JPH0285828A - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material

Info

Publication number
JPH0285828A
JPH0285828A JP23805288A JP23805288A JPH0285828A JP H0285828 A JPH0285828 A JP H0285828A JP 23805288 A JP23805288 A JP 23805288A JP 23805288 A JP23805288 A JP 23805288A JP H0285828 A JPH0285828 A JP H0285828A
Authority
JP
Japan
Prior art keywords
nonlinear optical
derivative
stilbene derivative
symmetry
monocrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23805288A
Other languages
Japanese (ja)
Inventor
Takahiro Hidaka
敬浩 日高
Kazu Yamanaka
山中 計
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP23805288A priority Critical patent/JPH0285828A/en
Publication of JPH0285828A publication Critical patent/JPH0285828A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the subject material comprising a monocrystal which is stable at a room temp. and does not have center of symmetry and having large SHG activity by forming an org. crystal which has the large SHG activity, from a specified stilbene derivative shown by the formula. CONSTITUTION:The stilbene derivative shown by formula I is incorporated in the subject material comprising the monocrystal which does not have the center of symmetry, and having large effective nonlinear optical constant and the large SHG activity. In the formula, X is a halogen atom such as chlorine, bromine, fluorine and iodine atoms, etc. The stilbene derivative has good crystallinity and is easily obtained the monocrystal of the derivative from an org. solvent of the derivative by a slow evaporation method, etc. The monocrystal of the derivative is stable at the room temp. The stilbene derivative enables to degenerate the symmetry of the crystal by introducing the halogen atom to one of phenyl groups at 4-position thereof as a nucleus substituting group.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、スチルベン誘導体から成る有機非線形光学材
料に関し、さらに詳しくは、光コンピュータや光通信な
ど広範な分野で光制御素子として用いられる有機非線形
光学材料に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an organic nonlinear optical material made of a stilbene derivative, and more specifically to an organic nonlinear optical material used as a light control element in a wide range of fields such as optical computers and optical communications. Regarding optical materials.

〈従来の技術〉 非線形光学材料は、レーザー光の周波数変換、増幅、発
振、スイッチングなどの現象を生じ、第2高調波発生(
SHG)、第3高調波発生(THG)、高速度シャッタ
ー、光メモリ−、光演算素子などへの応用が可能である
<Prior art> Nonlinear optical materials cause phenomena such as frequency conversion, amplification, oscillation, and switching of laser light, and generate second harmonics (
It can be applied to SHG), third harmonic generation (THG), high-speed shutter, optical memory, optical arithmetic element, etc.

このように、非線形光学材料は、光周波数を変換する機
能を有しているほか、電場によって屈折率が変化する特
質を生かした光スィッチなどへの応用が可能であるため
、活発な研究が進められている。
In this way, nonlinear optical materials have the function of converting optical frequencies and can be applied to optical switches that take advantage of the property that the refractive index changes depending on the electric field, so active research is progressing. It is being

従来、非線形光学材料としては、主として水溶性のKH
□PO,(KDP) 、NH,H,PO4あるいは非水
溶性のL i N b Ox 、K N b O*など
の無機系の単結晶材料(誘電体結晶)が用いられてきた
が、最近は尿素やp−ニトロアニリン、2−メチル−4
−ニトロアニリン(MNA)、4′−(N、N′−ジメ
チルアミノ)−4−ニトロスチルベン(DANS)など
の有機非線形光学材料の開発が進められている。ポリジ
アセチレンやポリフッ化ビニリデンなどの高分子有機材
料についても、その非線形光学効果を利用して、制御機
能を有する導波路、光ICなどへの応用が検討されてい
る。
Conventionally, water-soluble KH has mainly been used as a nonlinear optical material.
□Inorganic single crystal materials (dielectric crystals) such as PO, (KDP), NH, H, PO4 or water-insoluble LiNbOx, KNbO* have been used, but recently Urea, p-nitroaniline, 2-methyl-4
Development of organic nonlinear optical materials such as -nitroaniline (MNA) and 4'-(N,N'-dimethylamino)-4-nitrostilbene (DANS) is progressing. Polymeric organic materials such as polydiacetylene and polyvinylidene fluoride are also being considered for application to waveguides with control functions, optical ICs, etc. by utilizing their nonlinear optical effects.

有機非線形光学材料は、非線形性の起源が分子内π電子
であるため、光応答に対して格子振動を伴わず、したが
って無機材料に比べ応答が速(、また、非線形光学定数
が大きいものや吸収領域が変化できるものなどを合成す
ることが可能である。しかも、材料素子化の方法も、単
結晶化によるだけではなく、LB膜、蒸着法、液晶化、
高分子化などの各種の方法が考えられる。
Organic nonlinear optical materials have nonlinearity originating from intramolecular π-electrons, so they do not involve lattice vibrations in response to light, and therefore have faster responses than inorganic materials (and also have large nonlinear optical constants and absorption It is possible to synthesize materials whose regions can be changed.Moreover, the method of making materials into devices is not limited to single crystallization, but also includes LB films, vapor deposition, liquid crystallization, etc.
Various methods such as polymerization can be considered.

これら非線形光学材料の研究に関しては、例えば、「有
機非線形光学材料」加藤政雄、中西へ部監修(シー・エ
ム・シー社、1985年刊)、r Non1inear
 0ptical Properties of Or
ganicMolecules and Crysta
ls  Vol、 I及び Vol、IID、S、CH
EMLA、J、ZYSS m (AC:ADEMICP
RESS、1987年刊)などの文献に最近の研究状況
がまとめられている。
For research on these nonlinear optical materials, see, for example, "Organic Nonlinear Optical Materials" by Masao Kato, supervised by He Nakanishi (CMC Publishing Co., Ltd., 1985), r Nonlinear
0Ptical Properties of Or
ganicMolecules and Crysta
ls Vol, I and Vol, IID, S, CH
EMLA, J, ZYSS m (AC:ADEMICP
Recent research status is summarized in literature such as RESS, published in 1987).

ところで、非線形光学材料として要求される非線形光学
効果のうち、特に第2高調波発生(SHG)は、変換の
効率が高い等の理由から波長変換の基本技術として位置
付けられている。また、効率よ< SHGをおこすため
に有効非線形光学定数の大きい材料が求められている。
By the way, among the nonlinear optical effects required for nonlinear optical materials, second harmonic generation (SHG) in particular is positioned as a basic technology for wavelength conversion because of its high conversion efficiency. In addition, materials with large effective nonlinear optical constants are required in order to generate SHG with efficiency.

そして、先の文献に詳しく述べられているように、SH
G活性を示すためには結晶が対称中心を持たないことが
必要である。
And, as detailed in the previous literature, SH
In order to exhibit G activity, a crystal must have no center of symmetry.

非線形光学無接材料は一般に結晶性が良く、大きな結晶
を得やすいという性質があるが、有機材料に比較して非
線形光学定数が小さいという欠点がある。一方、非線形
光学有機材料には一般に非線形光学定数の大きいものが
あることは知られているが、室温で安定かつ大きな有機
結晶を調製するのが困難である。
Nonlinear optical non-contact materials generally have good crystallinity and are easy to obtain large crystals, but they have the disadvantage of having smaller nonlinear optical constants than organic materials. On the other hand, although it is known that some nonlinear optical organic materials generally have large nonlinear optical constants, it is difficult to prepare stable and large organic crystals at room temperature.

例えば、従来知られている有機結晶の内、MNAは対称
中心を持たない結晶となるためSHG活性を有し、第2
高調波発生効率はL z N b Osの約2000倍
もあることが報告されている。しかし、MNAは大きな
単結晶が得られにくいため実用的ではないという欠点が
ある。また、尿素は、大きな単結晶を得やすいけれども
、SHG活性が低く、また耐湿性に劣るという欠点があ
る。DANSは、分子レベルでは分子分極率βは非常に
大きい値を示すが、結晶になるとき対称中心を持つため
に有機結晶DANSはSHGを活性を示さない。
For example, among conventionally known organic crystals, MNA has SHG activity because it is a crystal without a center of symmetry, and
It has been reported that the harmonic generation efficiency is about 2000 times that of L z N b Os. However, MNA has the disadvantage that it is difficult to obtain large single crystals, making it impractical. Further, although urea is easy to obtain large single crystals, it has the drawbacks of low SHG activity and poor moisture resistance. DANS exhibits a very large value of molecular polarizability β at the molecular level, but organic crystal DANS does not exhibit SHG activity because it has a center of symmetry when crystallized.

そこで、対称中心を持たない単結晶を形成し、有効非線
形光学定数が大きく、したがってSHG活性が大きい有
機非線形光学材料の開発が現在量も要求されているとこ
ろである。さらに、非線形光学材料として実用化するに
当たっては、室温で安定でかつ出来るだけ大きな単結晶
を形成するものであることが望まれる。しかしながら、
SHG活性が大きく、安定で、大きな単結晶に成長させ
やすい有機非線形光学材料は未だ提供されていない。
Therefore, there is a current need to develop an organic nonlinear optical material that forms a single crystal without a center of symmetry, has a large effective nonlinear optical constant, and therefore has a large SHG activity. Furthermore, for practical use as a nonlinear optical material, it is desired that the material be stable at room temperature and form a single crystal as large as possible. however,
An organic nonlinear optical material that has high SHG activity, is stable, and can be easily grown into a large single crystal has not yet been provided.

〈発明が解決しようとする課題〉 本発明の目的は、前記従来技術の有する問題点を克服し
、室温で安定で、しかも対称中心を持たない単結晶を形
成し、必要に応じて大きな単結晶に成長させることがで
きる5)(G活性の大きな有機非線形光学材料を提供す
ることにある。
<Problems to be Solved by the Invention> The purpose of the present invention is to overcome the problems of the prior art described above, to form a single crystal that is stable at room temperature and has no center of symmetry, and to form a large single crystal as necessary. 5) (An object of the present invention is to provide an organic nonlinear optical material with high G activity.

本発明者らは鋭意研究した結果、特定のスチルベン誘導
体がSHG活性の大きな有機結晶を形成することを見出
し、その知見に基づいて本発明を完成するに至った。
As a result of intensive research, the present inventors discovered that a specific stilbene derivative forms organic crystals with high SHG activity, and based on this knowledge, they completed the present invention.

〈課題を解決するための手段〉 すなわち、本発明によれば、下記一般式(式中、Xは塩
素、臭素、フッ素、ヨウ素などのハロゲン元素を示す)
で表されるスチルベン誘導体から成ることを特徴とする
有機非線形光学材料が提供される。
<Means for Solving the Problems> That is, according to the present invention, the following general formula (wherein, X represents a halogen element such as chlorine, bromine, fluorine, or iodine)
An organic nonlinear optical material is provided, which is characterized by being made of a stilbene derivative represented by:

以下、本発明の構成要素について詳述する。Hereinafter, the constituent elements of the present invention will be explained in detail.

本発明におけるスチルベン誘導体は、スチルベン(ジフ
ェニルエチレンのトランス異性体)の各フェニル基にそ
れぞれ核置換ハロゲンとニトロ基を有する構造を持って
いる。
The stilbene derivative in the present invention has a structure in which each phenyl group of stilbene (trans isomer of diphenylethylene) has a nuclear-substituted halogen and a nitro group.

ハロゲン元素としては、塩素、臭素、フッ素、ヨウ素な
どが挙げられる。したがって、本発明のスチルベン誘導
体として、具体的には、4−クロロ−4′−二トロスチ
ルベン、4−ブロモ−4′−ニトロスチルベン、4−フ
ルオロ−4′−二トロスチルベン、4−ヨード−4′−
ニド凸スチルベンなどが挙げられる。
Examples of the halogen element include chlorine, bromine, fluorine, and iodine. Therefore, the stilbene derivative of the present invention specifically includes 4-chloro-4'-nitrostilbene, 4-bromo-4'-nitrostilbene, 4-fluoro-4'-nitrostilbene, 4-iodo- 4'-
Examples include nidoconvex stilbenes.

本発明のスチルベン誘導体は、結晶性が良好であり、有
機溶剤からスローエバポレイジョン法などにより容易に
単結晶を得ることができ、しかもその単結晶は室温で安
定である。
The stilbene derivative of the present invention has good crystallinity, and a single crystal can be easily obtained from an organic solvent by a slow evaporation method or the like, and the single crystal is stable at room temperature.

また、本発明のスチルベン誘導体の単結晶は、尿素の約
2〜6倍のSHG効率を示すことから明らかなように対
象中心を持たない単結晶である。
Moreover, the single crystal of the stilbene derivative of the present invention is a single crystal without a center of interest, as is clear from the fact that it exhibits an SHG efficiency about 2 to 6 times that of urea.

同じスチルベンの誘導体で、下記の構造式で表されるD
ANSは、大きな分子分極率を有するけれども、その有
機結晶が結晶の対称性のために有効非線形光学定数が0
.0でSHG活性を示さないことからみて、ハロゲン置
換基を有する本発明のスチルベン誘導体が優れたSHG
活性を示す有機結晶を形成することは予期できないこと
である。
D, which is the same stilbene derivative and is represented by the structural formula below
Although ANS has a large molecular polarizability, its effective nonlinear optical constant is 0 due to the crystal symmetry of its organic crystal.
.. Considering that the stilbene derivative of the present invention having a halogen substituent has no SHG activity at 0.
The formation of active organic crystals is unexpected.

本発明のスチルベン誘導体は、一方のフェニル基の4位
置(バラ位)に核置換基としてハロゲン元素を導入する
ことによって、結晶の対称性を崩すことが可能になりS
HG活性が発現できるようになったと推察できる。
In the stilbene derivative of the present invention, by introducing a halogen element as a nuclear substituent at the 4-position (bara position) of one phenyl group, it is possible to break the symmetry of the crystal.
It can be inferred that HG activity can now be expressed.

(以下余白) 〈実施例〉 以下、実施例を挙げて本発明を具体的に説明するが、い
うまでもなく本発明はこれら実施例のみに限定されるも
のではない。
(Margins below) <Examples> The present invention will be specifically described below with reference to Examples, but it goes without saying that the present invention is not limited to these Examples.

K血■ユく4−ブロモー4′−二トロスチルベンの合成
〉 トリフェニルホスフィン26.2g (0,1モル)を
約200mgのトルエンに溶解させる。この溶液にα−
ブロモ−p−ニトロトルエン21゜6g(0,1モル)
を加えて、約4時間還流すると白色のホスホニウム塩が
沈殿する。これを濾過し、濾過物をトルエンで洗浄した
後、真空乾燥を行った。
Synthesis of 4-bromo-4'-nitrostilbene> 26.2 g (0.1 mol) of triphenylphosphine is dissolved in about 200 mg of toluene. This solution contains α-
Bromo-p-nitrotoluene 21°6 g (0.1 mol)
is added and refluxed for about 4 hours to precipitate a white phosphonium salt. This was filtered, and the filtered product was washed with toluene and then vacuum dried.

この白色粉末をメタノール−エーテルで再結晶するとp
−ニトロベンジルトリフェニルホスホニウムブロマイド
が30゜5g得られた。このようにして得られたp−ニ
トロベンジルトリフェニルホスホニウムブロマイド2.
1g(5ミリモル)とp−ブロモベンズアルデヒドO0
92g (’5ミリモル)に20mI2の乾燥したジメ
チルホルムアミド(DMF)を加えて溶液にした後、ア
ルゴン気流下でINのナトリウムメトキシド8mj2を
徐々に滴下した。この溶液を室温で4時間撹拌した後、
適量の水を加え、エーテル抽出を数回繰り返し、水洗し
た後、無水硫酸ナトリウムで乾燥した。このエーテル溶
液を冷却して得られた粗生成物をエタノールで再結晶し
、目的とする化合物(4−ブロモ−4′−二トロスチル
ベン)を得た。収量は0.76gであった。
When this white powder is recrystallized from methanol-ether, p
30.5 g of -nitrobenzyltriphenylphosphonium bromide was obtained. p-Nitrobenzyltriphenylphosphonium bromide thus obtained2.
1 g (5 mmol) and p-bromobenzaldehyde O0
After adding 20 mI2 of dry dimethylformamide (DMF) to 92 g ('5 mmol) to form a solution, 8 mj2 of IN sodium methoxide was gradually added dropwise under an argon stream. After stirring this solution at room temperature for 4 hours,
An appropriate amount of water was added, ether extraction was repeated several times, washed with water, and then dried over anhydrous sodium sulfate. The crude product obtained by cooling this ether solution was recrystallized from ethanol to obtain the target compound (4-bromo-4'-nitrostilbene). Yield was 0.76g.

この化合物の赤外線吸収スペクトル(IR)および核磁
気共鳴スペクトル(’H−NMR)を測定したところ、
特性スペクトルは次のとおりであり、4−ブロモ−4′
−ニトロスチルベンの得られたことが確認された。
When the infrared absorption spectrum (IR) and nuclear magnetic resonance spectrum ('H-NMR) of this compound were measured,
The characteristic spectrum is as follows, 4-bromo-4'
- It was confirmed that nitrostilbene was obtained.

I R: 1590.1500.1320.690.5
10 [c+++−’1’H−N M R(CDC1,
)ニア、18(d、2)1)、7.217(d、2)1
)、7、44 (d、 2H)、7.65 (d、 2
H)、g、z4(d、zo) [δ(ppm) ]次に
、得られた4−ブロモ−4′−ニトロスチルベンの微粉
末結晶にNd:YAGレーザ−(波長=1.064μm
1出力10mJ/パルス)を照射すると第2高調波が発
生しく5HG)、入射光の1/2の波長(523nm)
の緑色光が観測できた。
IR: 1590.1500.1320.690.5
10 [c+++-'1'H-N M R (CDC1,
) Near, 18 (d, 2) 1), 7.217 (d, 2) 1
), 7, 44 (d, 2H), 7.65 (d, 2
H), g, z4 (d, zo) [δ (ppm)] Next, the obtained fine powder crystals of 4-bromo-4'-nitrostilbene were irradiated with a Nd:YAG laser (wavelength = 1.064 μm).
When irradiated with 1 output 10 mJ/pulse), the second harmonic is generated (5HG), and the wavelength is 1/2 of the incident light (523 nm).
green light could be observed.

また、上記微結晶の第2高調波発生(SHG)効率は、
尿素のそれを1とすると6であり、SHG効率は尿素よ
りもはるかに強いことが確認できた。
In addition, the second harmonic generation (SHG) efficiency of the above microcrystal is
If that of urea is 1, it is 6, and it was confirmed that the SHG efficiency is much stronger than that of urea.

さらに、この結晶は、室温で安定であり、結晶性の良い
ことも明らかになった。
Furthermore, it was revealed that this crystal is stable at room temperature and has good crystallinity.

M<4−クロロ−4′−二トロスチルベンの合成〉 実施例1と同様にして調製したp−ニトロベンジルトリ
フェニルホスホニウムブロマイド2.1g(5ミリモル
)とp−クロロ−ベンズアルデヒド0.70g (5ミ
リモル)に20m2の乾燥したDMFを加えて溶液にし
た後、アルゴン気流下でINのナトリウムメトキシド8
m℃を徐々に滴下した。
M<Synthesis of 4-chloro-4'-nitrostilbene> 2.1 g (5 mmol) of p-nitrobenzyltriphenylphosphonium bromide prepared in the same manner as in Example 1 and 0.70 g (5 mmol) of p-chloro-benzaldehyde After making a solution by adding 20 m2 of dry DMF to (mmol), sodium methoxide 8 IN was added under an argon stream.
m°C was gradually added dropwise.

この溶液を室温で4時間撹拌した後、適量の水を加え、
エーテル抽出を数回繰り返し、水洗した後、無水硫酸ナ
トリウムで乾燥した。このエーテル溶液を冷却し、得ら
れた粗生成物をエタノールで再結晶して目的とする化合
物(4−クロロ−4′−二トロスチルベン)を得た。収
量は0゜73gであった。
After stirring this solution at room temperature for 4 hours, add an appropriate amount of water,
Ether extraction was repeated several times, washed with water, and then dried over anhydrous sodium sulfate. This ether solution was cooled, and the obtained crude product was recrystallized from ethanol to obtain the target compound (4-chloro-4'-nitrostilbene). The yield was 0.73g.

この化合物の赤外線吸収スペクトル(IR)および核磁
気共鳴スペクトル(’H−NMR)を測定したところ、
特性スペクトルは次のとおりであり、4−クロロ−4′
−二トロスチルベンの得られたことが確認された。
When the infrared absorption spectrum (IR) and nuclear magnetic resonance spectrum ('H-NMR) of this compound were measured,
The characteristic spectrum is as follows, 4-chloro-4'
- It was confirmed that nitrostilbene was obtained.

I R: 1580.1480.1320.700.5
10 [am−’]’ H−N M R((:DClm
) ニア、 19(d、 2H)、7.30(d、 2
H)、7.47(d、2H)、7.51(d、2H)、
8.04(d、2H) [δ(ppm) 1次に、得ら
れた4−クロロ−4′−二トロスチルペンの微粉末結晶
にNd:YAGレーザ−(波長=1.064μm、出力
10mJ/パルス)を照射すると第2高調波が発生しく
5HG)、入射光の1/2の波長(532nm)の緑色
光が観測できた。
IR: 1580.1480.1320.700.5
10 [am-']' H-N M R((:DClm
) Near, 19 (d, 2H), 7.30 (d, 2
H), 7.47 (d, 2H), 7.51 (d, 2H),
8.04 (d, 2H) [δ (ppm) First, the obtained fine powder crystal of 4-chloro-4'-nitrostilpene was heated with a Nd:YAG laser (wavelength = 1.064 μm, output 10 mJ/pulse). ), the second harmonic was generated (5HG), and green light with half the wavelength (532 nm) of the incident light could be observed.

また、上記微結晶のSHG効率は、尿素のそれを1とす
ると2であり、SHG効率は尿素よりもはるかに強いこ
とが確認できた。
Furthermore, the SHG efficiency of the microcrystals was 2 when that of urea was set to 1, and it was confirmed that the SHG efficiency was much stronger than that of urea.

さらに、この結晶は、室温で安定であり、結晶性の良い
ことも明らかになった。
Furthermore, it was revealed that this crystal is stable at room temperature and has good crystallinity.

〈発明の効果〉 本発明のスチルベン誘導体から成る有機非線形光学材料
は、室温で、安定な単結晶を形成し、大きなSHG活性
を示すため、光制御素子などとして広範な分野で用いる
ことができる。
<Effects of the Invention> The organic nonlinear optical material made of the stilbene derivative of the present invention forms a stable single crystal at room temperature and exhibits large SHG activity, so it can be used in a wide range of fields such as light control elements.

Claims (1)

【特許請求の範囲】[Claims] (1)下記一般式 ▲数式、化学式、表等があります▼ (式中、Xは塩素、臭素、フッ素、ヨウ素などのハロゲ
ン元素を示す)で表されるスチルベン誘導体から成るこ
とを特徴とする有機非線形光学材料。
(1) An organic compound characterized by being composed of a stilbene derivative represented by the following general formula ▲ Numerical formula, chemical formula, table, etc. Nonlinear optical materials.
JP23805288A 1988-09-22 1988-09-22 Organic nonlinear optical material Pending JPH0285828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23805288A JPH0285828A (en) 1988-09-22 1988-09-22 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23805288A JPH0285828A (en) 1988-09-22 1988-09-22 Organic nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH0285828A true JPH0285828A (en) 1990-03-27

Family

ID=17024451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23805288A Pending JPH0285828A (en) 1988-09-22 1988-09-22 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH0285828A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298055A (en) * 2007-06-04 2008-12-11 Honda Motor Co Ltd Engine air-intake controller
US7997247B2 (en) 2007-06-04 2011-08-16 Honda Motor Co., Ltd. Engine intake control system
WO2012103457A3 (en) * 2011-01-28 2012-10-11 University Of Kentucky Stilbene analogs and methods of treating cancer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298055A (en) * 2007-06-04 2008-12-11 Honda Motor Co Ltd Engine air-intake controller
US7997247B2 (en) 2007-06-04 2011-08-16 Honda Motor Co., Ltd. Engine intake control system
WO2012103457A3 (en) * 2011-01-28 2012-10-11 University Of Kentucky Stilbene analogs and methods of treating cancer
US8664276B2 (en) 2011-01-28 2014-03-04 University Of Kentucky Research Foundation Stilbene analogs and methods of treating cancer
CN103764604A (en) * 2011-01-28 2014-04-30 肯塔基大学研究基金会 Stilbene analogs and methods of treating cancer
US9132102B2 (en) 2011-01-28 2015-09-15 University Of Kentucky Research Foundation Stilbene analogs and methods of treating cancer
CN105622431A (en) * 2011-01-28 2016-06-01 肯塔基大学研究基金会 Stilbene analogs and methods of treating cancer
CN103764604B (en) * 2011-01-28 2017-02-08 肯塔基大学研究基金会 Stilbene analogs and methods of treating cancer

Similar Documents

Publication Publication Date Title
JPH0285828A (en) Organic nonlinear optical material
JPH02187734A (en) Nonlinear optical organic material
JPH0290130A (en) Organic nonlinear optical material
JP2530725B2 (en) Organic nonlinear optical material
JPH0381744A (en) Organic nonlinear optical material
JPH03140928A (en) Organic nonlinear optical material
JPH02113226A (en) Organic nonlinear optical material
JPH02196759A (en) New organic compound
JPH02243644A (en) New organic compound
JPH0356448A (en) 1-(4-methylstyryl)-3-(4-nitrostyryl)benzene and production thereof
JPH03146928A (en) Organic nonlinear optical material
JP2786781B2 (en) Organic nonlinear optical material
JPH0356449A (en) 1-(4-methoxystyryl)-3-(4-nitrostyryl)benzene and production thereof
JPH03181919A (en) Organic nonlinear optical material
JPH03140927A (en) Organic nonlinear optical material
JP2763224B2 (en) Organic nonlinear optical material
JPH05249517A (en) Organic nonlinear optical material
JPH03255427A (en) Organic nonlinear optical material
JPH02297529A (en) Organic material for nonlinear optical use
JPH03287137A (en) Organic nonlinear optical material
JPH03287136A (en) Organic nonlinear optical material
JPH03287139A (en) Organic nonlinear optical material
JPH0381746A (en) Organic nonlinear optical material
JPH06130435A (en) Organic nonlinear optical material
JPH03287138A (en) Organic nonlinear optical material