JPH0380783B2 - - Google Patents

Info

Publication number
JPH0380783B2
JPH0380783B2 JP61299918A JP29991886A JPH0380783B2 JP H0380783 B2 JPH0380783 B2 JP H0380783B2 JP 61299918 A JP61299918 A JP 61299918A JP 29991886 A JP29991886 A JP 29991886A JP H0380783 B2 JPH0380783 B2 JP H0380783B2
Authority
JP
Japan
Prior art keywords
catalyst
cyclohexene
hydration
zeolite
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61299918A
Other languages
Japanese (ja)
Other versions
JPS63154636A (en
Inventor
Osamu Mitsui
Hideaki Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61299918A priority Critical patent/JPS63154636A/en
Publication of JPS63154636A publication Critical patent/JPS63154636A/en
Publication of JPH0380783B2 publication Critical patent/JPH0380783B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は環状オレフインの水和により環状アル
コールを製造する新規な方法に関するものであ
る。さらに詳しくは、有機過酸化物が実質的に存
在しない反応系で触媒としてゼオライトを用い接
触水和を行なうことを特徴とする環状アルコール
の製造方法に関するものである。 〔従来の技術〕 従来、オレフインの水和反応によるアルコール
の好ましい製造方法としては、結晶性アルミノシ
リケート等のゼオライトを使用する方法(例え
ば、特公昭47−45323号、特公昭53−15485号、特
開昭57−70828号、特開昭58−124723号、特開昭
58−194828号等の各公報)が知られている。 〔発明が解決しようとする問題点〕 固体触媒としてゼオライトを用いる方法は、製
品アルコールの分離、回収が容易であり、又反応
器の材質も特に制約されないという利点がある。
しかし、ゼオライトを触媒とする方法は、種々検
討した結果、その触媒活性が経時的に低下すると
いう問題があることが分つた。 したがつて、環状オレフインの水和反応を行な
う場合には、活性の低下した触媒を再生あるいは
新たに補充あるいは交換する必要があり、そのた
め多大の費用が必要となり、工業的に行なう場合
に問題がある。 〔問題点を解決するための手段〕 本発明者らは、上記のゼオライトを触媒として
使用するときの問題点を解決すべく鋭意検討を重
ねた結果、有機過酸化物が実質的に存在しない反
応系で接触水和を行なうことにより、触媒活性の
経時的な低下が著しく抑制されることを見出し、
本発明を完成するに至つた。 すなわち本発明は、触媒としてゼオライトを用
い環状オレフインの接触水和により環状アルコー
ルを製造するに際し、有機過酸化物が実質的に存
在しない反応系で接触水和を行なうことを特徴と
する環状アルコールの製造方法である。 従来の方法と比較して本発明において触媒活性
の経時的な低下が著しく抑制される理由は明確で
はないが、およそ次のように考えられる。 本発明者の検討結果、通常、環状オレフインに
は有機過酸化物が含まれていることが判明した。
環状オレフイン、例えばシクロヘキセンは商業的
にはクロルシクロヘキサンの脱ハロゲン化水素に
より生産されている。このような製造方法によつ
て製造されたシクロヘキセン中には有機過酸化物
が含まれている。 また、本発明者の検討結果によるとシクロヘキ
セン中に含まれる有機過酸化物は、その貯蔵中に
も増加することが判つた。通常、シクロヘキセン
中には20ミリグラム当量/Kg〜100ミリグラム当
量/Kgが、場合によつてはそれ以上の有機過酸化
物が含有している。 水和反応触媒の経時的活性低下に影響を及ぼす
重要な因子がこのような有機過酸化物であること
はこれまで知られておらず、本発明者らによつて
初めて見い出されたものである。すなわち従来の
水和反応では、製品アルコールの収率に影響を及
ぼさない程度の有機過酸化物の存在は、それ以上
の除去を不要のものとして見過していた。しかし
そのような微量の有機過酸化物であつても、ゼオ
ライトを触媒として用い、水和反応を長時間行な
う場合には、触媒活性の顕著な低下が観測され
た。 結晶性アルミノシリケート等のゼオライトを触
媒として水和反応を行なう場合、触媒の経時的な
活性低下の理由は、原料に不純物として存在して
いる有機過酸化物に基づくゼオライトの活性点で
の反応により生成する極性の高い高分子状の副反
応生成物が、触媒のその活性点上に非可逆的に吸
着し、結果として触媒活性点を被覆して活性を低
下させるものと考えられる。一方、均一系触媒を
用いた水和反応では、上記の高分子状の副反応生
成物は、たとえ生成しても、触媒活性には影響せ
ずしかも濾過や吸着等の操作により触媒との分離
を容易に行なうことができ、本質的問題とならな
い。 したがつて、この効果は、固体触媒であるゼオ
ライトを触媒として用いる本発明における特有の
ものである。 本発明の製造方法、すなわち有機過酸化物が実
質的に存在しない反応系で環状オレフインの接触
水和を行なうときは、上記のような現象は本質的
に起こらないため、触媒の活性は長時間接続する
ことができる。 本発明の方法では、水和触媒として結晶性アル
ミノシリケート等のゼオライトが使用される。好
ましいゼオライトの例としてはモルデナイト、エ
リオナイト、フエリエライト、モービル社発表の
ZSM系ゼオライト等の結晶性アルミノシリケー
トおよびボロシリケート等の異元素含有ゼオライ
トが用いられる。 また、ゼオライトの交換可能なカチオン種は通
常プロトン交換型が用いられるが、Mg,Oa,Sr
等のアルカリ土類元素、La,Ce等の希土類元素、
Fe,Co,Ni,Ru,Pd,Pt等の族元素から選
ばれた少なくとも一種のカチオン種で交換されて
いることも有効である。あるいは、Ti,Zr,Hf,
Cr,Mo,W等を含有させることも有効である。 また、本発明の方法に用いるゼオライト触媒の
形態は如何なるものでもよく、例えば粉末状、顆
粒状等のものが使用できる。また、担体あるいは
バインダーとしてアルミナ、シリカ、チタニア等
を使用することもできる。 本発明で使用される環状オレフインは、好まし
くはシクロペンテン、メチルシクロペンテン類、
シクロヘキセン、メチルシクロヘキセン類、シク
ロオクテン、シクロドデセン等である。 本発明において有機過酸化物とは、分子内に酸
素−酸素−重結合を有する有機化合物を示し、例
えば下記の一般式に示す化合物である。 (1) ハイドロパーオキサイド ROOH R=アルキル、シクロアルキ
ル (2) パーオキサイド R1OOR2 R1,R2=アルキル、シクロ
アルキル (3) 過酸
[Industrial Field of Application] The present invention relates to a novel method for producing cyclic alcohols by hydration of cyclic olefins. More specifically, the present invention relates to a method for producing a cyclic alcohol characterized by carrying out catalytic hydration using zeolite as a catalyst in a reaction system substantially free of organic peroxides. [Prior Art] Conventionally, a preferred method for producing alcohol by hydration reaction of olefin is a method using zeolite such as crystalline aluminosilicate (for example, Japanese Patent Publication No. 47-45323, Japanese Patent Publication No. 53-15485, Japanese Patent Publication No. 53-15485, JP-A-57-70828, JP-A-58-124723, JP-A-Sho
58-194828, etc.) are known. [Problems to be Solved by the Invention] The method of using zeolite as a solid catalyst has the advantage that product alcohol can be easily separated and recovered, and there are no particular restrictions on the material of the reactor.
However, as a result of various studies, it has been found that the method using zeolite as a catalyst has a problem in that the catalytic activity decreases over time. Therefore, when carrying out the hydration reaction of cyclic olefins, it is necessary to regenerate, replenish, or replace the catalyst whose activity has decreased, which requires a large amount of cost and is problematic when carried out industrially. be. [Means for Solving the Problems] As a result of intensive studies to solve the problems when using the above-mentioned zeolite as a catalyst, the present inventors have developed a reaction method in which organic peroxides are not substantially present. We discovered that by performing catalytic hydration in the system, the decline in catalyst activity over time was significantly suppressed.
The present invention has now been completed. That is, the present invention provides a method for producing a cyclic alcohol by catalytic hydration of a cyclic olefin using zeolite as a catalyst, which is characterized in that the catalytic hydration is carried out in a reaction system substantially free of organic peroxides. This is the manufacturing method. The reason why the decline in catalyst activity over time is significantly suppressed in the present invention compared to conventional methods is not clear, but it is thought to be approximately as follows. As a result of studies conducted by the present inventors, it has been found that cyclic olefins usually contain organic peroxides.
Cyclic olefins, such as cyclohexene, are commercially produced by dehydrohalogenation of chlorocyclohexane. Cyclohexene produced by such a production method contains an organic peroxide. Further, according to the study results of the present inventors, it was found that the organic peroxide contained in cyclohexene increases even during its storage. Usually, cyclohexene contains between 20 milligram equivalents/Kg and 100 milligram equivalents/Kg, and sometimes more, of organic peroxide. It has not been previously known that such organic peroxides are an important factor that affects the decline in activity of hydration reaction catalysts over time, and this was discovered for the first time by the present inventors. . That is, in conventional hydration reactions, the presence of organic peroxides to the extent that they do not affect the yield of product alcohol is overlooked as unnecessary to remove. However, even with such a trace amount of organic peroxide, when zeolite was used as a catalyst and the hydration reaction was carried out for a long time, a significant decrease in catalytic activity was observed. When a hydration reaction is carried out using zeolite such as crystalline aluminosilicate as a catalyst, the reason why the activity of the catalyst decreases over time is due to the reaction at the active sites of the zeolite based on the organic peroxide present as an impurity in the raw material. It is thought that the generated highly polar polymeric side reaction products irreversibly adsorb onto the active sites of the catalyst, thereby coating the catalyst active sites and reducing the activity. On the other hand, in the hydration reaction using a homogeneous catalyst, even if the above-mentioned polymeric side reaction products are generated, they do not affect the catalytic activity and can be separated from the catalyst by operations such as filtration or adsorption. can be easily done and poses no essential problem. Therefore, this effect is unique to the present invention, which uses zeolite, which is a solid catalyst, as a catalyst. In the production method of the present invention, that is, when catalytic hydration of a cyclic olefin is carried out in a reaction system substantially free of organic peroxides, the above-mentioned phenomenon essentially does not occur, so the activity of the catalyst is maintained for a long time. Can be connected. In the method of the invention, zeolites such as crystalline aluminosilicates are used as hydration catalysts. Examples of preferred zeolites include mordenite, erionite, ferrierite, and those published by Mobil.
Crystalline aluminosilicates such as ZSM-based zeolites and zeolites containing different elements such as borosilicate are used. In addition, the proton exchange type is usually used as the exchangeable cation species of zeolite, but Mg, Oa, Sr
alkaline earth elements such as, rare earth elements such as La, Ce, etc.
It is also effective to exchange with at least one cation species selected from group elements such as Fe, Co, Ni, Ru, Pd, and Pt. Or Ti, Zr, Hf,
It is also effective to include Cr, Mo, W, etc. Further, the zeolite catalyst used in the method of the present invention may be in any form, for example, powder, granules, etc. can be used. Furthermore, alumina, silica, titania, etc. can also be used as a carrier or binder. The cyclic olefin used in the present invention is preferably cyclopentene, methylcyclopentenes,
These include cyclohexene, methylcyclohexene, cyclooctene, and cyclododecene. In the present invention, the organic peroxide refers to an organic compound having an oxygen-oxygen-polymer bond in the molecule, and is, for example, a compound represented by the following general formula. (1) Hydroperoxide ROOH R = alkyl, cycloalkyl (2) Peroxide R 1 OOR 2 R 1 , R 2 = alkyl, cycloalkyl (3) Peracid

【式】 R=アルキル、シクロアルキ ル (4) 過酸エステル[Formula] R = alkyl, cycloalkyl le (4) Peracid ester

〔実施例〕〔Example〕

以下に実施例および比較例を示し、本発明を具
体的に述べる。 参考例 (触媒の調製) ケイ酸ソーダ(水ガラス3号)1450gを水700
gに溶解し(A液)、また、硫酸アルミニウム104
gと濃硫酸35gを水400gに溶解し(B液)、さら
に、1,3−ジメチル尿素170gを水800gに溶解
した(C液)。A液をホモジナイザーを用いて撹
拌しながら、B,C液と混合した。得られたゲル
状の水性混合物を内容積5の撹拌機付きステン
レス製オートクレーブへ仕込み、撹拌周速
1.5m/secで撹拌しながら、20時間160℃に加熱
した。生成した結晶性アルミノシリケートを遠心
分離機で分離し、水洗後、120℃で4時間乾燥し
た。次いで、空気気流下に550℃で5時間焼成し
た。さらに、塩化アンモニウム2M水溶液でカチ
オン交換を3回繰りかえした。水洗、濾過、乾燥
後、400℃で2時間焼成し、プロトン交換型結晶
性アルミノシリケートした。 (触媒1) 実施例 1 シクロヘキセン(和光、特級品)を真空脱気
後、窒素下で硫酸鉄()0.5mol/水溶液で
3回洗浄し、さらに精密分留装置で十分に酸素を
除去し常圧蒸留を行ない沸点82〜83℃の留分(A)を
得た。未処理シクロヘキセンと処理シクロヘキセ
ン(留分A)をそれぞれ分析し、含有される有機
過酸化物を定量した。結果を第1表に示す。 図面に示すような連続流通反応装置を用いて、
シクロヘキセンの水和反応を行なつた。 内容積500mlの撹拌装置付ステンレス製オート
クレーブ反応器3に、参考例で調製した触媒1を
40gと水120gを仕込み、系内を窒素ガス置換し
た。回転数500rpmで撹拌しつつ反応器を昇温し、
反応温度135℃とした後、供給管1よりシクロヘ
キセン(留分A)を250g/hrの速度で、また、
液面の高さが一定となるように供給管2より水
を、それぞれ供給する。反応器から溢流した反応
混合物は、溢流管4より液液分離器5へ導入され
る。分離された反応混合物中のオイル相は、排出
管6より系外へ抜き出され、触媒−水相は復帰管
7により反応器へ回収される。原料シクロヘキセ
ン供給開始3時間後における排出オイル中のシク
ロヘキサノール濃度は9.2重量%であつた。また、
250時間経過後の排出オイル中のシクロヘキサノ
ール濃度は8.5重量%であつた。
Examples and comparative examples are shown below to specifically describe the present invention. Reference example (preparation of catalyst) Add 1450g of sodium silicate (water glass No. 3) to 700g of water.
(solution A), and also aluminum sulfate 104
g and 35 g of concentrated sulfuric acid were dissolved in 400 g of water (solution B), and further, 170 g of 1,3-dimethylurea was dissolved in 800 g of water (solution C). Solution A was mixed with solutions B and C while being stirred using a homogenizer. The resulting gel-like aqueous mixture was charged into a stainless steel autoclave with an internal volume of 5 and equipped with a stirrer, and the stirring peripheral speed was increased.
The mixture was heated to 160° C. for 20 hours while stirring at 1.5 m/sec. The produced crystalline aluminosilicate was separated using a centrifuge, washed with water, and then dried at 120°C for 4 hours. Then, it was fired at 550° C. for 5 hours under a stream of air. Furthermore, cation exchange was repeated three times with a 2M ammonium chloride aqueous solution. After washing with water, filtering, and drying, it was calcined at 400°C for 2 hours to form a proton exchange type crystalline aluminosilicate. (Catalyst 1) Example 1 After vacuum degassing of cyclohexene (Wako, special grade), it was washed three times with 0.5 mol of iron sulfate ()/aqueous solution under nitrogen, and oxygen was thoroughly removed using a precision fractionator, and the mixture was heated under normal conditions. Pressure distillation was performed to obtain a fraction (A) with a boiling point of 82-83°C. Untreated cyclohexene and treated cyclohexene (Fraction A) were each analyzed to determine the amount of organic peroxide contained therein. The results are shown in Table 1. Using a continuous flow reactor as shown in the drawing,
The hydration reaction of cyclohexene was carried out. Catalyst 1 prepared in the reference example was placed in a stainless steel autoclave reactor 3 with an internal volume of 500 ml and equipped with a stirring device.
40g and 120g of water were charged, and the inside of the system was replaced with nitrogen gas. Raise the temperature of the reactor while stirring at a rotation speed of 500 rpm,
After the reaction temperature was set to 135°C, cyclohexene (fraction A) was added from supply pipe 1 at a rate of 250 g/hr, and
Water is supplied from the supply pipes 2 so that the height of the liquid level is constant. The reaction mixture overflowing from the reactor is introduced into the liquid-liquid separator 5 through the overflow pipe 4. The oil phase in the separated reaction mixture is taken out of the system through a discharge pipe 6, and the catalyst-water phase is recovered into the reactor through a return pipe 7. The concentration of cyclohexanol in the discharged oil 3 hours after the start of supply of the raw material cyclohexene was 9.2% by weight. Also,
The concentration of cyclohexanol in the discharged oil after 250 hours was 8.5% by weight.

【表】 比較例 1 原料として前記の試薬シクロヘキセンを使用し
た他は実施例1と同一の反応条件で水和反応を行
なつた。原料シクロヘキセン供給開始3時間後に
おける排出オイル中のシクロヘキサノール濃度は
8.6重量%であつた。また96時間後の排出オイル
中のシクロヘキサノール濃度は1.1重量%であつ
た。 実施例 2〜4 実施例1に使用したシクロヘキセンに別途調製
したシクロヘキセンハイドロパーオキシドを加え
第2表に示す有機過酸化物含有量のシクロヘキセ
ンを作り、原料として用いた他は実施例1と同一
の反応条件で水和反応を行つた。原料シクロヘキ
セン供給開始200時間経過後の排出オイル中のシ
クロヘキサノール濃度を第2表に示す。
[Table] Comparative Example 1 A hydration reaction was carried out under the same reaction conditions as in Example 1, except that the above-mentioned reagent cyclohexene was used as a raw material. The concentration of cyclohexanol in the discharged oil 3 hours after starting the supply of raw material cyclohexene is
It was 8.6% by weight. The concentration of cyclohexanol in the discharged oil after 96 hours was 1.1% by weight. Examples 2 to 4 Cyclohexene hydroperoxide prepared separately was added to the cyclohexene used in Example 1 to produce cyclohexene having the organic peroxide content shown in Table 2. The hydration reaction was carried out under reaction conditions. Table 2 shows the concentration of cyclohexanol in the discharged oil 200 hours after the start of supply of the raw material cyclohexene.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、環状オレフインの接触水和に
より環状アルコールを製造するに際し、有機過酸
化物が実質的に存在しない反応系で触媒としてゼ
オライトを用い接触水和を行なうことにより、従
来の方法と比較して触媒活性の経時的な低下が著
しく抑制され、活性が長時間持続する。
According to the present invention, when producing a cyclic alcohol by catalytic hydration of a cyclic olefin, the catalytic hydration is carried out using zeolite as a catalyst in a reaction system substantially free of organic peroxides, which is different from the conventional method. In comparison, the decline in catalyst activity over time is significantly suppressed, and the activity lasts for a long time.

【図面の簡単な説明】[Brief explanation of drawings]

図面は実施例および比較例で用いた連続流通反
応装置である。図中、1はシクロヘキセン供給
管、2は水供給管、3はオートクレーブ反応器、
4は溢流管、5は液液分離器、6は排出管、7は
復帰管を示す。
The drawing shows a continuous flow reactor used in Examples and Comparative Examples. In the figure, 1 is a cyclohexene supply pipe, 2 is a water supply pipe, 3 is an autoclave reactor,
4 is an overflow pipe, 5 is a liquid-liquid separator, 6 is a discharge pipe, and 7 is a return pipe.

Claims (1)

【特許請求の範囲】 1 触媒としてゼオライトを用い環状オレフイン
の接触水和により環状アルコールを製造するに際
し、有機過酸化物が実質的に存在しない反応系で
接触水和を行なうことを特徴とする環状アルコー
ルの製造方法。 2 環状オレフインがシクロヘキセンである特許
請求の範囲第1項記載の方法。
[Claims] 1. A cyclic alcohol characterized in that when a cyclic alcohol is produced by catalytic hydration of a cyclic olefin using zeolite as a catalyst, the catalytic hydration is carried out in a reaction system substantially free of organic peroxides. Method of producing alcohol. 2. The method according to claim 1, wherein the cyclic olefin is cyclohexene.
JP61299918A 1986-12-18 1986-12-18 Production of cyclic alcohol Granted JPS63154636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61299918A JPS63154636A (en) 1986-12-18 1986-12-18 Production of cyclic alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61299918A JPS63154636A (en) 1986-12-18 1986-12-18 Production of cyclic alcohol

Publications (2)

Publication Number Publication Date
JPS63154636A JPS63154636A (en) 1988-06-27
JPH0380783B2 true JPH0380783B2 (en) 1991-12-26

Family

ID=17878499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61299918A Granted JPS63154636A (en) 1986-12-18 1986-12-18 Production of cyclic alcohol

Country Status (1)

Country Link
JP (1) JPS63154636A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785188A1 (en) 1995-07-20 1997-07-23 Mitsubishi Chemical Corporation Process for the preparation of epsilon-caprolactam

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047106C (en) * 1993-12-11 1999-12-08 中国科学院大连化学物理研究所 Zeolite catalyst for producing p-methyl-ethyl benzene with ethylene and toluene
JP2713127B2 (en) * 1993-12-22 1998-02-16 三菱化学株式会社 Method for producing cyclohexanol
CN101448765A (en) * 2006-05-19 2009-06-03 国际壳牌研究有限公司 Process for the alkylation of a cycloalkene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785188A1 (en) 1995-07-20 1997-07-23 Mitsubishi Chemical Corporation Process for the preparation of epsilon-caprolactam

Also Published As

Publication number Publication date
JPS63154636A (en) 1988-06-27

Similar Documents

Publication Publication Date Title
CN1147510A (en) Process for production of epoxides from olefins
KR20030043979A (en) Crystalline mww-type titanosilicate catalyst for producing oxidized compound, production process for the catalyst, and process for producing oxidized compound by using the catalyst
JP2002508779A (en) Method for epoxidation of propylene
JPH0380783B2 (en)
US5906954A (en) Removal of titanium atoms from titanium silicate molecular sieves
CN110694679B (en) EMT/FAU core-shell molecular sieve catalyst, and preparation method and application thereof
JP2577941B2 (en) Method for producing alcohol using ZSM-5
JP2501210B2 (en) Method for producing cyclic alcohol
CN104557450B (en) A kind of method of oxidizing ethyle alkyl
JPH032014B2 (en)
CN101455981B (en) Improved titanium-containing catalyst regeneration method
CN105523910A (en) Oxidation method for cyclohexane
JP3969078B2 (en) Method for producing pentasil-type zeolite and method for producing ε-caprolactam
JP2852950B2 (en) Regeneration method of olefin hydration catalyst
JPH0930999A (en) Hydration of olefin
JPH11511176A (en) Method for producing 1,4-butenediol
JP3158162B2 (en) Method for producing olefin hydration catalyst
JP3489869B2 (en) Method for producing methylamines
CN109721516B (en) Thioether oxidation method
JP3042367B2 (en) Purification method of metadiisopropylbenzene
JP2903326B2 (en) Regeneration method of olefin hydration catalyst
CN101575266A (en) Method for refining phenol by acid-treated aluminium cross-linked montmorillonite catalyst
JPH032015B2 (en)
JPH0985098A (en) Regeneration of hydrated catalyst
JPS60248635A (en) Production of alcohol by catalytic hydration of olefin

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term