JPH07111529B2 - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material

Info

Publication number
JPH07111529B2
JPH07111529B2 JP24305488A JP24305488A JPH07111529B2 JP H07111529 B2 JPH07111529 B2 JP H07111529B2 JP 24305488 A JP24305488 A JP 24305488A JP 24305488 A JP24305488 A JP 24305488A JP H07111529 B2 JPH07111529 B2 JP H07111529B2
Authority
JP
Japan
Prior art keywords
nonlinear optical
organic
optical material
shg
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24305488A
Other languages
Japanese (ja)
Other versions
JPH0290130A (en
Inventor
敬浩 日高
計 山中
正木 長谷川
康博 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP24305488A priority Critical patent/JPH07111529B2/en
Publication of JPH0290130A publication Critical patent/JPH0290130A/en
Publication of JPH07111529B2 publication Critical patent/JPH07111529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、有機非線形光学材料に関し、さらに詳しく
は、光コンピュータや光通信など広範な分野で光制御素
子として用いることができる4−[2−(4−ニトロフ
ェニル)エテニル]ベンズアルデヒドから成る有機非線
形光学材料に関する。
TECHNICAL FIELD The present invention relates to an organic nonlinear optical material, and more specifically, it can be used as a light control element in a wide range of fields such as optical computers and optical communications 4- [2] It relates to an organic nonlinear optical material composed of-(4-nitrophenyl) ethenyl] benzaldehyde.

〈従来の技術〉 非線形光学材料は、レーザー光の周波数変換、増幅、発
振、スイッチングなどの現象を生じ、第2高調波発生
(SHG)、第3高調波発生(THG)、高速度シャッター、
光メモリー、光演算素子などへの応用が可能である。
<Prior Art> Non-linear optical materials cause phenomena such as frequency conversion, amplification, oscillation, and switching of laser light, and generate second harmonic (SHG), third harmonic (THG), high-speed shutter,
It can be applied to optical memories and optical arithmetic elements.

このように、非線形光学材料は、光周波数を変換する機
能を有しているほか、電場によって屈折率が変化する特
質を生かした光スイッチなどへの応用が可能であるた
め、活発な研究が進められている。
In this way, nonlinear optical materials have the function of converting the optical frequency, and because they can be applied to optical switches that take advantage of the property that the refractive index changes with an electric field, active research is underway. Has been.

従来、非線形光学材料としては、主として水溶性のKH2P
O4(KDP)、NH4H2PO4あるいは非水溶性のLiNbO3、KNbO3
などの無機系の単結晶材料(誘電体結晶)が用いられて
きたが、最近は尿素やp−ニトロアニリン、2−メチル
−4−ニトロアニリン(MNA)、4′−(N,N′−ジメチ
ルアミノ)−4−ニトロスチルベン(DANS)などの有機
非線形光学材料の開発が進められている。ポリジアセチ
レンやポリフッ化ビニリデンなどの高分子有機材料につ
いても、その非線形光学効果を利用して、制御機能を有
する導波路、光ICなどへの応用が検討されている。
Conventionally, water-soluble KH 2 P has been mainly used as a nonlinear optical material.
O 4 (KDP), NH 4 H 2 PO 4 or water-insoluble LiNbO 3 , KNbO 3
Inorganic single crystal materials (dielectric crystals) have been used, but recently urea, p-nitroaniline, 2-methyl-4-nitroaniline (MNA), 4 '-(N, N'- Organic nonlinear optical materials such as dimethylamino) -4-nitrostilbene (DANS) are being developed. Polymer organic materials such as polydiacetylene and polyvinylidene fluoride are also being investigated for application to waveguides having control functions, optical ICs, etc. by utilizing their nonlinear optical effects.

有機非線形光学材料は、非線形性の起源が分子内π電子
であるため、光応答に対して格子振動を伴わず、したが
って無機材料に比べ応答が速く、また、非線形光学定数
が大きいものや吸収領域が変化できるものなどを合成す
ることが可能である。しかも、材料素子化の方法も、単
結晶化によるだけではなく、LB膜、蒸着法、液晶化、高
分子化などの各種の方法が考えられる。
Organic nonlinear optical materials do not have lattice vibrations with respect to optical response because the origin of nonlinearity is intramolecular π electrons, and therefore have a faster response than inorganic materials, and have a large nonlinear optical constant or absorption region. It is possible to compose things that can change. Moreover, the method for forming the material element is not limited to single crystallization, and various methods such as LB film, vapor deposition method, liquid crystal, and polymerization can be considered.

これら非線形光学材料の研究に関しては、例えば、「有
機非線形光学材料」加藤政雄、中西八郎監修(シー・エ
ム・シー社、1985年刊)、「Nonlinear Optical Proper
ties of Organic Molecules and Crystals Vol.I及びVo
l.II D.S.CHEMLA,J.ZYSS編(ACADEMIC PRESS,1987年
刊)などの文献に最近の研究状況がまとめられている。
Regarding the research on these nonlinear optical materials, for example, "Organic Nonlinear Optical Materials" edited by Masao Kato, Hachiro Nakanishi (CMC, published in 1985), "Nonlinear Optical Proper"
ties of Organic Molecules and Crystals Vol.I and Vo
Recent research status is summarized in the literature such as l.II DSCHEMLA, J.ZYSS edition (ACADEMIC PRESS, published in 1987).

ところで、非線形光学材料として要求される非線形光学
効果のうち、特に第2高調波発生(SHG)は、変換の効
率が高い等の理由から波長変換の基本技術として位置付
けられている。また、効率よくSHGをおこすために有効
非線形光学定数の大きい材料が求められている。そし
て、先の文献に詳しく述べられているように、SHG活性
を示すためには結晶が対称中心を持たないことが必要で
ある。
By the way, among the nonlinear optical effects required as a nonlinear optical material, the second harmonic generation (SHG) is positioned as a basic technique of wavelength conversion because of its high conversion efficiency. In addition, a material with a large effective nonlinear optical constant is required for efficient SHG. And, as described in detail in the above literature, it is necessary that the crystal does not have a center of symmetry in order to exhibit SHG activity.

非線形光学無機材料は一般に結晶性が良く、大きな結晶
を得やすいという性質があるが、有機材料に比較して非
線形光学定数が小さいという欠点がある。一方、非線形
光学有機材料には一般に非線形光学定数の大きいものが
あることは知られているが、室温で安定かつ大きな有機
結晶を調製するのが困難である。
Nonlinear optical inorganic materials generally have good crystallinity and can easily obtain large crystals, but they have the drawback of having a small nonlinear optical constant as compared with organic materials. On the other hand, it is known that some nonlinear optical organic materials generally have large nonlinear optical constants, but it is difficult to prepare stable and large organic crystals at room temperature.

例えば、従来知られている有機結晶の内、MNAは対称中
心を持たない結晶となるためSHG活性を有し、第2高調
波発生効率はLiNbO3の約2000倍もあることが報告されて
いる。しかし、MNAは大きな単結晶が得られにくいため
実用的ではないという欠点がある。また、尿素は、大き
な単結晶を得やすいけれども、SHG活性が低く、また耐
湿性に劣るという欠点がある。DANSは、分子レベルでは
分子分極率βは非常に大きい値を示すが、結晶になると
き対称中心を持つために有機結晶DANSはSHGを活性を示
さない。
For example, among the conventionally known organic crystals, MNA has a SHG activity because it has no symmetry center, and it is reported that the second harmonic generation efficiency is about 2000 times that of LiNbO 3 . . However, MNA has a drawback that it is not practical because it is difficult to obtain a large single crystal. Further, although urea can easily obtain a large single crystal, it has the drawbacks of low SHG activity and poor moisture resistance. The molecular polarizability β of DANS shows a very large value at the molecular level, but the organic crystal DANS does not show SHG activity because it has a symmetry center when it becomes a crystal.

そこで、対称中心を持たない単結晶を形成し、有効非線
形光学定数が大きく、したがってSHG活性が大きい有機
非線形光学材料の開発が現在最も要求されているところ
である。さらに、非線形光学材料として実用化するに当
たっては、室温で安定でかつ出来るだけ大きな単結晶を
形成するものであることが望まれる。しかしながら、SH
G活性が大きく、安定で、大きな単結晶に成長させやす
い有機非線形光学材料は未だ提供されていない。
Therefore, the development of an organic nonlinear optical material that forms a single crystal having no center of symmetry, has a large effective nonlinear optical constant, and thus has a large SHG activity, is currently most demanded. Further, in practical use as a non-linear optical material, it is desired to form a single crystal which is stable at room temperature and is as large as possible. However, SH
Organic nonlinear optical materials with high G activity, stable, and easy to grow into large single crystals have not yet been provided.

〈発明が解決しようとする課題〉 本発明の目的は、前記従来技術の有する問題点を克服
し、室温で安定で、しかも対称中心を持たない単結晶を
形成し、必要に応じて大きな単結晶に成長させることが
できるSHG活性の大きな有機非線形光学材料を提供する
ことにある。
<Problems to be Solved by the Invention> An object of the present invention is to overcome the problems of the above-mentioned prior art, form a single crystal that is stable at room temperature, and that has no center of symmetry. It is to provide an organic nonlinear optical material having a large SHG activity that can be grown to a high temperature.

本発明者らは鋭意研究した結果、特定のスチルベン誘導
体がSHG活性の大きな有機結晶を形成することを見出
し、その知見に基づいて本発明を完成するに至った。
As a result of intensive studies, the present inventors have found that a specific stilbene derivative forms an organic crystal having a large SHG activity, and have completed the present invention based on the findings.

〈課題を解決するための手段〉 すなわち、本発明によれば、下記一般式 で表される4−[2−(4−ニトロフェニル)エテニ
ル]ベンズアルデヒドから成ることを特徴とする有機非
線形光学材料が提供される。
<Means for Solving the Problems> That is, according to the present invention, the following general formula An organic non-linear optical material characterized by comprising 4- [2- (4-nitrophenyl) ethenyl] benzaldehyde represented by

以下、本発明の構成要素について詳述する。Hereinafter, the components of the present invention will be described in detail.

本発明におけるスチルベン誘導体は、スチルベン(ジフ
ェニルエチレンのトランス異性体)の各フェニル基にそ
れぞれホルミル基とニトロ基を有する構造を持ってい
る。
The stilbene derivative in the present invention has a structure having a formyl group and a nitro group in each phenyl group of stilbene (trans isomer of diphenylethylene).

本発明のスチルベン誘導体は、結晶性が良好であり、有
機溶剤からスローエバポレイション法などにより容易に
単結晶を得ることができ、しかもその単結晶は室温で安
定である。
The stilbene derivative of the present invention has good crystallinity, and a single crystal can be easily obtained from an organic solvent by a slow evaporation method or the like, and the single crystal is stable at room temperature.

また、本発明のスチルベン誘導体の単結晶は、尿素の約
2.5倍のSHG効率を示すことから明らかなように対象中心
を持たない単結晶である。
Further, the single crystal of the stilbene derivative of the present invention is about the same as urea.
As is clear from the fact that it shows 2.5 times the SHG efficiency, it is a single crystal with no center of interest.

同じスチルベンの誘導体で、下記の構造式で表されるDA
NSは、大きな分子分極率を有するけれども、その有機結
晶が結晶の対称性のために有効非線形光学定数が0.0でS
HG活性を示さないことからみて、ホルミル基を有する本
発明のスチルベン誘導体が優れたSHG活性を示す有機結
晶を形成することは予期できないことである。
DA, which is the same stilbene derivative and has the following structural formula
NS has a large molecular polarizability, but its organic crystal has an effective nonlinear optical constant of 0.0 due to the symmetry of the crystal.
In view of its lack of HG activity, it is unexpected that the stilbene derivative of the present invention having a formyl group forms an organic crystal exhibiting excellent SHG activity.

本発明のスチルベン誘導体は、一方のフェニル基の4位
置(バラ位)に核置換基としてホルミル基を導入するこ
とによって、結晶の対称性を崩すことが可能になりSHG
活性が発現できるようになったと推察できる。
The stilbene derivative of the present invention makes it possible to break the crystal symmetry by introducing a formyl group as a nuclear substituent at the 4-position (rose position) of one phenyl group.
It can be inferred that the activity could be expressed.

〈実施例〉 以下、実施例を挙げて本発明を具体的に説明するが、い
うまでもなく本発明はこれら実施例のみに限定されるも
のではない。
<Examples> Hereinafter, the present invention will be specifically described with reference to Examples, but it goes without saying that the present invention is not limited to these Examples.

実施例1〈4−[2−(4−ニトロフェニル)エテニ
ル]ベンズアルデヒドの合成〉 テレフタルアルデヒド6.03g(45ミリモル)に10mlのジ
メチルホルムアミド(DMF)を加えて溶液にした。その
溶液にp−ニトロフェニル酢酸2.72g(15ミリモル)のD
MF溶液約40mlを攪拌しながら室温にて徐々に滴下した。
その後100℃まで油浴にて昇温し、2時間攪拌した。放
冷した後、この溶液を分液ロートに移し、150mlのクロ
ロホルムと1Nの塩酸50mlを加えて分液操作を行った。得
られたクロロホルム層を無水硫酸ナトリウムにより乾燥
した後、溶媒を留去した。オイル状の生成物に水を加え
ると黄色の沈殿が生成した。この沈殿物を濾過し、温水
で洗浄して乾燥した。粗生成物は3.06gであった。粗生
成物をクロロホルム−メタノールにより再結晶して目的
物2.54gを得た。
Example 1 <Synthesis of 4- [2- (4-nitrophenyl) ethenyl] benzaldehyde> 10 ml of dimethylformamide (DMF) was added to 6.03 g (45 mmol) of terephthalaldehyde to form a solution. 2.72 g (15 mmol) of p-nitrophenylacetic acid was added to the solution.
About 40 ml of the MF solution was gradually added dropwise at room temperature while stirring.
Then, the temperature was raised to 100 ° C. in an oil bath, and the mixture was stirred for 2 hours. After allowing to cool, this solution was transferred to a separating funnel, and 150 ml of chloroform and 50 ml of 1N hydrochloric acid were added to carry out a liquid separation operation. The obtained chloroform layer was dried over anhydrous sodium sulfate, and then the solvent was distilled off. Water was added to the oily product and a yellow precipitate formed. The precipitate was filtered, washed with warm water and dried. The crude product was 3.06 g. The crude product was recrystallized from chloroform-methanol to obtain 2.54 g of the desired product.

この化合物の融点は218〜220℃であった。The melting point of this compound was 218 to 220 ° C.

この化合物の赤外線吸収スペクトル(IR)および核磁気
共鳴吸収スペクトル(1H-NMR)を測定したところ、特性
スペクトルは次のとおりであり、4−[2−(4−ニト
ロフェニル)エテニル]ベンズアルデヒドの得られたこ
とが確認された。
When the infrared absorption spectrum (IR) and the nuclear magnetic resonance absorption spectrum ( 1 H-NMR) of this compound were measured, the characteristic spectrum was as follows, and the characteristic spectrum of 4- [2- (4-nitrophenyl) ethenyl] benzaldehyde was as follows: It was confirmed that it was obtained.

IR:1690、1600、1500、1330、850[cm-11 H-NMR(CDC13):10.1(S,1H)、8.53〜7.60(m,8H)、
7.37(d,2H)[δ(ppm)] 上記の合成により得られた4−[2−(4−ニトロフェ
ニル)エテニル]ベンズアルデヒドの微粉末結晶をNd:Y
AGレーザー(波長=1.064μm、出力10mJ/パルス)で照
射すると第2高調波が発生し(SHG)、入射光の1/2の波
長(532nm)の緑色光が観測できた。
IR: 1690,1600,1500,1330,850 [cm -1] 1 H-NMR (CDC1 3): 10.1 (S, 1H), 8.53~7.60 (m, 8H),
7.37 (d, 2H) [δ (ppm)] Nd: Y was used as a fine powder crystal of 4- [2- (4-nitrophenyl) ethenyl] benzaldehyde obtained by the above synthesis.
When irradiated with an AG laser (wavelength = 1.064 μm, output 10 mJ / pulse), a second harmonic was generated (SHG), and green light with a wavelength half the incident light (532 nm) could be observed.

また、上記微結晶の第2高調波発生(SHG)効率は、尿
素のそれを1とすると2.5であり、SHG効率は尿素よりも
はるかに強いことが確認できた。
Further, the second harmonic generation (SHG) efficiency of the above-described microcrystals was 2.5, assuming that of urea was 1, and it was confirmed that the SHG efficiency is much stronger than that of urea.

さらに、この結晶は、室温で安定であり、結晶性の良い
ことも明らかになった。
Further, it was revealed that this crystal is stable at room temperature and has good crystallinity.

〈発明の効果〉 本発明の4−[2−(4−ニトロフェニル)エテニル]
ベンズアルデヒドから成る有機非線形光学材料は、室温
で安定な単結晶を形成し、大きなSHG活性を示すため、
光制御素子などとして広範な分野で用いることができ
る。
<Effects of the Invention> 4- [2- (4-nitrophenyl) ethenyl] of the present invention
Organic nonlinear optical materials composed of benzaldehyde form stable single crystals at room temperature and exhibit large SHG activity.
It can be used in a wide range of fields such as a light control element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】下記一般式 で表される4−[2−(4−ニトロフェニル)エテニ
ル]ベンズアルデヒドから成ることを特徴とする有機非
線形光学材料。
1. The following general formula An organic nonlinear optical material characterized by comprising 4- [2- (4-nitrophenyl) ethenyl] benzaldehyde represented by:
JP24305488A 1988-09-27 1988-09-27 Organic nonlinear optical material Expired - Lifetime JPH07111529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24305488A JPH07111529B2 (en) 1988-09-27 1988-09-27 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24305488A JPH07111529B2 (en) 1988-09-27 1988-09-27 Organic nonlinear optical material

Publications (2)

Publication Number Publication Date
JPH0290130A JPH0290130A (en) 1990-03-29
JPH07111529B2 true JPH07111529B2 (en) 1995-11-29

Family

ID=17098122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24305488A Expired - Lifetime JPH07111529B2 (en) 1988-09-27 1988-09-27 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH07111529B2 (en)

Also Published As

Publication number Publication date
JPH0290130A (en) 1990-03-29

Similar Documents

Publication Publication Date Title
JPH0377923A (en) Organic nonlinear optical material
JPH07111529B2 (en) Organic nonlinear optical material
JP2762610B2 (en) Squarylium derivative and method for producing the same
JPH0678301B2 (en) Square lilium derivative and method for producing the same
JPH07117672B2 (en) Nonlinear optical organic material
JPH0285828A (en) Organic nonlinear optical material
JP2530725B2 (en) Organic nonlinear optical material
US5383050A (en) Organic nonlinear optical material
JP2819827B2 (en) Cyclobutenedione derivative and method for producing the same
JP2799101B2 (en) Organic nonlinear optical material
JPH07107012B2 (en) Novel organic compound
JPH07111530B2 (en) Organic nonlinear optical material
JPH03146928A (en) Organic nonlinear optical material
JPH0381744A (en) Organic nonlinear optical material
JPH03140928A (en) Organic nonlinear optical material
JPH0786093B2 (en) Novel organic compound
JPH0616611A (en) Alpha-cyanocinnamic acid ester compound and organic nonlinear optical material comprising the compound
JPH0381746A (en) Organic nonlinear optical material
JPH03287138A (en) Organic nonlinear optical material
JPH03181919A (en) Organic nonlinear optical material
JPH0729992B2 (en) 1- (4-methoxystyryl) -3- (4-nitrostyryl) benzene and its production method
JPH0729991B2 (en) 1- (4-methylstyryl) -3- (4-nitrostyryl) benzene and its production method
JPH03206429A (en) Organic nonlinear optical material
JPH02297529A (en) Organic material for nonlinear optical use
JPH03255427A (en) Organic nonlinear optical material