JPH03287135A - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material

Info

Publication number
JPH03287135A
JPH03287135A JP8771790A JP8771790A JPH03287135A JP H03287135 A JPH03287135 A JP H03287135A JP 8771790 A JP8771790 A JP 8771790A JP 8771790 A JP8771790 A JP 8771790A JP H03287135 A JPH03287135 A JP H03287135A
Authority
JP
Japan
Prior art keywords
single crystal
nonlinear optical
acetoamide
cinnamic acid
stable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8771790A
Other languages
Japanese (ja)
Inventor
Takahiro Hidaka
敬浩 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP8771790A priority Critical patent/JPH03287135A/en
Publication of JPH03287135A publication Critical patent/JPH03287135A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a single crystal which is stable at room temp., is excellent in resistance to optical damaging and has no inverse symmetric center by constituting the single crystal of specific p-acetoamide cinnamic acid. CONSTITUTION:The single crystal is constituted of the p-acetoamide cinnamic acid expressed by formula I. The p-acetoamide cinnamic acid has good crystallinity and the single crystal is easily obtd. by a slow evaporation method from an org. solvent, etc. The fine crystal powder of the p-acetoamide cinnamic acid exhibits the second harmonic wave generating (SHG) efficiency equiv. to the second harmonic wave generating efficiency of urea. The org. nonlinear material which is stable at room temp., has the good crystallinity, is white and highly transparent, has the cut off wavelength existing in a short wavelength region and has the excellent resistance to optical damaging is obtd. in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光コンピュータや光通信など広範な分野で光
制御素子等として用いられる有機非線形材料に関し、さ
らに詳しくは、カットオフ波長が短波長領域にあり、良
好なSHG活性を示し、結晶性が良好で、耐光損傷性に
優れた有機非線形光学材料に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an organic nonlinear material used as a light control element in a wide range of fields such as optical computers and optical communications. The present invention relates to an organic nonlinear optical material that is in the region, exhibits good SHG activity, has good crystallinity, and has excellent light damage resistance.

〔従来の技術〕[Conventional technology]

非線形光学材料は、レーザー光の周波数変換、増幅、発
振、スイッチングなどの現象を生じ、第2高調波発生(
SHG)、第3高調波発生(THG)、高速度シャッタ
ー、光メモリ−、光演算素子などへの応用が可能である
。このように、非線形光学材料は、光周波数を変換する
機能を有しているほか、電場によって屈折率が変化する
特質を生かした光スィッチなどへの応用が可能であるた
め、活発な研究が進められている。
Nonlinear optical materials produce phenomena such as frequency conversion, amplification, oscillation, and switching of laser light, and generate second harmonics (
It can be applied to SHG), third harmonic generation (THG), high-speed shutter, optical memory, optical arithmetic element, etc. In this way, nonlinear optical materials have the function of converting optical frequencies and can be applied to optical switches that take advantage of the property that the refractive index changes depending on the electric field, so active research is progressing. It is being

従来、非線形光学材料としては、主に水溶性のKH2P
O,(KDP) 、 NH4H2PO4,あるいは非水
溶性のLtNbo、 、KNbOsなどの無機系の単結
晶材料(誘電体結晶)が用いられており、実用化されて
いる例としては、例えば、KDPを変換材料として用い
た、強力なYAGレーザーの第2高調波発生が挙げられ
、慣性核融合用短波長レーザードライバーやウラン分離
用色素レーザー励起光源等として用いられている。
Conventionally, water-soluble KH2P has mainly been used as a nonlinear optical material.
Inorganic single crystal materials (dielectric crystals) such as O, (KDP), NH4H2PO4, or water-insoluble LtNbo, KNbOs are used, and examples of practical use include, for example, conversion of KDP. The second harmonic generation of a powerful YAG laser is used as a material, and it is used as a short wavelength laser driver for inertial nuclear fusion, a dye laser excitation light source for uranium separation, etc.

一方、最近では、尿素やp−ニトロアニリン、2−メチ
ル−4−ニトロアニリン(MNA)、4′−ニトロアニ
リン(MNA)、4− (N。
On the other hand, recently, urea, p-nitroaniline, 2-methyl-4-nitroaniline (MNA), 4'-nitroaniline (MNA), 4-(N), etc.

N−ジメチルアミノ)−4′−ニトロスチルベン(DA
NS)などの有機非線形光学材料の開発が進められてい
る。ポリジアセチレンやポリフッ化ビニリデンなどの高
分子材料に関しても、その非線形光学効果を利用して、
制御機能を有する導波路、光ICなどへの応用が検討さ
れている。
N-dimethylamino)-4'-nitrostilbene (DA
Development of organic nonlinear optical materials such as NS) is progressing. Regarding polymer materials such as polydiacetylene and polyvinylidene fluoride, we can utilize their nonlinear optical effects to
Applications to waveguides with control functions, optical ICs, etc. are being considered.

有機非線形光学材料は、一般に、非線形性の起源が分子
内π電子や分子間電荷移動等であるため、光応答に対し
て格子振動を伴わず、したがって無機材料に比べ応答が
速く、また、非線形光学定数が大きいものや吸収領域が
変化できるものなどを合成することが可能である。しか
も、材料素子化の方法も、単結晶化によるだけではなく
、LB膜、蒸着法、液晶化、高分子化などの各種の方法
が考えられる。
Organic nonlinear optical materials generally have nonlinearity originating from intramolecular π electrons or intermolecular charge transfer, so they do not involve lattice vibration in response to light, and therefore have a faster response than inorganic materials. It is possible to synthesize materials with large optical constants and materials with variable absorption regions. In addition, various methods such as LB film, vapor deposition, liquid crystal formation, polymerization, etc. are conceivable as a method of forming a material into an element, in addition to single crystallization.

非線形光学材料の最近の研究成果については、例えば、
加藤、中西監修「有機非線形光学材料」(シー・エム・
シー社、1985年発行)、やり、S CHEMLA、
J、ZYSS編”Non1inear 0ptical
 Pr。
For recent research results on nonlinear optical materials, see e.g.
``Organic nonlinear optical materials'' supervised by Kato and Nakanishi (CM;
S CHEMLA, Spear, S CHEMLA, Published in 1985)
J, ZYSS edition “Non1inear 0ptical
Pr.

perties and Crystals” Vol
、 I、Vol、TIなどの文献にまとめられている。
"Perties and Crystals" Vol.
, I, Vol., TI, etc.

ところで、非線形光学材料には、一般に、次のような特
性を有することが求められる。
By the way, nonlinear optical materials are generally required to have the following characteristics.

(1)非線形光学効果のうち、特に第2高調波発生(S
HG)は、変換の効率が高い等の理由から波長変換の基
本技術として位置付けられておりSHG効率(尿素を1
とする第2高調波の相対強度)の高いことが求められる
(1) Among nonlinear optical effects, especially second harmonic generation (S
HG) is positioned as a basic technology for wavelength conversion due to its high conversion efficiency, and SHG efficiency (1
The relative intensity of the second harmonic is required to be high.

(2)SHG等の2次の非線形光学効果を生じさせるに
は、その物質は反転対称中心を欠くことが必要な条件で
あり、また、結晶となった場合に、例えば、分子がその
双極子モーメントを互いに相殺するように配列して反転
対称中心を持つに至ることのないことが実用上水められ
る。
(2) In order to produce second-order nonlinear optical effects such as SHG, it is necessary for the substance to lack a center of inversion symmetry, and when it becomes a crystal, for example, when molecules In practice, it is important to arrange the moments so that they cancel each other out and not end up with a center of inversion symmetry.

(3)室温で安定でかつ出来るだけ大きな単結晶を形成
するものであることが望まれる。
(3) It is desired that the material be stable at room temperature and form a single crystal as large as possible.

(4)現在の半導体レーザーの波長は800nm程度で
あるので、極大波長(尤max )やカットオフ波長(
んcutoff)はできるだけ短波長領域にあることが
望ましい。
(4) The wavelength of current semiconductor lasers is about 800 nm, so the maximum wavelength (max) and cutoff wavelength (
(cutoff) is preferably in the short wavelength region as much as possible.

ところが、公知の無機非線形光学材料は、純度の高い単
結晶が高価であり、潮解性を有し、しかも有機材料に比
して一般にSHG効率が小さく、光の波長変換も限られ
た範囲でしか利用できないという欠点がある。
However, in known inorganic nonlinear optical materials, highly pure single crystals are expensive, have deliquescent properties, and generally have lower SHG efficiency than organic materials, and can only convert wavelengths of light within a limited range. The disadvantage is that it is not available.

方、有機非線形光学材料には、一般にS HG効率の大
きいものがあることは知られているが、室温で安定かつ
大きな結晶を調製するのが困難である。例えば、MNA
は高いS HG効率を有するけれども、大きな単結晶が
得られにくい。尿素は、大きな単結晶を得やすく、白色
・透明で、カットオフ波長も200nmと短波長である
けれども、耐湿性に劣るという欠点がある。また、スチ
ルベン誘導体のDANSは、分子レベルでは2次の非線
形分極率βは非常に大きい値を示すが、結晶になると分
子の配列に反転対称中心を持つに至るため非線形光学効
果を示さない。
On the other hand, it is known that some organic nonlinear optical materials generally have high SHG efficiency, but it is difficult to prepare stable and large crystals at room temperature. For example, MNA
Although it has high SHG efficiency, it is difficult to obtain large single crystals. Although urea is easy to obtain large single crystals, is white and transparent, and has a short cutoff wavelength of 200 nm, it has the disadvantage of poor moisture resistance. Further, DANS, which is a stilbene derivative, exhibits a very large second-order nonlinear polarizability β at the molecular level, but when it becomes a crystal, it does not exhibit a nonlinear optical effect because the molecular arrangement has a center of inversion symmetry.

このように、従来技術は、SHG効率が大きく、安定で
かつ大きな単結晶に成長させやすい有機非線形光学材料
を提供する点で、未だ不充分である。
As described above, the conventional technology is still insufficient in providing an organic nonlinear optical material that has high SHG efficiency, is stable, and is easy to grow into a large single crystal.

[発明が解決しようとする課題] 本発明の目的は、前記従来技術の有する問題点を克服し
、室温で安定で耐光損傷性に優れ、反転対称中心を持た
ない単結晶を形成し、必要に応じて大きな単結晶に成長
させることができ、SHG効率が良好で、カットオフ波
長が短波長領域にある有機非線形光学材料を提供するこ
とにある。
[Problems to be Solved by the Invention] An object of the present invention is to overcome the problems of the prior art described above, to form a single crystal that is stable at room temperature, has excellent resistance to light damage, and does not have a center of inversion symmetry, and to The object of the present invention is to provide an organic nonlinear optical material that can be grown into a large single crystal according to the requirements, has good SHG efficiency, and has a cutoff wavelength in a short wavelength region.

本発明者らは鋭意研究した結果、p−アセトアミドケイ
皮酸が前記目的に適合することを見出し、その知見に基
づいて本発明を完成するに至った。
As a result of intensive research, the present inventors found that p-acetamidocinnamic acid is suitable for the above-mentioned purpose, and based on that knowledge, they completed the present invention.

[課題を解決するための手段] すなわち、本発明によれば、下記式[I]で表されるp
−アセトアミドケイ皮酸から成ることを特徴とする有機
非線形光学材料が提供される。
[Means for solving the problem] That is, according to the present invention, p represented by the following formula [I]
- An organic nonlinear optical material is provided, characterized in that it consists of acetamidocinnamic acid.

以下、本発明の構成要素について詳述する。Hereinafter, the constituent elements of the present invention will be explained in detail.

[p−アセトアミドケイ皮酸] 本発明で用いる化合物のp−アセトアミドケイ皮酸は、
結晶性が良好であり、有機溶剤からのスローエバポレイ
ジョン法などにより容易に単結晶を得ることができる。
[p-acetamidocinnamic acid] The p-acetamidocinnamic acid compound used in the present invention is:
It has good crystallinity, and single crystals can be easily obtained by slow evaporation from organic solvents.

その単結晶は、室温で安定であり、光損傷を受けにくく
、また、加工が容易であるためデバイス化も容易である
The single crystal is stable at room temperature, is not easily damaged by light, and is easy to process, so it can be easily fabricated into devices.

そして、p−アセトアミドケイ皮酸の結晶微粉末は、尿
素能のSHG効率を示すことから明らかなように、良好
な非線形光学効果を示すと共に、そのカットオフ波長が
380nmと短波長にあるので、800nm程度の半導
体レーザーの波長変換素子としての使用が可能である。
The crystalline fine powder of p-acetamidocinnamic acid exhibits a good nonlinear optical effect, as is clear from the SHG efficiency of urea ability, and its cutoff wavelength is as short as 380 nm. It can be used as a wavelength conversion element for semiconductor lasers with a wavelength of about 800 nm.

本発明の化合物は、粉末、単結晶、溶液などの各種の態
様で、非線形光学材料として用いることができる。
The compound of the present invention can be used as a nonlinear optical material in various forms such as powder, single crystal, and solution.

(以下余白) [実施例] 以下に実施例を挙げて本発明を具体的に説明する。(Margin below) [Example] The present invention will be specifically described below with reference to Examples.

[実施例1] ランカスター(LANCASTER)社製のp−アセト
アミドケイ皮酸の微粉末結晶に、Nd:YAGレーザ−
(波長=1.064μm、出力10mJ/パルス)を照
射すると、第2次高調波が発生(SHG)L、入射光の
1/2の波長(532nm)の緑色光が観測できた。
[Example 1] Nd:YAG laser was applied to fine powder crystals of p-acetamidocinnamic acid manufactured by LANCASTER.
(wavelength = 1.064 μm, output 10 mJ/pulse), a second harmonic was generated (SHG) L, and green light with a wavelength (532 nm) half that of the incident light was observed.

また、そのSHG効率は、尿素と同程度であった。Moreover, its SHG efficiency was comparable to that of urea.

この化合物の結晶は室温で安定であり、結晶性も良好で
、レーザー光による光損傷は全く見られなかった。
The crystals of this compound were stable at room temperature, had good crystallinity, and showed no optical damage caused by laser light.

以上の事実から、この化合物が優れた有機非線形光学材
料であることが確認された。
From the above facts, it was confirmed that this compound is an excellent organic nonlinear optical material.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、室温で安定かつ結晶性良好で、しかち
白色で透明性に優れ、カットオフ波長が短波長領域にあ
り、耐光損傷性に優れた有機非線形材料を提供すること
ができる。
According to the present invention, it is possible to provide an organic nonlinear material that is stable at room temperature, has good crystallinity, is white, has excellent transparency, has a cutoff wavelength in a short wavelength region, and has excellent resistance to light damage.

本発明の有機非線形光学材料は、半導体レーザーの波長
変換素子としての使用が可能であるなど実用上重要な意
義を有する。
The organic nonlinear optical material of the present invention has important practical significance, such as being able to be used as a wavelength conversion element for a semiconductor laser.

Claims (1)

【特許請求の範囲】[Claims] (1)下記式〔 I 〕 ▲数式、化学式、表等があります▼〔 I 〕 で表されるp−アセトアミドケイ皮酸から成ることを特
徴とする有機非線形光学材料。
(1) An organic nonlinear optical material characterized by being composed of p-acetamidocinnamic acid represented by the following formula [I] ▲Mathematical formula, chemical formula, table, etc.▼[I].
JP8771790A 1990-04-02 1990-04-02 Organic nonlinear optical material Pending JPH03287135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8771790A JPH03287135A (en) 1990-04-02 1990-04-02 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8771790A JPH03287135A (en) 1990-04-02 1990-04-02 Organic nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH03287135A true JPH03287135A (en) 1991-12-17

Family

ID=13922658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8771790A Pending JPH03287135A (en) 1990-04-02 1990-04-02 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH03287135A (en)

Similar Documents

Publication Publication Date Title
JPH03287135A (en) Organic nonlinear optical material
US5167000A (en) Optical wavelength converter
US3982136A (en) Ternary ferroelectric fluoride nonlinear devices
JPH025032A (en) Wavelength conversion element and its production
JPH03287136A (en) Organic nonlinear optical material
JPH02187734A (en) Nonlinear optical organic material
JPH03287139A (en) Organic nonlinear optical material
JPH03287138A (en) Organic nonlinear optical material
JPH03140928A (en) Organic nonlinear optical material
JPH04277724A (en) Organic nonlinear optical material
JPH0381745A (en) Organic nonlinear optical material
JPH03287137A (en) Organic nonlinear optical material
JPH03255427A (en) Organic nonlinear optical material
JPH03181919A (en) Organic nonlinear optical material
JPH0381744A (en) Organic nonlinear optical material
JPH02248931A (en) Nonlinear optical organic material
JPH06306027A (en) Cyclobutenedionyl derivative crystal and production thereof
JP3205456B2 (en) Nonlinear optical device
JPH0285828A (en) Organic nonlinear optical material
JPH03140927A (en) Organic nonlinear optical material
JPH02113226A (en) Organic nonlinear optical material
JPH0381746A (en) Organic nonlinear optical material
JPH03146928A (en) Organic nonlinear optical material
JPH02196759A (en) New organic compound
JPH04258928A (en) Organic nonlinear optical material