JPH0356449A - 1-(4-methoxystyryl)-3-(4-nitrostyryl)benzene and production thereof - Google Patents

1-(4-methoxystyryl)-3-(4-nitrostyryl)benzene and production thereof

Info

Publication number
JPH0356449A
JPH0356449A JP1190259A JP19025989A JPH0356449A JP H0356449 A JPH0356449 A JP H0356449A JP 1190259 A JP1190259 A JP 1190259A JP 19025989 A JP19025989 A JP 19025989A JP H0356449 A JPH0356449 A JP H0356449A
Authority
JP
Japan
Prior art keywords
formula
compound
benzene
nitrostyryl
methoxystyryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1190259A
Other languages
Japanese (ja)
Other versions
JPH0729992B2 (en
Inventor
Takahiro Hidaka
敬浩 日高
Hiroyuki Nakatani
博之 中谷
Kazu Yamanaka
山中 計
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP1190259A priority Critical patent/JPH0729992B2/en
Publication of JPH0356449A publication Critical patent/JPH0356449A/en
Publication of JPH0729992B2 publication Critical patent/JPH0729992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

NEW MATERIAL:The compound of formula I. USE:Useful as a non-linear optical material, fluorescent brightener, laser dye, etc. It has various characteristics such as stability at room temperature, high crystalinity, SHG activity and transparency and short peak wavelength. PREPARATION:The compound of formula I can be produced by reacting P- nitrophenylacetic acid of formula II with isophthalaldehyde of formula III in a polar solvent (e.g. DMF or methanol) in the presence of a basic catalyst (e.g. pyridine or ammonium acetate) and reacting the resultant 3-[2-(4- nitrophenyl)ethenyl]-benzaldehyde of formula IV with p-methoxybenzyl triphenyl phosphonium halide of formula V in the presence of an organic base.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、新規な有機化合物である1−(4一メトキシ
スチリル)−3−(4−ニトロスチリル)ベンゼンとそ
の製造法に関する.本発明の新規化合物は、特に、非線
形光学材料として有用であり、また、蛍光増白剤、レー
ザー色素などの用途にも適用できる.
The present invention relates to a novel organic compound, 1-(4-methoxystyryl)-3-(4-nitrostyryl)benzene, and a method for producing the same. The novel compounds of the present invention are particularly useful as nonlinear optical materials, and can also be applied to applications such as fluorescent brighteners and laser dyes.

【従来の技術】[Conventional technology]

非線形光学材料は、レーザー光の周波数変換、増幅、発
振、スイッチングなどの現象を生じ、第2高調波発生(
S}IG)、第3高調波発生(THG)、高速度シャッ
ター、光メモリー、光演算素子などへの応用が可能であ
る.また、非線形光学材料は、電場によって屈折率が変
化する特質を生かした光スイッチなどへの応用が可能で
ある.従来、非線形光学材料として、KH.PO4、N
H4 H! PO4 , LiNbOa 、KNbO*
などの無機系の単結晶材料が知られているが、最近では
、尿素やp−ニトロアニリン、2−メチルー4−ニトロ
アニリン(MNA) 、4− (N,N−ジメチルアミ
ノ)−4′一二トロスチルベン(DANS) 、スチル
バゾリウム塩などの非線形光学有機材料の開発が進めら
れている. 非線形光学有機材料は、一般に、非線形性の起源が分子
内π電子であるため、光応答に対して格子振動を伴わず
、したがって無機材料に比べ応答が速く、また、非線形
光学定数が大きいものや吸収領域が変化できるものなど
を合成することが可能である.しかも、材料素子化の方
法も、単結晶化によるだけではなく、L B III 
,蒸着法、液晶化、高分子化などの各種の方法が考えら
れる.ところで、非線形光学材料には、次のような特性
を有することが求められる. (1)非線形光学効果のうち、特に第2高調波発生(S
HG)は、変換の効率が高い等の理由から波長変換の基
本技術として位置付けられておりSHG効率(尿素を1
とする)の高いことが求められる. (2)材料が光学的非線形性を示すには、空間反転の対
称性を持たないこと、特に、その結晶が対称中心を持た
ないことが求められる. (3)室温で安定でかつ出来るだけ大きな単結晶を形成
するものであることが望まれる。 (4)現在の半導体レーザーの波長は800nm程度で
あるので、極大波長(Lmax)やカットオフ波長(λ
cutoff)はできるだけ短波長領域にあることが実
用上好ましい. ところが、公知の非線形光学無機材料は、純度の高い単
結晶が高価であり、潮解性を有し、しかも一般にSHG
効率が小さいという欠点がある。 一方、非線形光学有機材料には、一MにSHG効率の大
きいものがあることは知られているが、室温で安定かつ
大きな結晶を調製するのが困難である.例えば、MNA
は高いSHG効率を有するけれども、大きな単結晶が得
られにくい。尿素は、大きな単結晶を得やすく、白色・
透明で、カットオフ波長も200nmと短波長であるけ
れども、耐湿性に劣るという欠点がある.また、スチル
ベン誘導体のDANSは、分子レベルでは2次の非線形
分極率βは非常に大きい値を示すが、結晶になると分子
の配列に反転対称を持つに至るため非線形光学効果を示
さない. このように、SHG効率が大きく、安定でかつ大きな単
結晶に成長させやすく、しかも透明性に優れた非線形光
学材料が求められているが、いまだ充分な性能を有する
材料は提供されていない.
Nonlinear optical materials produce phenomena such as frequency conversion, amplification, oscillation, and switching of laser light, and generate second harmonics (
Applications include S}IG), third harmonic generation (THG), high-speed shutters, optical memories, and optical arithmetic elements. In addition, nonlinear optical materials can be applied to optical switches that take advantage of the property that their refractive index changes depending on the electric field. Conventionally, KH. PO4, N
H4 H! PO4, LiNbOa, KNbO*
Inorganic single crystal materials such as urea, p-nitroaniline, 2-methyl-4-nitroaniline (MNA), 4-(N,N-dimethylamino)-4'- Development of nonlinear optical organic materials such as nitrostilbene (DANS) and stilbazolium salts is progressing. Nonlinear optical organic materials generally have nonlinearity originating from intramolecular π electrons, so they do not involve lattice vibration in response to light, and therefore have faster response than inorganic materials, and they also have large nonlinear optical constants. It is possible to synthesize materials whose absorption region can be changed. Furthermore, the method of making materials into devices is not limited to single crystallization;
Various methods can be considered, such as , vapor deposition, liquid crystallization, and polymerization. By the way, nonlinear optical materials are required to have the following properties. (1) Among nonlinear optical effects, especially second harmonic generation (S
HG) is positioned as a basic technology for wavelength conversion due to its high conversion efficiency, and SHG efficiency (1
) is required to be high. (2) For a material to exhibit optical nonlinearity, it must not have spatial inversion symmetry, and in particular, its crystal must not have a center of symmetry. (3) It is desired that the material be stable at room temperature and form a single crystal as large as possible. (4) The wavelength of current semiconductor lasers is about 800 nm, so the maximum wavelength (Lmax) and cutoff wavelength (λ
It is practically preferable that the wavelength (cutoff) be in the short wavelength region as much as possible. However, known nonlinear optical inorganic materials are expensive to produce single crystals with high purity, have deliquescent properties, and are generally SHG-based.
It has the disadvantage of low efficiency. On the other hand, it is known that some nonlinear optical organic materials have high SHG efficiency at 1M, but it is difficult to prepare stable and large crystals at room temperature. For example, MNA
Although it has high SHG efficiency, it is difficult to obtain large single crystals. Urea is easy to obtain large single crystals and has a white color.
Although it is transparent and has a short cutoff wavelength of 200 nm, it has the disadvantage of poor moisture resistance. In addition, DANS, a stilbene derivative, exhibits a very large second-order nonlinear polarizability β at the molecular level, but when crystallized, it exhibits no nonlinear optical effect because the molecular arrangement has inversion symmetry. Thus, there is a need for nonlinear optical materials that have high SHG efficiency, are stable, are easy to grow into large single crystals, and have excellent transparency, but materials with sufficient performance have not yet been provided.

【発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、新規な有機化合物を提供することにあ
る. また、本発明の目的は、非線形光学効果を有する新規な
有機化合物を提供することにある.さらに、本発明の目
的は、前記従来技術の有する問題点を克服し、室温で安
定で、対称中心を持たない単結晶を形成し、必要に応じ
て大きな単結晶に成長させることができ、SHG活性が
大きく、しかも透明性に優れた非線形光学材料を提供す
ることにある. 本発明者らは鋭意研究した結果、新規な有機化合物であ
る1−(4−メトキシスチリル)−3−(4−ニトロス
チリル)ベンゼンが安定かつ結晶性の良い化合物であり
、モしてSHG活性の大きな透明の有機結晶を形成し、
んmaxも330nmと短波長領域にあることを見出し
た。 また、この化合物が、クネーフェナーゲル(Knoev
enagel)縮合とウィティヒ(wittig)反応
を連続的に組み合わせて行なうことにより、合成できる
ことを見出した。 この化合物は、非線形光学材料として有用であるが、そ
れ以外にも、蛍光増白剤やレーザー色素などとして使用
可能性を有していることを見出した。 本発明は、これらの知見に基づいて完成するに至ったも
のである。 [課題を解決するための手段1 すなわち、本発明によれば、下記式[I]で表される1
−(4−メトキシスチリル)−3−(4−ニトロスチリ
ル)ベンゼンが提供される。 また、本発明によれば、p−ニトロフェニル酢酸とイソ
フタルアルデヒドとを縮合させて3−[2−(4−ニト
ロフェニル)エテニル]ベンズアルデヒドを合成し、次
いで、該3−(2−(4−ニトロフェニル)エテニル]
ペン.ズアルデヒドとp−メトキシベンジルトリフエニ
ルホスホニウムハライドとを塩基の存在下で反応させる
ことを特徴とする1−(4−メトキシスチリル)−3−
(4−ニトロスチリル)ベンゼンの製造法が提供される
。 この化合物は、特に、非線形光学材料として好適に使用
することができる. 以下、本発明の構成要素について詳述する。 [1−(4−メトキシスチリル)−3− (4−ニトロ
スチリル)ベンゼン】 本発明の1−(4−メトキシスチリル)−3−(4−ニ
トロスチリル)ベンゼンは、新規な化学物質である. 本発明の化合物は、その結晶が対称中心をたないため、
優れた非線形光学効果を示し、微結晶粉末のSHG効率
は尿素と同程度である.また、本発明の化合物のλa+
axは3 3 0 nm% Lcutoffは446n
mと比較的短波長領域にある.本発明の化合物は、側鎖
にメトキシ基またはニトロ基が結合した2つのスチリル
基がπ電子共役鎖の中心であるベンゼンのメタ位に結合
した構造を有する.このような構造を有することにより
、結晶の対称性が崩れると同時に、メトキシ基とニトロ
基による分極のため、SHG活性が発現したものと推定
される. 本発明の化合物は、その結晶が室温で安定であり、耐光
損傷性に優れているとともに、尿素と同様白色透明性に
も優れている.そして、その化学構造から明らかなよう
に、蛍光一白剤あるいは蛍光性を利用したレーザー色素
などの用途にも好適である。 また、本発明の1−(4−メトキシスチリル)−3−(
4−ニトロスチリル)ベンゼンは、結晶性がよくスロー
エバボレーション法などによって室温において安定な単
結晶を得ることができる。 (製造法) これまで、一般式[II] ([1 で表わされる1.4−ジスチリルベンゼン誘導体の製造
法は知られている(CAMPBELL AND McD
ONALDJ. Org. Chm. , 24. 1
246 (1959))。この合或法では、ビスホスホ
ニウム塩またはテレフタルアルデヒドを出発原料として
、一段階でジスチリルベンゼン誘導体を得ている。 しかしながら、この公知の方法では、それぞれのスチリ
ル基に異なる官能基を導入することはできない. そこで、本発明者らは、この種の非対称ジスチリルベン
ゼン誘導体を合成するために鋭意研究を重ねた結果、ク
ネーフェナーゲル(Knoevenagel)縮合とウ
ィティヒ(Wittig)反応を連続的に組み合わせて
行なうことにより、前記式[I]で表わされる化合物な
合或できることを見出した。 すなわち、本発明では、先ず、p−ニトロフェニル酢酸
とイソフタルアルデヒドの縮合反応によQ、3− [2
− (4−ニトロフェニル)エテニル]ベンズアルデヒ
ドを合成する(Knoevenagel縮合). この縮合反応は、例えば、塩基であるビペリジン、アル
キルアミン、酢酸アンモニウム等を触媒として、ジメチ
ルホルムアミド(DMF) 、メタノール、 酢酸などの極性溶媒中で行なう。 次いで、上記で得られた3− [2− (4−ニトロフ
ェニル)エテニル]ベンズアルデヒドとpーメトキシベ
ンジルトリフエニルホスホニウムハライドとを有機塩基
の存在下で反応させることにより目的とする化合物1−
(4−メトキシスチリル)−3− (4−ニトロスチリ
ル)ベンゼンを製造する(Wittig反応)。 p−メトキシベンジルトリフエニルホスホニウムハライ
ドとしては、p−メトキシベンジルトリフェニルホスホ
ニウムクロリドやp−メトキシベンジルトリフエニルホ
スホニウムブロミドなどを挙げることができる。 (以下余白) この反応は、溶媒として、例えば、DMF、メタノール
、エタノールなどの有機溶媒を使用し、塩基性条件下で
行なわれる。塩基としては、例えば、ナトリウムメトキ
シド、ナトリウムエトキシド、リチウムメトキシド、フ
ェニルリチウム、ナトリウムアミド、水酸化カリウム、
水酸化ナトリウム、ブチルリチウムなどを用い、反応温
度は、通常、20〜80℃の範囲で行なう。
An object of the present invention is to provide a novel organic compound. Another object of the present invention is to provide a novel organic compound having a nonlinear optical effect. Furthermore, it is an object of the present invention to overcome the problems of the prior art, to form a single crystal that is stable at room temperature, has no center of symmetry, and can be grown into a large single crystal if necessary, and to The objective is to provide a nonlinear optical material with high activity and excellent transparency. As a result of intensive research, the present inventors found that 1-(4-methoxystyryl)-3-(4-nitrostyryl)benzene, a new organic compound, is a stable and crystalline compound, and has a high SHG activity. form large transparent organic crystals of
It was also found that the maximum wavelength was 330 nm, which was in the short wavelength region. This compound is also known as Knoevenagel (Knoev).
It has been found that synthesis can be carried out by sequentially performing a combination of enagel condensation and Wittig reaction. It has been discovered that this compound is useful as a nonlinear optical material, but also has the potential to be used as a fluorescent whitening agent, laser dye, etc. The present invention has been completed based on these findings. [Means for solving the problem 1 That is, according to the present invention, 1 represented by the following formula [I]
-(4-methoxystyryl)-3-(4-nitrostyryl)benzene is provided. Further, according to the present invention, p-nitrophenylacetic acid and isophthalaldehyde are condensed to synthesize 3-[2-(4-nitrophenyl)ethenyl]benzaldehyde, and then the 3-(2-(4- nitrophenyl)ethenyl]
pen. 1-(4-methoxystyryl)-3-, which is characterized by reacting zaldehyde and p-methoxybenzyltriphenylphosphonium halide in the presence of a base.
A method for producing (4-nitrostyryl)benzene is provided. This compound can be particularly suitably used as a nonlinear optical material. Hereinafter, the constituent elements of the present invention will be explained in detail. [1-(4-methoxystyryl)-3-(4-nitrostyryl)benzene] 1-(4-methoxystyryl)-3-(4-nitrostyryl)benzene of the present invention is a new chemical substance. Since the compound of the present invention has no center of symmetry,
It shows excellent nonlinear optical effects, and the SHG efficiency of microcrystalline powder is comparable to that of urea. Moreover, λa+ of the compound of the present invention
ax is 330 nm% Lcutoff is 446n
m, which is in a relatively short wavelength region. The compound of the present invention has a structure in which two styryl groups each having a methoxy group or a nitro group bonded to the side chain are bonded to the meta position of benzene, which is the center of the π-electron conjugated chain. It is presumed that due to such a structure, the symmetry of the crystal is disrupted and, at the same time, SHG activity is expressed due to polarization due to the methoxy and nitro groups. The compound of the present invention has stable crystals at room temperature, excellent resistance to light damage, and, like urea, excellent white transparency. As is clear from its chemical structure, it is also suitable for applications such as fluorescence brightening agents and laser dyes that utilize fluorescence. In addition, 1-(4-methoxystyryl)-3-( of the present invention
4-nitrostyryl)benzene has good crystallinity, and a stable single crystal at room temperature can be obtained by slow evaporation or the like. (Production method) Until now, a method for producing a 1,4-distyrylbenzene derivative represented by the general formula [II] ([1) has been known (CAMPBELL AND McD
ONALDJ. Org. Chm. , 24. 1
246 (1959)). In this synthesis method, a distyrylbenzene derivative is obtained in one step using a bisphosphonium salt or terephthalaldehyde as a starting material. However, with this known method, it is not possible to introduce different functional groups into each styryl group. Therefore, as a result of extensive research in order to synthesize this type of asymmetric distyrylbenzene derivative, the present inventors succeeded in carrying out a continuous combination of Knoevenagel condensation and Wittig reaction. It was discovered that a compound represented by the above formula [I] can be synthesized. That is, in the present invention, first, Q, 3-[2
- Synthesizing (4-nitrophenyl)ethenyl]benzaldehyde (Knoevenagel condensation). This condensation reaction is carried out in a polar solvent such as dimethylformamide (DMF), methanol, or acetic acid using a base such as biperidine, an alkylamine, or ammonium acetate as a catalyst. Next, the target compound 1- is obtained by reacting the 3-[2-(4-nitrophenyl)ethenyl]benzaldehyde obtained above with p-methoxybenzyltriphenylphosphonium halide in the presence of an organic base.
(4-methoxystyryl)-3-(4-nitrostyryl)benzene is produced (Wittig reaction). Examples of the p-methoxybenzyltriphenylphosphonium halide include p-methoxybenzyltriphenylphosphonium chloride and p-methoxybenzyltriphenylphosphonium bromide. (Left below) This reaction is carried out under basic conditions using, for example, an organic solvent such as DMF, methanol, or ethanol as a solvent. Examples of the base include sodium methoxide, sodium ethoxide, lithium methoxide, phenyllithium, sodium amide, potassium hydroxide,
Sodium hydroxide, butyl lithium, etc. are used, and the reaction temperature is usually in the range of 20 to 80°C.

【実施例〕【Example〕

以下に実施例を挙げて本発明を具体的に説明するが、本
発明は、これらの実施例のみに限定されるものではない
。 [実施例l] (1)3− [2− (4−ニトロフェニル)エテニル
]ベンズアルデヒドの合成例 2.72g (15mmol)のp−ニトロフェニル酢
酸と6.03g (45mmol)のイソフタルアルデ
ヒドを50mj2のDMFに溶解した後、数滴のビベリ
ジンを加え、100℃まで昇温し2時間反応させる.反
応終了後、150mj2の1規定塩酸を加える.クロロ
ホルム層を無水硫酸ナトリウムで乾燥し、溶媒を留去す
る.得られたオイル状の物質に蒸留水を加えると沈殿が
生成する。これを濾過乾燥し粗生成物2.5gを得る.
粗生或物をクロロホルムーメタノールにより再結晶して
、目的とする化合物を得た(1.44g、収率57%)
. この化合物の ’H−NMRスペクトル(第3図参照)
を分析した結果、3−[2− (4−ニトロフェニル)
エテニル]ベンズアルデヒドであることが確認された. (2)p−メトキシベンジルトリフエニルホスホニウム
クロリドの合成例 26.3g (0.1mmo!)のトリフエニルホスフ
ィンと15.7g (0.1mol)のp一メトキシベ
ンジルクロリドを1 5 0 m Qのベンゼンに溶解
し、4時間還流した.放冷した後、濾過を行ない沈殿物
をベンゼンで数回洗浄した。これをクロロホルムー石油
エーテル混合溶媒により再結晶して目的物を得た(20
g、収率48%)。 (3)l−(4−メトキシスチリル)−3−(4−ニト
ロスチリル)ベンゼンの合成例 上記合成例(1)で得られた3− (2− (4−ニト
ロフェニル)エテニル]ベンズアルデヒド1.26g 
(5mmol)と合成例(2)で得られたp−メトキシ
ベンジルトリフェニルホスホニウムクロリド2.10g
 (5mmol)を20+nJ2の無水DMFに溶解さ
せた.アルゴン雰囲気下でこの溶液に0.4g (7m
mol)のナトリウムメトキシドのメタノール溶液(2
0mI2)をゆっくり滴下し、そのまま3時間反応させ
た。 反応終了後、溶液を濃縮しメタノールを加えると沈殿が
生成した。濾過を行ない濾物をメタノールで数回洗浄し
た(収量380mg,収率21%). 次ぎに、生成物の■R、 ’H−NMR,UVgよび融
点を測定した結果を以下に示す。 融点    : 178℃ I R     : 2850(Ar−OCHs).1
600(C:C),1520(Ar−H).1340(
Ar−NOx),1180, 1120. 1040(
=C−0−C)[carL] ’H − N M R  : 3.84(S,3H).
6.92(d,J=.8.8,2H)(CDCjs) 
   6. 99 (d, J=16. 2, IH)
 , ’!. 12(d,J=16.4,IH),7.
17(d,J=16.3,IH) , 7. 28(d
, J=16.2. 18) ,7. 3−7. 5(
m, 3H), 7. 47 (d, .CL 8, 
2H) , 7. 64(d, J=8. 8, 2H
) , 7. 64 (s, 2H) . 8. 22
(d,J=8.8,2H) [δ(ppm) ]UV吸
収  :んmax=3 3 0 n m、(CH(Js
)     λcutoff= 4 4 6 n mま
た、この化合物のIRスペクトルを第1図に、 ’H−
NMRスペクトルと帰属を第2図に示す。 これらの分析結果から、この化合物が1−(4−メトキ
シスチリル)−3− (4−ニトロスチリル)ベンゼン
であることが確認された。 [実施例2] 得られたl一(4−メトキシスチリル)−3−(4−ニ
トロスチリル)ベンゼンの微粉末結晶をNd : YA
Gレーザー(波長=1.064μm,出力10mJ/パ
ルス)を照射すると、第2次高調波が発生(SHG)L
、入射光の1/2の波長(5 3 2 nm)の緑色光
が観測できた.また、その強度(SHG効率)は、尿素
と,同程度であることが確認された. また、この結晶は室温で安定あり、耐光損傷性に優れて
いることが明らかになった. 以上の事実から、この化合物が優れた非線形光学材料で
あることが分かる. 【発明の効果】 本発明の新規化合物は、室温で安定かつ結晶性良好で、
SHG活性が大きく、しかも透明性に優れ、λwaxも
小さいので、特に、非線形光学材料として有用であり、
半導体レーザーの波長変換素子などとして実用上重要な
意義を有する。
The present invention will be specifically described below with reference to Examples, but the present invention is not limited only to these Examples. [Example 1] (1) Synthesis example of 3-[2-(4-nitrophenyl)ethenyl]benzaldehyde 2.72 g (15 mmol) of p-nitrophenylacetic acid and 6.03 g (45 mmol) of isophthalaldehyde were added to 50 mj2 of After dissolving in DMF, add a few drops of viveridine, raise the temperature to 100°C, and allow to react for 2 hours. After the reaction is complete, add 150 mj2 of 1N hydrochloric acid. Dry the chloroform layer over anhydrous sodium sulfate, and evaporate the solvent. When distilled water is added to the resulting oily substance, a precipitate forms. This was filtered and dried to obtain 2.5 g of a crude product.
The crude product was recrystallized from chloroform-methanol to obtain the target compound (1.44 g, yield 57%).
.. 'H-NMR spectrum of this compound (see Figure 3)
As a result of analysis, 3-[2- (4-nitrophenyl)
It was confirmed to be ethenyl]benzaldehyde. (2) Synthesis example of p-methoxybenzyltriphenylphosphonium chloride 26.3 g (0.1 mmo!) of triphenylphosphine and 15.7 g (0.1 mol) of p-methoxybenzyl chloride were mixed in 150 mQ of benzene. and refluxed for 4 hours. After cooling, the mixture was filtered and the precipitate was washed several times with benzene. This was recrystallized from a chloroform-petroleum ether mixed solvent to obtain the desired product (20
g, yield 48%). (3) Synthesis example of l-(4-methoxystyryl)-3-(4-nitrostyryl)benzene 3-(2-(4-nitrophenyl)ethenyl)benzaldehyde obtained in the above synthesis example (1) 1. 26g
(5 mmol) and 2.10 g of p-methoxybenzyltriphenylphosphonium chloride obtained in Synthesis Example (2)
(5 mmol) was dissolved in 20+nJ2 of anhydrous DMF. Add 0.4 g (7 m
mol) of sodium methoxide in methanol (2
0 mI2) was slowly added dropwise, and the reaction was allowed to proceed for 3 hours. After the reaction was completed, the solution was concentrated and methanol was added to form a precipitate. Filtration was performed and the filtered material was washed several times with methanol (yield: 380 mg, yield: 21%). Next, the results of measuring the ■R, 'H-NMR, UVg, and melting point of the product are shown below. Melting point: 178°C IR: 2850 (Ar-OCHs). 1
600 (C:C), 1520 (Ar-H). 1340(
Ar-NOx), 1180, 1120. 1040(
=C-0-C) [carL]'H-NMR: 3.84 (S, 3H).
6.92 (d, J=.8.8, 2H) (CDCjs)
6. 99 (d, J=16.2, IH)
,'! .. 12 (d, J=16.4, IH), 7.
17 (d, J=16.3, IH), 7. 28(d
, J=16.2. 18) ,7. 3-7. 5(
m, 3H), 7. 47 (d, .CL 8,
2H), 7. 64 (d, J=8.8, 2H
), 7. 64 (s, 2H). 8. 22
(d, J=8.8,2H) [δ(ppm)] UV absorption: max=330 nm, (CH(Js
) λcutoff = 4 4 6 nm Also, the IR spectrum of this compound is shown in Figure 1, 'H-
The NMR spectrum and assignment are shown in FIG. From these analysis results, it was confirmed that this compound was 1-(4-methoxystyryl)-3-(4-nitrostyryl)benzene. [Example 2] The obtained fine powder crystals of l-(4-methoxystyryl)-3-(4-nitrostyryl)benzene were mixed with Nd: YA.
When irradiated with G laser (wavelength = 1.064 μm, output 10 mJ/pulse), second harmonics are generated (SHG) L
, green light with half the wavelength (5 3 2 nm) of the incident light was observed. It was also confirmed that its strength (SHG efficiency) was comparable to that of urea. It was also revealed that this crystal is stable at room temperature and has excellent resistance to light damage. The above facts indicate that this compound is an excellent nonlinear optical material. [Effect of the invention] The novel compound of the present invention is stable at room temperature and has good crystallinity.
It has high SHG activity, excellent transparency, and low λwax, so it is particularly useful as a nonlinear optical material.
It has important practical significance as a wavelength conversion element for semiconductor lasers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の1−(4−メトキシスチリル)−3
−(4−ニトロスチリル)ベンゼンのIRスペクトルを
示す図であり、第2図は、同じ<  ’H−NMRスペ
クトルを示す図である。第3図は、3− [2− (4
−ニトロフェニル)エテニル]ベンズアルデヒドの’H
−NMRスペクトルを示す図である。
Figure 1 shows the 1-(4-methoxystyryl)-3 of the present invention.
FIG. 2 shows the IR spectrum of -(4-nitrostyryl)benzene, and FIG. 2 shows the same <'H-NMR spectrum. Figure 3 shows 3- [2- (4
-nitrophenyl)ethenyl]'H of benzaldehyde
- It is a figure showing an NMR spectrum.

Claims (3)

【特許請求の範囲】[Claims] (1)下記式〔 I 〕 ▲数式、化学式、表等があります▼〔 I 〕 で表される1−(4−メトキシスチリル)−3−(4−
ニトロスチリル)ベンゼン。
(1) 1-(4-methoxystyryl)-3-(4-
Nitrostyryl) benzene.
(2)請求項1記載の化合物から成ることを特徴とする
非線形光学材料。
(2) A nonlinear optical material comprising the compound according to claim 1.
(3)p−ニトロフェニル酢酸とイソフタルアルデヒド
とを縮合させて3−[2−(4−ニトロフェニル)エテ
ニル]ベンズアルデヒドを合成し、次いで、該3−[2
−(4−ニトロフェニル)エテニル]ベンズアルデヒド
とp−メトキシベンジルトリフェニルホスホニウムハラ
イドとを塩基の存在下で反応させることを特徴とする1
−(4−メトキシスチリル)−3−(4−ニトロスチリ
ル)ベンゼンの製造法。
(3) Synthesize 3-[2-(4-nitrophenyl)ethenyl]benzaldehyde by condensing p-nitrophenylacetic acid and isophthalaldehyde, and then synthesize 3-[2-(4-nitrophenyl)ethenyl]benzaldehyde.
-(4-nitrophenyl)ethenyl]benzaldehyde and p-methoxybenzyltriphenylphosphonium halide in the presence of a base 1
A method for producing -(4-methoxystyryl)-3-(4-nitrostyryl)benzene.
JP1190259A 1989-07-21 1989-07-21 1- (4-methoxystyryl) -3- (4-nitrostyryl) benzene and its production method Expired - Lifetime JPH0729992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1190259A JPH0729992B2 (en) 1989-07-21 1989-07-21 1- (4-methoxystyryl) -3- (4-nitrostyryl) benzene and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1190259A JPH0729992B2 (en) 1989-07-21 1989-07-21 1- (4-methoxystyryl) -3- (4-nitrostyryl) benzene and its production method

Publications (2)

Publication Number Publication Date
JPH0356449A true JPH0356449A (en) 1991-03-12
JPH0729992B2 JPH0729992B2 (en) 1995-04-05

Family

ID=16255167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1190259A Expired - Lifetime JPH0729992B2 (en) 1989-07-21 1989-07-21 1- (4-methoxystyryl) -3- (4-nitrostyryl) benzene and its production method

Country Status (1)

Country Link
JP (1) JPH0729992B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600495A (en) * 1993-12-16 1997-02-04 Fuji Xerox Co., Ltd. Structure for attaching scanning optical system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600495A (en) * 1993-12-16 1997-02-04 Fuji Xerox Co., Ltd. Structure for attaching scanning optical system

Also Published As

Publication number Publication date
JPH0729992B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
US5112532A (en) Non-linear optical material and non-linear optical device employing it
JPH0377923A (en) Organic nonlinear optical material
JPH075572B2 (en) 2- [2- (2-hydroxyphenyl) vinylpyrazine and method for producing the same
JPH0356449A (en) 1-(4-methoxystyryl)-3-(4-nitrostyryl)benzene and production thereof
JPH0356448A (en) 1-(4-methylstyryl)-3-(4-nitrostyryl)benzene and production thereof
US5811552A (en) Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
JP2836485B2 (en) Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same
JPH0381744A (en) Organic nonlinear optical material
JP2530725B2 (en) Organic nonlinear optical material
JPH075571B2 (en) 2- [2- (3-hydroxyphenyl) vinylpyrazine and method for producing the same
JPH0558980A (en) Alpha-cyanocinnamic acid ester-based compound and organic nonlinear optical material composed of the same compound
JPH0285828A (en) Organic nonlinear optical material
JPH0381746A (en) Organic nonlinear optical material
JP2533660B2 (en) Organic nonlinear optical material
JPH07117672B2 (en) Nonlinear optical organic material
JPH08119914A (en) Cyclobutendione derivative, its production and nonlinear optical element using the same
JPH03140928A (en) Organic nonlinear optical material
JPH03140927A (en) Organic nonlinear optical material
JPH0616611A (en) Alpha-cyanocinnamic acid ester compound and organic nonlinear optical material comprising the compound
JPH03142419A (en) Nonlinear optical element
JPH0578343A (en) 2-furylacrylic acid disubstituted-anilide compound and organic non-linear optical material
JPH02196759A (en) New organic compound
JPH03181919A (en) Organic nonlinear optical material
JPH07107012B2 (en) Novel organic compound
JPH0290130A (en) Organic nonlinear optical material