる非線形結晶膜を得ても
、最大の非線形光学効果を有効に利用するためには結晶
の方位を選ばなければならない。言いかえれば、結晶が
持っている非線形光学効果を有効にひきだすことができ
るように結晶面を選んで加工しなければならないが、こ
のような結晶面制御が困難である( S、Tomaru
、ら;0ptics Communication、v
ol、 50.151頁、(1984) )。
Furthermore, even if a nonlinear crystal film that is satisfactory as a waveguide is obtained, the orientation of the crystal must be selected in order to effectively utilize the maximum nonlinear optical effect. In other words, the crystal plane must be selected and processed in such a way that the nonlinear optical effect of the crystal can be effectively brought out, but such crystal plane control is difficult (S, Tomaru
, et al;0ptics Communication, v
ol, p. 50.151, (1984)).

本発明の課題は、非線形光学効果が大きく、結晶化が容
易で、かつ加工性にすぐれた有機材料を用い、特にその
材料の非線形光学効果を最大に発現させるように加工し
た導波路形の非線形光学素子を提供することである。
The object of the present invention is to create a waveguide-shaped nonlinear waveguide that uses an organic material that has a large nonlinear optical effect, is easy to crystallize, and has excellent processability, and is particularly processed to maximize the nonlinear optical effect of the material. An object of the present invention is to provide an optical element.

[課題を解決するための手段] 上記目的を達成するために、本発明は、下記の構成か為
なる。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration.

「非線形光学効果を有する結晶層と、該結晶層に接し、
かつ該結晶層よりも屈折率が低い透明基板層とを有する
導波井形非線形光学素子において、非線形光学効果を有
する結晶層が、(■)式で表される4′−二トロペンジ
リデンアニリン−3−アセトアミノ−4−メトキシアニ
リンのへき開面を有する結晶であることを特徴とする導
波井形非線形光学素子。
"A crystal layer having a nonlinear optical effect, in contact with the crystal layer,
and a transparent substrate layer having a refractive index lower than that of the crystal layer, in which the crystal layer having a nonlinear optical effect is composed of 4'-nitropenzylideneaniline- expressed by the formula (■). A waveguide-shaped nonlinear optical element characterized by being a crystal having a cleavage plane of 3-acetamino-4-methoxyaniline.

」 すなわち、本発明は、非線形光学素子として八1NBA
を用い、かつ、そのへき開面を利用することを特徴とす
る導波路形の非線形光学素子を提案している。
” That is, the present invention uses 81NBA as a nonlinear optical element.
We have proposed a waveguide-type nonlinear optical element that uses the cleavage plane of the waveguide.

本発明にかかわるMNBA結晶は、結晶解析の結果から
、単斜晶系(空間群CC)に属すことがわかった。また
、分子の配向から、非線形光学効果は、a軸およびa軸
を含む面内で、a軸から約30度傾いた方向で最大にな
ることがわかった。
The MNBA crystal according to the present invention was found to belong to the monoclinic system (space group CC) from the results of crystal analysis. Furthermore, it was found from the orientation of molecules that the nonlinear optical effect is maximum in the a-axis and a direction tilted by about 30 degrees from the a-axis within a plane including the a-axis.

MNBA結晶を、乳鉢ですりつぶし、ふるいを通して粒
径が15〜150μmの範囲で分類したのち、非線形光
学効果の性能の測定法として良く知られている「粉末法
J  (S、 K、 KUrtZら、JOIJrnal
 of Applied Physics、 vol、
39,3798. (1968)) ニ従って、YAG
レーザ光を用いてS i(G光強度を測定し、一般に標
準試料として用いられているウレアと比較したところ、
第3図に示すような結果を得な。第3図中、9はウレア
の測定曲線、10はMNBAの測定曲線を示す。この結
果から、MNBAが非常に大きな非線形光学効果を示す
ものの、バルクな結晶では位相不整合であることがわか
った。
MNBA crystals were ground in a mortar, passed through a sieve, and classified into particles with a particle size in the range of 15 to 150 μm.
of Applied Physics, vol.
39,3798. (1968)) Therefore, YAG
When the Si(G light intensity was measured using a laser beam and compared with urea, which is generally used as a standard sample),
Obtain the results shown in Figure 3. In FIG. 3, reference numeral 9 indicates a measurement curve for urea, and reference numeral 10 indicates a measurement curve for MNBA. From this result, it was found that although MNBA exhibits a very large nonlinear optical effect, there is a phase mismatch in the bulk crystal.

MNBA結晶は、溶液からの結晶化法、融液からの結晶
化法など、よく知られている結晶化法によって大きな結
晶が容易に得られる。しかし、結晶化溶液の種類などの
結晶化条件を変えると、結晶方位によって成長速度が異
なり、得られる結晶の形状が異なってくる。しかも、従
来の結晶加工法によって切断研磨しても、結晶が脆いた
めに導波路化するための面出しが困難であった。
Large crystals of MNBA can be easily obtained by well-known crystallization methods such as crystallization from a solution and crystallization from a melt. However, if the crystallization conditions such as the type of crystallization solution are changed, the growth rate will vary depending on the crystal orientation, and the shape of the resulting crystal will differ. Furthermore, even if the crystal is cut and polished using conventional crystal processing methods, it is difficult to surface the crystal to form a waveguide because the crystal is brittle.

しかし、結晶加工法および導波路化法を鋭意検討した結
果、以下のことを見出だしな。すなわち■結晶化条件の
違いによる結晶形状の違いに依存せずに、(100)面
で大面積かつ平滑なへき開面が得られる。
However, as a result of intensive study of crystal processing methods and waveguide formation methods, we discovered the following. That is, (1) a smooth cleavage plane with a large area can be obtained on the (100) plane without depending on differences in crystal shape due to differences in crystallization conditions.

■へき開面の平滑性を利用することにより、高度な切断
や研磨の技術を要せずに、導波路化することが可能にな
る。
■By utilizing the smoothness of the cleavage plane, it becomes possible to create a waveguide without requiring sophisticated cutting or polishing techniques.

■(100)面を導波路界面に選んで、この面に垂直な
偏光(TM波)を導波させれば、非線形光学効果が最大
になる方向から約30度傾いた成分の効果、つまり最大
値の約87%の効果をひき出すことができる。
■ If the (100) plane is selected as the waveguide interface and polarized light (TM wave) perpendicular to this plane is guided, the effect of the component tilted approximately 30 degrees from the direction where the nonlinear optical effect is maximum, that is, the maximum It is possible to extract an effect of about 87% of the value.

本発明の非線形光学素子を実現するためには、(1)M
NBA結晶を、それよりも屈折率が低い透明平板上に密
着させ、MNBAを導波路層として用いる方法(第4図
に対応する)、あるいは、(2)ともに非線形光学特性
を持たない屈折率の異なる2層の透明材料より構成され
る導波路を作製してのち、MNBA結晶のへき開面を該
導波路上に密着させる方法(第5図に対応する)のいず
れの方法も可能である。(1)の方法による場合、M 
N B Aよりも屈折率が低い透明平板としては、ソー
ダガラス、パイレックスガラスなどの低屈折率ガ゛ラス
や、ポリカーホ゛ネーI・、ポリメチルメタクリレート
などの透明プラスチックが好ましいが、屈折率がMNB
Aよりも低ければこれらに限定されるものではない。ま
た、M N B Aを透明平板に密着させる方法として
は、イソプロピルアルコール、ローブチルアルコールな
どのようにMNBAに対してわずかに溶解性がある高級
アルコールを用いて密着面を湿潤させなのちMNBAと
透明平板とを圧着させる方法が好ましいが、速乾性の接
着剤を用いることなども可能である。(2)の方法で非
線形光学素子を作製する場合は、ともに非線形光学特性
を持なない屈折率の異なる2層の透明材料より構成され
る導波路をあらかじめ作製しておく必要がある。このよ
うな導波路の作製方法としては、ガラス板上に該ガラス
板よりも屈折率が高いポリマやそのようなポリマを母体
とする混合組成物をコーティングする方法、ガラス板上
に該ガラス板よりも屈折率が高いガラス材をスパッタリ
ングによって蒸着する方法、などのほが多くの作製方法
が知られていて、どの方法によって作製したものでも本
発明に適用できる。しかし、好ましくは、透明性や膜質
の点からポリマやガラスを導波路とする方法が良い。ま
た、MNBA結晶をこれらの導波路に密着させる方法と
しては、(1)の方法で述べたと同様の方法で実施する
ことが可能である。 本発明で得られる導波井形素子は
、SHG素子、パラメトリック発振器などの波長変換素
子、電気光学効果を用いた光スィッチや光変調素子、あ
るいは光双安定素子などの非線形光学素子として用いる
ことが可能である。
In order to realize the nonlinear optical element of the present invention, (1) M
A method in which an NBA crystal is closely attached to a transparent flat plate with a lower refractive index and MNBA is used as a waveguide layer (corresponding to Fig. 4), or (2) a method with a refractive index that does not have nonlinear optical properties. Any method (corresponding to FIG. 5) is possible, in which a waveguide composed of two different layers of transparent materials is fabricated, and then the cleavage plane of the MNBA crystal is brought into close contact with the waveguide (corresponding to FIG. 5). In the case of method (1), M
As a transparent flat plate with a refractive index lower than NBA, low refractive index glasses such as soda glass and Pyrex glass, and transparent plastics such as polycarbonate I and polymethyl methacrylate are preferable.
As long as it is lower than A, it is not limited to these. In addition, as a method for adhering MNBA to a transparent flat plate, the adhesion surface is moistened using a higher alcohol that is slightly soluble in MNBA, such as isopropyl alcohol or lobethyl alcohol, and then the MNBA and MNBA are bonded together. It is preferable to press the transparent flat plate, but it is also possible to use a quick-drying adhesive. When manufacturing a nonlinear optical element using the method (2), it is necessary to prepare in advance a waveguide made of two layers of transparent materials with different refractive indexes, both of which do not have nonlinear optical properties. Methods for producing such waveguides include coating a glass plate with a polymer having a higher refractive index than the glass plate or a mixed composition using such a polymer as a matrix; Many manufacturing methods are known, such as a method of vapor depositing a glass material with a high refractive index by sputtering, and any method of manufacturing can be applied to the present invention. However, from the viewpoint of transparency and film quality, it is preferable to use polymer or glass as the waveguide. Further, as a method for bringing the MNBA crystal into close contact with these waveguides, it is possible to carry out the same method as described in method (1). The waveguide rectangular element obtained by the present invention can be used as a nonlinear optical element such as an SHG element, a wavelength conversion element such as a parametric oscillator, an optical switch or optical modulation element using the electro-optic effect, or an optical bistable element. It is.

[実施例] 次に、本発明を実施例によってさらに具体的に説明する
が、本発明は、これらの実施例に限定されるものではな
い。
[Examples] Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 MNBA粉末5gを400 m lのアセトン中で熱時
溶解し、放置して室温まで冷却した後、25℃の温度に
保ちながらアセトンをゆっくりと蒸発させた。こうして
1ケ月間静置したところ、すべてのアセトンが蒸発し、
最大I CmX 5mmx 600μmのMNBA結晶
が得られた。偏光顕微跳上で観測したところ、この結晶
は単結晶であることかわかった。また、X線結晶解析に
よって、最大の面が(100)面であることがわかった
。次に、この結晶を(100)面でへき開し、良好な平
滑面を有する厚さ400μmの平板を得た。
Example 1 5 g of MNBA powder was dissolved hot in 400 ml of acetone, allowed to cool to room temperature, and then the acetone was slowly evaporated while maintaining the temperature at 25°C. After leaving it for a month, all the acetone evaporated.
MNBA crystals with maximum I CmX 5 mm x 600 μm were obtained. Observation using a polarized light microscope revealed that this crystal was a single crystal. Furthermore, X-ray crystal analysis revealed that the largest plane was the (100) plane. Next, this crystal was cleaved along the (100) plane to obtain a flat plate with a thickness of 400 μm and a good smooth surface.

次いで、ポリカーボネート板上にインプロピルアルコー
ルを数滴たらして先のMNBA板を圧着した。これを5
0°Cで3時間乾燥させて良好に密着された試料を得た
。さらに、ワイヤーソーて切断して、面サイズ3mmX
5mmにしたのち、MNBAを(100)面でへき開し
て膜厚を薄くした。
Next, several drops of inpropyl alcohol were poured onto the polycarbonate plate, and the previous MNBA plate was crimped onto the polycarbonate plate. This is 5
A well-adhered sample was obtained by drying at 0°C for 3 hours. Furthermore, cut it with a wire saw to a surface size of 3mm
After reducing the thickness to 5 mm, the MNBA was cleaved along the (100) plane to reduce the film thickness.

そして、密着させたMNBAをさらにへき開して膜厚を
約50μmにした後、アルゴンプラズマを用いたイオン
ビームエツチングによってMNBA結晶の膜厚が5μm
である第4図の形の導波井形素子を得た。結晶の平滑性
はイオンビームエツチングの前後で変化はなかった。
After further cleaving the closely adhered MNBA to a film thickness of approximately 50 μm, ion beam etching using argon plasma was performed to reduce the film thickness of the MNBA crystal to 5 μm.
A waveguide rectangular element having the shape shown in FIG. 4 was obtained. The smoothness of the crystal did not change before and after ion beam etching.

この導波井形素子(・二尖頭出力]、kWのパルス状Y
AGレーザ光を酸化チタンのプリズムによって導波路内
に結合して導波させたところ、第1図のようにチェレン
コフ位相整合によって発生したSMC光を観測した。第
1図中、1はMNBAの導波路層、3はプリズム、4は
YAGレーザ光、5はS HG光を示す。最大のSHG
変換効率は7×10−2%だった。
This waveguide well-shaped element (bi-peak output), kW pulse-shaped Y
When AG laser light was coupled into a waveguide using a titanium oxide prism and guided, SMC light generated by Cerenkov phase matching was observed as shown in FIG. In FIG. 1, 1 is an MNBA waveguide layer, 3 is a prism, 4 is a YAG laser beam, and 5 is an SHG light. largest SHG
Conversion efficiency was 7x10-2%.

実施例2 ポリメチルメタクリレ−+−(60重量部)、ペンシル
メタクリレート(25重量部)、メチルメタクリレート
(14重量部)、ヘンシルジメチルケタールく1−重量
部)を塩化メチレン中で溶解した溶液を、デイツプ法に
よってパイレックスカラス板上に塗布しテーパ状の膜厚
勾配を有する塗膜を得た。さらに、この塗膜を乾燥させ
たのち、真空下で超高圧水銀燈で3分間露光して、非線
形光学特性を持たない膜厚1.3μmの光重合組成膜を
有するガラス板を得た。
Example 2 A solution of polymethyl methacrylate (60 parts by weight), pencil methacrylate (25 parts by weight), methyl methacrylate (14 parts by weight), and 1 part by weight of hensyl dimethyl ketal in methylene chloride. was applied onto a Pyrex glass plate by the dip method to obtain a coating film with a tapered thickness gradient. Furthermore, after drying this coating film, it was exposed for 3 minutes with an ultra-high pressure mercury lamp under vacuum to obtain a glass plate having a photopolymerized composition film having a thickness of 1.3 μm and having no nonlinear optical properties.

次に、実施例1と同様の方法で得たMN13Aを<10
0)面でへき開し、厚さ約200μmとしタモのを、そ
のへき開面にイソプロピルアルコールを数滴たらして湿
潤させてのち、先に述べた光重合組成膜にはりつけて乾
燥し、第5図の形の導波路素子を得た。
Next, MN13A obtained in the same manner as in Example 1 was
After moistening the ash with a few drops of isopropyl alcohol on the cleaved surface to a thickness of about 200 μm, it was attached to the photopolymerizable composition film mentioned above and dried, as shown in Figure 5. A waveguide element of the form was obtained.

この導波井形素子に尖頭出力1kWのパルス状YAGレ
ーザ光を酸化チタンのプリズムによって結合し、第2図
に示したように導波路素子をレーザ光の入射方向に対し
て垂直方向(導波路のテーパ方向)に移動してレーザ光
が見る導波路膜JQを連続的に変化させて位相整合を試
みたところ、最も良好な位置でS HG変換効率が6X
IO−3%のSMC光を観測した。第2図中、6は、M
NBA装荷膜、8は導波路のテーパ方向を示す。
A pulsed YAG laser beam with a peak output of 1 kW is coupled to this waveguide element using a titanium oxide prism, and the waveguide element is connected in a direction perpendicular to the incident direction of the laser beam (waveguide When we attempted phase matching by moving the waveguide film JQ seen by the laser beam in the tapered direction), we found that the SHG conversion efficiency was 6X at the best position.
SMC light of IO-3% was observed. In Figure 2, 6 is M
NBA loaded film, 8 indicates the taper direction of the waveguide.

[発明の効果] 本発明によれば、MNI3Aが有している大きな非線形
光学効果を最大限ひきだすように結晶の方位を選び、か
つ、特殊な加工技術を要せずに良好な導波路素子を作製
することができる。
[Effects of the Invention] According to the present invention, the orientation of the crystal is selected to maximize the large nonlinear optical effect that MNI3A has, and a good waveguide element can be manufactured without requiring special processing technology. It can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施例1の導波井形素子およびSMC
光を示す。 第2図は、本発明実施例2の導波井形素子およびSMC
光を示す。 第3図は、MNBAとウレアとを粉末法で測定した結果
を示す。 第4図は、導波井形非線形光学素子の構成を示す。 第5図は、導波井形非線形光学素子の構成を示す。 1:MNBAの導波路層 2:透明平板 3ニブリズム
 4 : YAGレーザ光 5:5I−IG光6:MN
BA装荷膜 7:導波路層 8:導波路のテーパ方向 
9:ウレアの測定値曲線 10:MNBAの測定値曲線
 11:非線形光学材料の導波路層 12:非線形光学
材料の装荷膜特許出願人  東 し 株 式 会 社弔
 1 図 第2 図 !:石晶材釆彷ヂ曇  (7βmン 第3図 vSヰ図        ・)5図
FIG. 1 shows a waveguide rectangular element and an SMC of Example 1 of the present invention.
Show light. FIG. 2 shows a waveguide rectangular element and an SMC according to Example 2 of the present invention.
Show light. FIG. 3 shows the results of measuring MNBA and urea using a powder method. FIG. 4 shows the configuration of a waveguide rectangular nonlinear optical element. FIG. 5 shows the configuration of a waveguide rectangular nonlinear optical element. 1: MNBA waveguide layer 2: Transparent flat plate 3 Nibrism 4: YAG laser light 5: 5I-IG light 6: MN
BA loaded film 7: Waveguide layer 8: Waveguide taper direction
9: Measured value curve of urea 10: Measured value curve of MNBA 11: Waveguide layer of nonlinear optical material 12: Loaded film of nonlinear optical material Patent applicant Toshi Co., Ltd. 1 Figure 2! : Quartz crystal material (7βm Fig. 3 vs. Fig. ・) Fig. 5

Claims (1)

【特許請求の範囲】[Claims] (1)非線形光学効果を有する結晶層と、該結晶層に接
し、かつ該結晶層よりも屈折率が低い透明基板層とを有
する導波路形非線形光学素子において、非線形光学効果
を有する結晶層が、( I )式で表される4′−ニトロ
ベンジリデンアニリン−3−アセトアミノ−4−メトキ
シアニリンのへき開面を有する結晶であることを特徴と
する導波路形非線形光学素子。 ▲数式、化学式、表等があります▼( I )
(1) In a waveguide type nonlinear optical element having a crystal layer having a nonlinear optical effect and a transparent substrate layer in contact with the crystal layer and having a lower refractive index than the crystal layer, the crystal layer having the nonlinear optical effect is , (I) A waveguide type nonlinear optical element characterized in that it is a crystal having a cleavage plane of 4'-nitrobenzylideneaniline-3-acetamino-4-methoxyaniline represented by formula (I). ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I)
JP2547288A 1988-02-04 1988-02-04 Nonlinear optical element Pending JPH01200235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2547288A JPH01200235A (en) 1988-02-04 1988-02-04 Nonlinear optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2547288A JPH01200235A (en) 1988-02-04 1988-02-04 Nonlinear optical element

Publications (1)

Publication Number Publication Date
JPH01200235A true JPH01200235A (en) 1989-08-11

Family

ID=12166981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2547288A Pending JPH01200235A (en) 1988-02-04 1988-02-04 Nonlinear optical element

Country Status (1)

Country Link
JP (1) JPH01200235A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991000544A1 (en) * 1989-06-28 1991-01-10 Toray Industries, Inc. Quadratic nonlinear optical element
WO1991016658A1 (en) * 1990-04-13 1991-10-31 Toray Industries, Inc. Laminated organic nonlinear optical crystal and production thereof
JPH03294827A (en) * 1990-04-13 1991-12-26 Toray Ind Inc Lamination type organic nonlinear optical crystal body and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991000544A1 (en) * 1989-06-28 1991-01-10 Toray Industries, Inc. Quadratic nonlinear optical element
WO1991016658A1 (en) * 1990-04-13 1991-10-31 Toray Industries, Inc. Laminated organic nonlinear optical crystal and production thereof
JPH03294827A (en) * 1990-04-13 1991-12-26 Toray Ind Inc Lamination type organic nonlinear optical crystal body and production thereof

Similar Documents

Publication Publication Date Title
Ilchenko et al. Nonlinear optics and crystalline whispering gallery mode cavities
Komatsu et al. Growth and ultraviolet application of Li 2 B 4 O 7 crystals: Generation of the fourth and fifth harmonics of Nd: Y 3 Al 5 O 12 lasers
Sneh et al. High-speed continuously tunable liquid crystal filter for WDM networks
US5355247A (en) Method using a monolithic crystalline material for producing radiation by quasi-phase-matching, diffusion bonded monolithic crystalline material for quasi-phase-matching, and method for fabricating same
JP5083865B2 (en) Optical waveguide substrate and harmonic generation device
US4199698A (en) 2-Methyl-4-nitro-aniline nonlinear optical devices
CN107505736B (en) Electric light polarization rotator based on periodic polarized lithium niobate ridge waveguide structure
Pilipetski et al. The orientational mechanism of nonlinearity and the self-focusing of He-Ne laser radiation in nematic liquid crystal mesophase (theory and experiment)
Hewig et al. Frequency doubling in an organic waveguide
EP0576685B1 (en) Waveguide type light directional coupler
Nunomura et al. Second harmonic generation in a sputtered LiNbO3 film on MgO
US5343327A (en) RbNbB2 O6 crystal and its nonlinear optical devices
CN100439953C (en) Optical waveguide circuit device and its making process, relevant coherent light source and optical device
JPH01200235A (en) Nonlinear optical element
US3931595A (en) Optical waveguide modulator using single crystals of TlGaSe2 ORβTl2
Ito et al. Phase-matched guided, optical second-harmonic generation in nonlinear ZnS thin-film waveguide deposited on nonlinear LiNbO3 substrate
US5563730A (en) Thallium arsenic sulfide crystals (t13 AsS3) high efficiency nonlinear optical applications
CN114481321A (en) Electro-optic crystal potassium boroniobate and application thereof
JPH05313033A (en) Optical waveguide, manufacture thereof and optical element
Lundquist et al. Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications
JPS6038689B2 (en) Method for manufacturing waveguide electro-optic light modulator
JP2003131182A (en) Optical waveguide type optical element and method of manufacturing the same
JPH11326967A (en) Second harmonic generation element
WO1991016658A1 (en) Laminated organic nonlinear optical crystal and production thereof
JPH0266524A (en) Wavelength conversion element