JPH0290130A - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material

Info

Publication number
JPH0290130A
JPH0290130A JP24305488A JP24305488A JPH0290130A JP H0290130 A JPH0290130 A JP H0290130A JP 24305488 A JP24305488 A JP 24305488A JP 24305488 A JP24305488 A JP 24305488A JP H0290130 A JPH0290130 A JP H0290130A
Authority
JP
Japan
Prior art keywords
nonlinear optical
single crystal
stable
shg
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24305488A
Other languages
Japanese (ja)
Other versions
JPH07111529B2 (en
Inventor
Takahiro Hidaka
敬浩 日高
Kazu Yamanaka
山中 計
Masaki Hasegawa
長谷川 正木
Yasuhiro Endo
康博 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP24305488A priority Critical patent/JPH07111529B2/en
Publication of JPH0290130A publication Critical patent/JPH0290130A/en
Publication of JPH07111529B2 publication Critical patent/JPH07111529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain an org. nonlinear optical material capable of growing to a single crystal being stable at room temp. and having no center of symmetry, which can be grown, if necessary, to a large sized single crystal usable for increasing activity for generating second higher harmonic by forming the material from a specified 4-(2-(4-nitrophenyl)ethenyl) benzaldehyde. CONSTITUTION:A stilbene deriv. comprising 4-(2-(4-nitrophenyl)ethenyl) benzaldehyde expressed by the formula I has a formyl group and a nitro group in each phenyl group, respectively, of stilbene (a trans isomer of diphenyl ethylene), having superior crystallizability. Single crystals may be easily obtd. from its soln. in an org. solvent by the slow evaporation method, and formed single crystals are stable at room temp. the symmetry of the crystal can be eliminated by introducing a formyl group as a substituent in the nucleus into a 4-position of one of the phenyl groups, thus, the material becomes useful for the generation of second higher harmonic(SHG). By this method, a material capable of forming a single crystal being stable at room temp. and having high SHG is obtd. The material is useful as optical control element, etc., in wide field.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、有機非線形光学材料に関し、さらに詳しくは
、光コンピュータや光通信など広範な分野で光制御素子
として用いることができる4−[2−(4−ニトロフェ
ニル)エチニル]ベンズアルデヒドから成る有機非線形
光学材料番こ関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to organic nonlinear optical materials, and more specifically, 4-[2 An organic nonlinear optical material comprising -(4-nitrophenyl)ethynyl]benzaldehyde.

〈従来の技術〉 非線形光学材料は、レーザー光の周波数変換、増幅、発
振、スイッチングなどの現象を生じ、第2高調波発生(
SHG>、第3高調波発生(THG)、高速度シャッタ
ー、光メモリ−、光演算素子などへの応用が可能である
<Prior art> Nonlinear optical materials cause phenomena such as frequency conversion, amplification, oscillation, and switching of laser light, and generate second harmonics (
SHG>, third harmonic generation (THG), high-speed shutter, optical memory, optical arithmetic element, etc.

このように、非線形光学材料は、光周波数を変換する機
能を有しているほか、電場によって屈折率が変化する特
質を生かした光スィッチなどへの応用が可能であるため
、活発な研究が進められている。
In this way, nonlinear optical materials have the function of converting optical frequencies and can be applied to optical switches that take advantage of the property that the refractive index changes depending on the electric field, so active research is progressing. It is being

従来、非線形光学材料としては、主として水溶性のKH
1PO4(KDP)、NH4Hz PO4あるいは非水
溶性のLiNb0.、KNbOsなどの無機系の単結晶
材料(誘電体結晶)が用いられてきたが、最近は尿素や
p−ニトロアニリン、2−メチル−4−ニトロアニリン
(MNA)、4′−(N、N’−ジメチルアミノ)−4
−ニトロスチルベン(DANS)などの有機非線形光学
材料の開発が進められている。ポリジアセチレンやポリ
フッ化ビニリデンなどの高分子有機材料についても、そ
の非線形光学効果を利用して、制御機能を有する導波路
、光ICなどへの応用が検討されている。
Conventionally, water-soluble KH has mainly been used as a nonlinear optical material.
1PO4 (KDP), NH4Hz PO4 or water-insoluble LiNb0. , KNbOs, and other inorganic single crystal materials (dielectric crystals) have been used, but recently urea, p-nitroaniline, 2-methyl-4-nitroaniline (MNA), '-dimethylamino)-4
- Development of organic nonlinear optical materials such as nitrostilbene (DANS) is progressing. Polymeric organic materials such as polydiacetylene and polyvinylidene fluoride are also being considered for application to waveguides with control functions, optical ICs, etc. by utilizing their nonlinear optical effects.

有機非線形光学材料は、非線形性の起源が分子内圧電子
であるため、光応答に対して格子振動を伴わず、したが
って無機材料に比べ応答が速く。
In organic nonlinear optical materials, the origin of nonlinearity is intramolecular piezoelectrons, so there is no lattice vibration in response to light, and therefore the response is faster than inorganic materials.

また、非線形光学定数が大きいものや吸収領域が変化で
きるものなどを合成することが可能である。しかも、材
料素子化の方法も、単結晶化によるだけではなく、LB
膜、蒸着法、液晶化、高分子化などの各種の方法が考え
られる。
Furthermore, it is possible to synthesize a material with a large nonlinear optical constant or a material whose absorption region can be changed. Moreover, the method of making materials into devices is not only based on single crystallization, but also on LB
Various methods can be considered, such as film formation, vapor deposition, liquid crystal formation, and polymerization.

これら非線形光学材料の研究に関しては、例えば、「有
機非線形光学材料J加藤政雄、中西へ部監修(シー・エ
ム・シー社、1985年刊)。
Regarding research on these nonlinear optical materials, see, for example, "Organic Nonlinear Optical Materials J, supervised by Masao Kato and He Nakanishi Department (CMC Publishing Co., Ltd., 1985).

rNonlinear 0ptical Proper
ties of Organj、cMolecules
 and Crystals  Vol、 I及び V
ol、rlD、S、CIlεMLA、 、J、 ZYS
S編(ACADEMICPRESS、1987年刊)な
どの文献に最近の研究状況がまとめられている。
rNonlinear 0ptical Proper
ties of Organj, cMolecules
and Crystals Vol, I and V
ol,rlD,S,CIlεMLA, ,J,ZYS
Recent research status is summarized in documents such as Volume S (Academic Press, published in 1987).

ところで、非線形光学材料として要求される非線形光学
効果のうち、特に第2高調波発生(SHG)は、変換の
効率が高い等の理由から波長変換の基本技術として位置
付けられている。また、効率よ< SHGをおこすため
に有効非線形光学定数の大きい材料が求められている。
By the way, among the nonlinear optical effects required for nonlinear optical materials, second harmonic generation (SHG) in particular is positioned as a basic technology for wavelength conversion because of its high conversion efficiency. In addition, materials with large effective nonlinear optical constants are required in order to generate SHG with efficiency.

そして、先の文献に詳しく述べられているように、S 
HG活性を示すためには結晶が対称中心を持たないこと
が必要である。
And, as detailed in the previous literature, S
In order to exhibit HG activity, it is necessary for the crystal to have no center of symmetry.

非線形光学無機材料は一般に結晶性が良く、大きな結晶
を得やすいという性質があるが、有機材料に比較して非
線形光学定数が小さいという欠点がある。一方、非線形
光学有機材料には一般に非線形光学定数の大きいものが
あることは知られているが、室温で安定かつ大きな有機
結晶を調製するのが困難である。
Nonlinear optical inorganic materials generally have good crystallinity and are easy to obtain large crystals, but they have the disadvantage of having smaller nonlinear optical constants than organic materials. On the other hand, although it is known that some nonlinear optical organic materials generally have large nonlinear optical constants, it is difficult to prepare stable and large organic crystals at room temperature.

例えば、従来知られている有機結晶の内、MNAは対称
中心を持たない結晶となるためSHG活性を有し、第2
高調波発生効率はL i N b Osの約2000倍
もあることが報告されている。しかし、MNAは大きな
単結晶が得られにくいため実用的ではないという欠点が
ある。また、尿素は、大きな単結晶を得やすいけれども
、S HG活性が低く、また耐湿性に劣るという欠点が
ある。DANSは、分子レベルでは分子分極率βは非常
に大きい値を示すが、結晶になるとき対称中心を持つた
めに有機結晶DANSはSHGを活性を示さない。
For example, among conventionally known organic crystals, MNA has SHG activity because it is a crystal without a center of symmetry, and
It has been reported that the harmonic generation efficiency is about 2000 times that of L i N b Os. However, MNA has the disadvantage that it is difficult to obtain large single crystals, making it impractical. Further, although it is easy to obtain large single crystals from urea, it has the drawbacks of low SHG activity and poor moisture resistance. DANS exhibits a very large value of molecular polarizability β at the molecular level, but organic crystal DANS does not exhibit SHG activity because it has a center of symmetry when crystallized.

そこで、対称中心を持たない単結晶を形成し、有効非線
形光学定数が太き(、したがってSHG活性が大きい有
機非線形光学材料の開発が現在最も要求されているとこ
ろである。さらに、非線形光学材料として実用化するに
当たっては、室温で安定でかつ出来るだけ大きな単結晶
を形成するものであることが望まれる。しかしながら、
S HG活性が太き(、安定で、大きな単結晶に成長さ
せやすい有機非線形光学材料は未だ提供されていない。
Therefore, the current greatest need is to develop an organic nonlinear optical material that forms a single crystal without a center of symmetry and has a large effective nonlinear optical constant (and therefore a large SHG activity). It is desirable that the crystal be stable at room temperature and form a single crystal as large as possible.However,
An organic nonlinear optical material with a large SHG activity, stable, and easy to grow into a large single crystal has not yet been provided.

〈発明が解決しようとする課題〉 本発明の目的は、前記従来技術の有する問題点を克服し
、室温で安定で、しかも対称中心を持たない単結晶を形
成し、必要に応じて大きな単結晶に成長°させることが
できるSHG活性の大きな有機非線形光学材料を提供す
ることにある。
<Problems to be Solved by the Invention> The purpose of the present invention is to overcome the problems of the prior art described above, to form a single crystal that is stable at room temperature and has no center of symmetry, and to form a large single crystal as necessary. The object of the present invention is to provide an organic nonlinear optical material with high SHG activity that can be grown at high temperatures.

本発明者らは鋭意研究した結果、特定のスチルベン誘導
体がSHG活性の大きな有機結晶を形成することを見出
し、その知見に基づいて本発明を完成するに至った。
As a result of intensive research, the present inventors discovered that a specific stilbene derivative forms organic crystals with high SHG activity, and based on this knowledge, they completed the present invention.

〈課題を解決するための手段〉 すなわち、本発明によれば、下記一般式で表される4−
(2−(4−ニトロフェニル)エチニルJベンズアルデ
ヒドから成ることを特徴とする有機非線形光学材料が提
供される。
<Means for solving the problem> That is, according to the present invention, 4- expressed by the following general formula
(2-(4-nitrophenyl)ethynyl J-benzaldehyde) An organic nonlinear optical material is provided.

以下、本発明の構成要素について詳述する。Hereinafter, the constituent elements of the present invention will be explained in detail.

本発明におけるスチルベン誘導体は、スヂルベン(ジフ
ェニルエチレンのトランス異性体)の各フェニル基にそ
れぞれホルミル基とニトロ基な有する構造を持っている
The stilbene derivative in the present invention has a structure in which each phenyl group of stilbene (trans isomer of diphenylethylene) has a formyl group and a nitro group, respectively.

本発明のスチルベン誘導体は、結晶性が良好であり、有
機溶剤からスローエバポレイジョン法などにより容易に
単結晶を得ることができ、しかもその単結晶は室温で安
定である。
The stilbene derivative of the present invention has good crystallinity, and a single crystal can be easily obtained from an organic solvent by a slow evaporation method or the like, and the single crystal is stable at room temperature.

また、本発明のスチルベン誘導体の単結晶は、尿素の約
2.5倍のSHG効率を示すことから明らかなように対
象中心を持たない単結晶である。
Furthermore, the single crystal of the stilbene derivative of the present invention is a single crystal without a center of interest, as is clear from the fact that it exhibits an SHG efficiency about 2.5 times that of urea.

同じスチルベンの誘導体で、下記の構造式で表されるD
ANSは、大きな分子分極率を有するけれども、その有
機結晶が結晶の対称性のために有効非線形光学定数が0
.0でSHG活性を示さないことからみて、ポルミル基
を有する本発明のスチルベン誘導体が優れたS HG活
性を示す有機結晶を形成することは予期できないことで
ある。
D, which is the same stilbene derivative and is represented by the structural formula below
Although ANS has a large molecular polarizability, its effective nonlinear optical constant is 0 due to the crystal symmetry of its organic crystal.
.. It is unexpected that the stilbene derivatives of the present invention having a polmyl group would form organic crystals exhibiting excellent SHG activity, considering that the stilbene derivatives of the present invention exhibit no SHG activity at zero.

本発明のスチルベン誘導体は、一方のフェニル基の4位
置くバラ位)に核置換基としてポルミル基を導入するこ
とによって、結晶の対称性を崩すことが可能になりS 
HG活性が発現できるようになったと推察できる。
In the stilbene derivative of the present invention, it is possible to break the symmetry of the crystal by introducing a polmyl group as a nuclear substituent at the 4-position (bar position) of one phenyl group.
It can be inferred that HG activity can now be expressed.

〈実施例〉 以下、実施例を挙げて本発明を具体的に説明するが、い
うまでもなく本発明はこれら実施例のみに限定されるも
のではない。
<Examples> The present invention will be specifically described below with reference to Examples, but it goes without saying that the present invention is not limited to these Examples.

及將皿ユ<4−[2−(4−ニトロフェニル)エチニル
]ベンズアルデヒドの合成〉 テレフタルアルデヒド6.03g (45ミリモル)に
l Omj2のジメチルホルムアミド(D MF)を加
えて溶液にした。その溶液にp−ニトロフェニル酢駿2
゜72g(15ミリモル)のDMF溶液約40mj2を
撹拌しながら室温にて徐々に滴下した。その後100℃
まで油浴にて昇温し。
<Synthesis of 4-[2-(4-nitrophenyl)ethynyl]benzaldehyde> To 6.03 g (45 mmol) of terephthalaldehyde was added 1 Omj2 of dimethylformamide (DMF) to form a solution. Add 2 p-nitrophenyl acetate to the solution.
About 40 mj2 of a DMF solution containing 72 g (15 mmol) was gradually added dropwise at room temperature while stirring. Then 100℃
Heat in an oil bath to .

2時間撹拌した。放論した後、この溶液を分液ロー1・
に移し、1.50 m℃のクロロホルムとINの塩酸5
0mgを加えて分液操作を行った。得られたクロロホル
ム層を無水硫酸ナトリウムにより乾燥した後、溶媒を留
去した。オイル状の生成物に水を加えると黄色の沈殿が
生成した。この沈殿物を濾過し、温水で洗浄して乾燥し
た。粗生成物は3.06gであった。粗生成物をクロロ
ホルム−メタノールにより再結晶して目的物2.54g
を得た。
Stirred for 2 hours. After stirring, transfer this solution to separation row 1.
Transfer to 1.50 mC of chloroform and IN hydrochloric acid 5
0 mg was added and a liquid separation operation was performed. After drying the obtained chloroform layer with anhydrous sodium sulfate, the solvent was distilled off. When water was added to the oily product, a yellow precipitate formed. The precipitate was filtered, washed with warm water and dried. The crude product was 3.06g. The crude product was recrystallized from chloroform-methanol to obtain 2.54 g of the desired product.
I got it.

この化合物の融点は218〜220℃であった。The melting point of this compound was 218-220°C.

この化合物の赤外線吸収スペクトル(IR)および核磁
気共鳴吸収スペクトル(’H−NMR)を測定したとこ
ろ、特性スペクトルは次のとおりであり、4− (2−
(4−ニトロフェニル)エチニル]ベンズアルデヒドの
得られたことが確認された。
When the infrared absorption spectrum (IR) and nuclear magnetic resonance absorption spectrum ('H-NMR) of this compound were measured, the characteristic spectrum was as follows.
It was confirmed that (4-nitrophenyl)ethynyl]benzaldehyde was obtained.

I  R: 1690.1600.1500.1330
.850  [cm−’]H−N M R(coc+、
) :lO,1(S、 LH)、8.53〜7.60(
m、8)1)、7.37 (d、 2++) [δ(p
pm)]上記の合成により得られた4−[2−(4−二
トロフェニル)エチニル]ベンズアルデヒドの微粉末結
晶をNd:YAGレーザ−(波長=1.064μm、出
力10mJ/パルス)で照射すると第2高調波が発生し
く5HG)、入射光の1/2の波長(532nm)の緑
色光が観測できた。
IR: 1690.1600.1500.1330
.. 850 [cm-']H-NMR(coc+,
) :lO,1(S, LH), 8.53~7.60(
m, 8) 1), 7.37 (d, 2++) [δ(p
pm)] When the fine powder crystal of 4-[2-(4-nitrophenyl)ethynyl]benzaldehyde obtained by the above synthesis is irradiated with a Nd:YAG laser (wavelength = 1.064 μm, output 10 mJ/pulse), A second harmonic was generated (5HG), and green light with a wavelength of 1/2 of the incident light (532 nm) could be observed.

また、上記微結晶の第2高調波発生(SHG)効率は、
尿素のそれを1とすると2.5であり、SHG効率は尿
素よりもはるかに強いことが確認できた。
In addition, the second harmonic generation (SHG) efficiency of the above microcrystal is
If the value of urea is 1, it is 2.5, and it was confirmed that the SHG efficiency is much stronger than that of urea.

さらに、この結晶は、室温で安定であり、結晶性の良い
ことも明らかになった。
Furthermore, it was revealed that this crystal is stable at room temperature and has good crystallinity.

〈発明の効果〉 本発明の4− [2−(4−ニトロフェニル)エチニル
]ベンズアルデヒドから成る有機非線形光学材料は、室
温で安定な単結晶を形成し、大きな5)(G活性を示す
ため、光制御素子などとして広範な分野で用いることが
できる。
<Effects of the Invention> The organic nonlinear optical material comprising 4-[2-(4-nitrophenyl)ethynyl]benzaldehyde of the present invention forms a stable single crystal at room temperature and exhibits large 5)(G activity). It can be used in a wide range of fields, such as as a light control element.

Claims (1)

【特許請求の範囲】[Claims] (1)下記一般式 ▲数式、化学式、表等があります▼ で表される4−[2−(4−ニトロフェニル)エテニル
]ベンズアルデヒドから成ることを特徴とする有機非線
形光学材料。
(1) An organic nonlinear optical material characterized by comprising 4-[2-(4-nitrophenyl)ethenyl]benzaldehyde represented by the following general formula ▲ Numerical formula, chemical formula, table, etc. ▼.
JP24305488A 1988-09-27 1988-09-27 Organic nonlinear optical material Expired - Lifetime JPH07111529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24305488A JPH07111529B2 (en) 1988-09-27 1988-09-27 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24305488A JPH07111529B2 (en) 1988-09-27 1988-09-27 Organic nonlinear optical material

Publications (2)

Publication Number Publication Date
JPH0290130A true JPH0290130A (en) 1990-03-29
JPH07111529B2 JPH07111529B2 (en) 1995-11-29

Family

ID=17098122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24305488A Expired - Lifetime JPH07111529B2 (en) 1988-09-27 1988-09-27 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH07111529B2 (en)

Also Published As

Publication number Publication date
JPH07111529B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
JP2700475B2 (en) Nonlinear optical materials and elements
JPH0377923A (en) Organic nonlinear optical material
JPH0290130A (en) Organic nonlinear optical material
JPH0285828A (en) Organic nonlinear optical material
JPH02187734A (en) Nonlinear optical organic material
JPH0678301B2 (en) Square lilium derivative and method for producing the same
JP2530725B2 (en) Organic nonlinear optical material
JP2819827B2 (en) Cyclobutenedione derivative and method for producing the same
JP2799101B2 (en) Organic nonlinear optical material
JPH0381744A (en) Organic nonlinear optical material
JPH03146928A (en) Organic nonlinear optical material
JPH02113226A (en) Organic nonlinear optical material
JPH0356448A (en) 1-(4-methylstyryl)-3-(4-nitrostyryl)benzene and production thereof
JPH03140928A (en) Organic nonlinear optical material
JPH07107012B2 (en) Novel organic compound
JPH03140927A (en) Organic nonlinear optical material
JPH02196759A (en) New organic compound
JPH0356449A (en) 1-(4-methoxystyryl)-3-(4-nitrostyryl)benzene and production thereof
JPH0381746A (en) Organic nonlinear optical material
JPH0616611A (en) Alpha-cyanocinnamic acid ester compound and organic nonlinear optical material comprising the compound
JPH03181919A (en) Organic nonlinear optical material
JPH0532587A (en) New aromatic compound and nonlinear optical material
JP2725929B2 (en) Organic nonlinear optical material
JPH06130435A (en) Organic nonlinear optical material
JPH03287138A (en) Organic nonlinear optical material