JPH038094B2 - - Google Patents

Info

Publication number
JPH038094B2
JPH038094B2 JP28070285A JP28070285A JPH038094B2 JP H038094 B2 JPH038094 B2 JP H038094B2 JP 28070285 A JP28070285 A JP 28070285A JP 28070285 A JP28070285 A JP 28070285A JP H038094 B2 JPH038094 B2 JP H038094B2
Authority
JP
Japan
Prior art keywords
tetracyanoquinodimethane
electrolyte
electrolytic capacitor
complex salt
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP28070285A
Other languages
Japanese (ja)
Other versions
JPS62139313A (en
Inventor
Shigeru Uzawa
Hozumi Nakada
Koichi Hagiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RUBIKON KK
Original Assignee
RUBIKON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RUBIKON KK filed Critical RUBIKON KK
Priority to JP28070285A priority Critical patent/JPS62139313A/en
Publication of JPS62139313A publication Critical patent/JPS62139313A/en
Publication of JPH038094B2 publication Critical patent/JPH038094B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は電解コンデンサに係り、特に7,7,
8,8−テトラシアノキノジメタン錯塩に代表さ
れる有機半導体を電解質内に有した電解コンデン
サに関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to electrolytic capacitors, particularly 7, 7,
The present invention relates to an electrolytic capacitor having an organic semiconductor represented by 8,8-tetracyanoquinodimethane complex salt in the electrolyte.

[発明の技術的背景とその問題点] 一般に、電解コンデンサはアルミニウム
(Al)、タンタル(Ta)のような弁金属を陽極と
し、その表面に形成した陽極酸化皮膜(以下酸化
皮膜という)を誘電体として用い、更にその酸化
皮膜上に電解質層を介在して陰極を対向配置した
構造とされている。このような電解コンデンサ
は、電解質として液体電解質(以下電解液とい
う)を用いたものと固体電解質を用いたものとに
大別され、何れも大容量化が可能であることから
種々の電子回路に使用されている。
[Technical background of the invention and its problems] Generally, electrolytic capacitors use a valve metal such as aluminum (Al) or tantalum (Ta) as an anode, and an anodized film (hereinafter referred to as oxide film) formed on the surface of the anode is used as a dielectric. It has a structure in which a cathode is disposed facing each other with an electrolyte layer interposed on the oxide film. Such electrolytic capacitors are broadly divided into those that use liquid electrolyte (hereinafter referred to as electrolyte) and those that use solid electrolyte as the electrolyte, and because both can have a large capacity, they are used in various electronic circuits. It is used.

電解コンデンサを評価する上での重要な特性
は、静電容量、tanδ及び漏れ電流である。静電容
量C、tanδは一般的に次式で表わされる。
Important characteristics in evaluating electrolytic capacitors are capacitance, tanδ, and leakage current. The capacitance C and tan δ are generally expressed by the following formula.

C=K×(S/d)=K′×(S/V)………(1) tanδ=ωCR=ωC(R1+R2) ………(2) 但し、K、K′は定数、Sは電解面積、dは酸
化皮膜厚さ、Vは酸化皮膜耐電圧、ωは角周波
数、Rは等価直列抵抗、R1は酸化皮膜に起因す
る抵抗、R2は電解質及び電極等に起因する抵抗
である。
C=K×(S/d)=K′×(S/V)……(1) tanδ=ωCR=ωC(R 1 +R 2 )……(2) However, K and K′ are constants, S is the electrolytic area, d is the oxide film thickness, V is the oxide film withstand voltage, ω is the angular frequency, R is the equivalent series resistance, R 1 is the resistance due to the oxide film, R 2 is due to the electrolyte, electrodes, etc. It is resistance.

ところで、小型で大容量の電解コンデンサを実
現するには、上記の(1)式で明らかなように、電極
面積Sを大きくし、酸化皮膜耐電圧Vをできる限
りコンデンサの定格電圧に近づけることが必要で
ある。電極面積Sについては、これを大きくする
ために陽極体の表面は微細な凹凸を有する構造に
設計されるのが一般的である。また、コンデンサ
の損失分であるtanδについては、これを低下させ
るために、上記(2)式に示す等価直列抵抗Rを小さ
くすることが必要である。等価直列抵抗Rの内、
酸化皮膜に起因する抵抗R1は酸化皮膜自体の性
質及び形成条件に依存するものであり、これを低
下させることは簡単ではない。さらに、高周波領
域における等価直列抵抗Rは電解質等に起因する
抵抗R2によつて支配されるため、この抵抗R2
小さくすることができれば広い周波数領域にわた
るtanδの低下が可能となる。抵抗R2は電解質の
電導度に依存している。
By the way, in order to realize a small-sized, large-capacity electrolytic capacitor, it is necessary to increase the electrode area S and bring the oxide film withstand voltage V as close to the rated voltage of the capacitor as possible, as shown in equation (1) above. is necessary. In order to increase the electrode area S, the surface of the anode body is generally designed to have a structure having minute irregularities. Furthermore, in order to reduce tan δ, which is the loss of the capacitor, it is necessary to reduce the equivalent series resistance R shown in the above equation (2). Of the equivalent series resistance R,
The resistance R 1 caused by the oxide film depends on the properties and formation conditions of the oxide film itself, and it is not easy to reduce it. Furthermore, since the equivalent series resistance R in the high frequency range is controlled by the resistance R 2 caused by the electrolyte, etc., if this resistance R 2 can be made small, tan δ can be reduced over a wide frequency range. The resistance R 2 depends on the conductivity of the electrolyte.

次に、電解コンデンサ用の電解質の具備すべき
条件を挙げると次のようになる。
Next, the conditions that the electrolyte for an electrolytic capacitor should meet are as follows.

酸化皮膜を修復形成(再化成)するに足りる
十分な陽極酸化性を有すること。
Must have sufficient anodic oxidation properties to repair and form (reform) an oxide film.

電解コンデンサの抵抗成分に大きく影響する
電解質抵抗が低いこと。
Low electrolyte resistance, which greatly affects the resistance component of electrolytic capacitors.

酸化皮膜の全表面に対する被覆率が高く、酸
化皮膜に低抵抗で密着した緻密な電解質層を形
成し得ること。
A dense electrolyte layer can be formed that has a high coverage of the entire surface of the oxide film and adheres to the oxide film with low resistance.

従来、電解液を用いたコンデンサ例えば電解液
としてエチレングリコール−有機酸塩を用いたア
ルミニウム電解コンデンサは、エツチングされた
アルミニウム陽極箔上の酸化皮膜の微細な凹凸に
対して電解液の十分な含浸が可能で、酸化皮膜に
対する電解液の被覆率は90%以上と非常に高い上
に、電解液の陽極酸化性に優れている。しかし、
電解液の抵抗は比較的大きく、コンデンサのtanδ
を小さくするには限界がある。更に、電導機構が
イオン電導であるため低温特性及び高周波特性に
劣るという欠点がある。
Conventionally, capacitors using electrolytic solutions, such as aluminum electrolytic capacitors using ethylene glycol-organic acid salts as the electrolytic solution, have problems with sufficient impregnation of the electrolytic solution into the fine irregularities of the oxide film on the etched aluminum anode foil. This is possible, and the coverage of the electrolyte on the oxide film is extremely high at over 90%, and the electrolyte has excellent anodic oxidation properties. but,
The resistance of the electrolyte is relatively large, and the tanδ of the capacitor
There is a limit to how small it can be. Furthermore, since the conduction mechanism is ion conduction, there is a drawback that low-temperature characteristics and high-frequency characteristics are poor.

一方、固体電解質を用いたコンデンサ例えば硝
酸マンガン溶液の熱分解により形成した二酸化マ
ンガン(MnO2)を固体電解質として使用したタ
ンタル固体電解コンデンサは、MnO2の電気抵抗
が低く電子電導が主であるため、低温特性に優れ
ているが、MnO2層形成時の熱分解工程における
酸化皮膜の損傷が避けられない上に、MnO2には
陽極酸化性が殆んどない。またMnO2層の酸化皮
膜に対する被覆率は電解液に比べて著しく低いと
いう欠点がある。
On the other hand, capacitors using solid electrolytesFor example, tantalum solid electrolytic capacitors use manganese dioxide (MnO 2 ) formed by thermal decomposition of manganese nitrate solution as a solid electrolyte, because MnO 2 has low electrical resistance and is mainly electronic conductor. , has excellent low-temperature properties, but damage to the oxide film during the thermal decomposition process during the formation of the MnO 2 layer is unavoidable, and MnO 2 has almost no anodic oxidation property. Another drawback is that the coverage of the oxide film of the MnO 2 layer is significantly lower than that of the electrolyte.

ところで、高電導性の有機半導体である7,
7,8,8−テトラシアノキノジメタン錯塩(以
下TCNQ錯塩という)を電解質に用いた電解コ
ンデンサが種々提案されている。TCNQ錯塩は
10-2〜101Ωcmの低抵抗を示す微粉末状の微細結
晶であり、これを如何にして固体電解質層として
形成するかが問題であつた。
By the way, 7, which is a highly conductive organic semiconductor,
Various electrolytic capacitors using 7,8,8-tetracyanoquinodimethane complex salt (hereinafter referred to as TCNQ complex salt) as an electrolyte have been proposed. TCNQ complex salt is
It is a fine powder-like crystal that exhibits a low resistance of 10 -2 to 10 1 Ωcm, and the problem was how to form it as a solid electrolyte layer.

現在までに提案されているTCNQ錯塩を固体
電解質層に使用した電解コンデンサには、 米国特許第3214648号や、特開昭57−173928
号公報及び特開昭58−17609号公報に提案され
ているように、TCNQ錯塩のみで固体電解質
層を形成したもの。
Electrolytic capacitors using TCNQ complex salts in the solid electrolyte layer that have been proposed to date include U.S. Patent No. 3214648 and Japanese Patent Application Laid-Open No. 173928/1983.
As proposed in Japanese Patent Application Laid-Open No. 58-17609, a solid electrolyte layer is formed only from TCNQ complex salt.

本件特許出願人が昭和60年6月7日に特許出
願した特願昭60−123857号に示すように、
TCNQ錯塩とその溶媒とから成る電導性混合
物で電解質層を形成したものがある。
As shown in Japanese Patent Application No. 123857, filed by the patent applicant on June 7, 1985,
There is one in which an electrolyte layer is formed from a conductive mixture consisting of a TCNQ complex salt and its solvent.

上記の電導性混合物による電解質は、上記
の電解質が有している陽極酸化性の欠如と酸化皮
膜に対する被覆性の弱点を改善したもので、高電
導性と、優れた陽極酸化性と、高い被覆性を有
し、この電導性混合物を用いた電解コンデンサは
固体電解質と電解液の双方の長所を持つ優れた特
性を示す。電導性混合物としては、例えばN−n
−ブチルイソキノリニウムのカチオンと7,7,
8,8−テトラシアノキノジメタンアニオンラジ
カル(TCNQ
The electrolyte made from the above-mentioned conductive mixture has improved the lack of anodic oxidation property and the weak point of coverage against oxide film of the above-mentioned electrolyte, and has high conductivity, excellent anodic oxidation property, and high coverage. Electrolytic capacitors using this conductive mixture exhibit excellent characteristics, having the advantages of both solid electrolytes and electrolytes. As the conductive mixture, for example, N-n
-Butylisoquinolinium cation and 7,7,
8,8-tetracyanoquinodimethane anion radical (TCNQ

Claims (1)

【特許請求の範囲】 1 電解質が、含窒素複素環化合物のカチオンと
7,7,8,8−テトラシアノキノジメタンアニ
オンラジカルと7,7,8,8,−テトラシアノ
キノジメタンから成る7,7,8,8−テトラシ
アノキノジメタン錯塩と、7,7,8,8−テト
ラシアノキノジメタンと、溶媒との少なくとも三
つの成分で構成されることを特徴とする電解コン
デンサ。 2 前記電解質が、前記7,7,8,8−テトラ
シアノキノジメタン錯塩のモル数1に対して前記
7,7,8,8−テトラシアノキノジメタンは5
以下であることを特徴とする特許請求の範囲第1
項記載の電解コンデンサ。 3 前記7,7,8,8−テトラシアノキノジメ
タン錯塩は、前記含窒素複素環化合物がN−n−
ブチルイソキノリニウムであることを特徴とする
特許請求の範囲第1項又は第2項記載の電解コン
デンサ。 4 前記7,7,8,8−テトラシアノキノジメ
タン錯塩は、前記含窒素複素環化合物が3−n−
ブチル−1,2−ジメチル−1H−イミダゾリウ
ムであることを特徴とする特許請求の範囲第1項
又は第2項記載の電解コンデンサ。 5 前記溶媒は、γ−ブチロラクトンであること
を特徴とする特許請求の範囲第1項、第2項又は
第3項記載の電解コンデンサ。 6 前記溶媒は、ジエチレングリコール−モノ−
n−ブチルエーテルであることを特徴とする特許
請求の範囲第1項、第2項又は第4項記載の電解
コンデンサ。
[Claims] 1. The electrolyte consists of a cation of a nitrogen-containing heterocyclic compound, a 7,7,8,8-tetracyanoquinodimethane anion radical, and 7,7,8,8,-tetracyanoquinodimethane. An electrolytic capacitor comprising at least three components: 7,7,8,8-tetracyanoquinodimethane complex salt, 7,7,8,8-tetracyanoquinodimethane, and a solvent. 2 The electrolyte is such that the number of moles of the 7,7,8,8-tetracyanoquinodimethane is 5 to 1 of the 7,7,8,8-tetracyanoquinodimethane complex salt.
Claim 1 characterized in that:
Electrolytic capacitors listed in section. 3 The 7,7,8,8-tetracyanoquinodimethane complex salt is such that the nitrogen-containing heterocyclic compound is N-n-
The electrolytic capacitor according to claim 1 or 2, wherein the electrolytic capacitor is made of butylisoquinolinium. 4 The 7,7,8,8-tetracyanoquinodimethane complex salt is such that the nitrogen-containing heterocyclic compound is 3-n-
The electrolytic capacitor according to claim 1 or 2, characterized in that it is butyl-1,2-dimethyl-1H-imidazolium. 5. The electrolytic capacitor according to claim 1, 2, or 3, wherein the solvent is γ-butyrolactone. 6 The solvent is diethylene glycol mono-
5. The electrolytic capacitor according to claim 1, 2, or 4, wherein the electrolytic capacitor is n-butyl ether.
JP28070285A 1985-12-13 1985-12-13 Electrolytic capacitor Granted JPS62139313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28070285A JPS62139313A (en) 1985-12-13 1985-12-13 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28070285A JPS62139313A (en) 1985-12-13 1985-12-13 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS62139313A JPS62139313A (en) 1987-06-23
JPH038094B2 true JPH038094B2 (en) 1991-02-05

Family

ID=17628760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28070285A Granted JPS62139313A (en) 1985-12-13 1985-12-13 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS62139313A (en)

Also Published As

Publication number Publication date
JPS62139313A (en) 1987-06-23

Similar Documents

Publication Publication Date Title
JPH0794368A (en) Solid electrolytic capacitor and manufacture thereof
JP2945890B2 (en) Electric double layer capacitor
JP3872182B2 (en) Electric double layer capacitor
JPH04196511A (en) Electric double layer capacitor
JPS63226912A (en) Electrolyte for electrolytic capacitor
JPH038094B2 (en)
JPH0553051B2 (en)
JP2001223136A (en) Aluminum electrolytic capacitor
JPH0342692B2 (en)
JPH04233210A (en) Electric double layer capacitor
JP2003309041A (en) Solid electrolytic capacitor
JPH0342693B2 (en)
JP2572021B2 (en) Electrolyte for electrolytic capacitors
JPH0917686A (en) Capacitor
JPH0337854B2 (en)
JP2701875B2 (en) Electrolyte for electrolytic capacitors
JPH0426775B2 (en)
JPH1154377A (en) Electric double layer capacitor
JPS6354209B2 (en)
JPH04233212A (en) Electric double layer capacitor
JPS5892207A (en) Electrolyte for driving electrolytic condenser
JPH0550126B2 (en)
JPH0666237B2 (en) Solid electrolytic capacitor
JPH04233211A (en) Electric double layer capacitor
JPH0550125B2 (en)