JP2903326B2 - Regeneration method of olefin hydration catalyst - Google Patents

Regeneration method of olefin hydration catalyst

Info

Publication number
JP2903326B2
JP2903326B2 JP2019118A JP1911890A JP2903326B2 JP 2903326 B2 JP2903326 B2 JP 2903326B2 JP 2019118 A JP2019118 A JP 2019118A JP 1911890 A JP1911890 A JP 1911890A JP 2903326 B2 JP2903326 B2 JP 2903326B2
Authority
JP
Japan
Prior art keywords
catalyst
slurry
nitric acid
hours
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2019118A
Other languages
Japanese (ja)
Other versions
JPH03224632A (en
Inventor
浩 石田
賢治 赤岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to JP2019118A priority Critical patent/JP2903326B2/en
Publication of JPH03224632A publication Critical patent/JPH03224632A/en
Application granted granted Critical
Publication of JP2903326B2 publication Critical patent/JP2903326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種化学原料として重要なアルコールを、
オレフィンの水和によって製造する際の触媒の再生法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to an important alcohol as various chemical raw materials,
The present invention relates to a method for regenerating a catalyst when produced by hydration of an olefin.

(従来の技術) ゼオライトを触媒として用いて、液相でオレフィンの
水和反応を行う場合、反応の経過とともに触媒の活性が
徐々に低下する。この活性が低下した触媒の再生法とし
ては、液相で過酸化水素、オゾン、有機過酸、硝酸等の
酸化剤を用いて再生する方法(特開昭61-234945号公報
参照)や、ゼオライトを予めアルカリ金属イオンで交換
し、ついで分子状酸素を含有するガスと200〜600℃で接
触させた後、該アルカリ金属イオンを再交換により除去
する方法(特開昭61-234946号公報参照)等が提案され
ている。
(Prior art) When hydration of an olefin is performed in a liquid phase using zeolite as a catalyst, the activity of the catalyst gradually decreases as the reaction progresses. As a method for regenerating the catalyst having reduced activity, a method of regenerating in the liquid phase using an oxidizing agent such as hydrogen peroxide, ozone, organic peracid, nitric acid or the like (see JP-A-61-234945), zeolite Is exchanged with an alkali metal ion in advance, and then contacted with a gas containing molecular oxygen at 200 to 600 ° C., and the alkali metal ion is removed again by exchange (see JP-A-61-234946). Etc. have been proposed.

(発明が解決しようとする課題) 従来技術の中で、液相で酸化剤を用いる方法の中の過
酸化水素、オゾン、有機過酸は高価であり、また、爆発
の危険性があるため安全上の設備を必要とする問題があ
った。その点で、安価で取り扱いも容易な硝酸を用いる
再生法は有利であるが、この方法では、酸化力が弱いた
めに、触媒の活性低下が著しい場合や、長期に亘って劣
化再生を繰り返すにつれて再生率が低くなるという問題
を有していた。また、予めアルカリ金属イオンで交換
し、その後、分子状酸素と接触させる方法は、再生工程
が長く、さらに、液相処理と気相処理を含むため、乾
操、焼成等の操作が入り、操作が極めて煩雑となる問題
があった。
(Problems to be Solved by the Invention) Among the conventional techniques, hydrogen peroxide, ozone, and organic peracid in the method using an oxidizing agent in a liquid phase are expensive, and there is a danger of explosion. There was a problem that required the above equipment. In this regard, a regeneration method using nitric acid, which is inexpensive and easy to handle, is advantageous.However, in this method, since the oxidizing power is weak, when the activity of the catalyst significantly decreases, or as the degradation regeneration is repeated over a long period of time, There was a problem that the reproduction rate was low. In addition, the method of exchanging with alkali metal ions in advance and then contacting with molecular oxygen involves a long regeneration step, and further includes a liquid phase treatment and a gas phase treatment. However, there was a problem that it became extremely complicated.

(課題を解決するための手段) 本発明者らは、価格や安全上有利な硝酸を用いる再生
法の再生率を高める目的で鋭意検討を重ねた結果、反応
系で活性低下した触媒を無機アルカリ水溶液と接触させ
た後、硝酸水溶液と接触させることが再生率を高める上
で有効であることを見出し、本発明を完成するに至っ
た。
(Means for Solving the Problems) The present inventors have conducted intensive studies with the aim of increasing the regeneration rate of the regeneration method using nitric acid, which is advantageous in terms of cost and safety, and as a result, the catalyst whose activity was reduced in the reaction system was converted to inorganic alkali After contacting with an aqueous solution, it was found that contact with an aqueous nitric acid solution was effective in increasing the regeneration rate, and the present invention was completed.

すなわち、本発明は、液相でのオレフィン水和反応に
供したゼオライト触媒を再生するに当たり、該ゼオライ
トを無機アルカリ水溶液と接触させた後、硝酸水溶液と
接触させることを特徴とする触媒の再生法である。
That is, the present invention provides a method for regenerating a zeolite catalyst subjected to an olefin hydration reaction in a liquid phase, wherein the zeolite is brought into contact with an aqueous solution of an inorganic alkali and then with an aqueous solution of nitric acid. It is.

本反応系でのゼオライトの活性低下の原因は、はっき
り分かっていないため、なぜアルカリ水溶液と接触させ
ることが有効であるかは明らかでないが、以下のような
ことが考えられる。
The cause of the decrease in zeolite activity in the present reaction system is not clearly understood, and it is not clear why the contact with an aqueous alkali solution is effective. However, the following may be considered.

液相におけるオレフィンの水和反応においては、長期
間反応系で使用していると、触媒上に徐々に高沸物が蓄
積してくる。これらの高沸物は、ゼオライトの細孔を閉
塞して活性低下の原因となる。これらの高沸物の中に
は、生成物のアルコールがオレフィンと反応してできる
高沸のエーテル、アルコール等が含まれ、アルカリは、
これらの分解、ならびにアルコラート化して水溶性を増
すのに効いている可能性が考えられる。また、別の原因
としては、本反応系は高温の水の存在下であるため、長
期に使用しているとゼオライトの結晶格子からのアルミ
ニウムの脱離が起こり、活性点の減少による活性低下が
起こり、アルカリ処理は、ゼオライト内に残留している
脱離したアルミニウムを、結晶格子に戻す働きをしてい
る可能性もある。
In the hydration reaction of an olefin in a liquid phase, if it is used in a reaction system for a long time, a high-boiling substance gradually accumulates on the catalyst. These high-boiling substances block pores of zeolite and cause a decrease in activity. Among these high-boiling substances, high-boiling ethers and alcohols produced by reacting the product alcohol with olefins are included.
It is conceivable that these decompositions, as well as alcoholation, are effective in increasing water solubility. Another reason is that this reaction system is in the presence of high-temperature water, and if it is used for a long period of time, elimination of aluminum from the crystal lattice of zeolite will occur, resulting in a decrease in activity due to a decrease in active sites. As a result, the alkali treatment may serve to return the desorbed aluminum remaining in the zeolite to the crystal lattice.

一方、硝酸の役割は、アルカリ処理によってアルカリ
型となったゼオライトを酸型に戻すためのイオン交換剤
としての役割と、先に述べた有機物除去のための酸化剤
として役割を果たしているものと考えられる。
On the other hand, the role of nitric acid is thought to play a role as an ion exchange agent for returning zeolite that has become alkali type by alkali treatment to an acid type, and as an oxidizing agent for removing organic substances mentioned above. Can be

本発明に用いられる無機アルカリ水溶液とは、アルカ
リ性の無機塩の水溶液であれば特に制限はないが、例え
ば、アルカリ金属水酸化物、アルカリ金属炭酸塩、アル
カリ金属炭酸水素塩等の水溶液が挙げられる。中でも好
ましいのはアルカリ金属水酸化物であり、特に好ましい
のは水酸化ナトリウムである。
The inorganic alkali aqueous solution used in the present invention is not particularly limited as long as it is an aqueous solution of an alkaline inorganic salt, and examples thereof include an aqueous solution of an alkali metal hydroxide, an alkali metal carbonate, and an alkali metal hydrogen carbonate. . Of these, alkali metal hydroxides are preferred, and sodium hydroxide is particularly preferred.

無機アルカリ水溶液中の無機塩の量は、触媒1kg当た
り0.1〜10当量の範囲であり、好ましくは0.5〜5当量、
さらに好ましくは1.0〜3.0当量の範囲である。特に水酸
化ナトリウム水溶液を用いる場合の水酸化ナトリウムの
量は、触媒1kg当たり0.5〜5モル、好ましくは0.8〜3
モル、さらに好ましくは1〜2モルの範囲である。この
無機塩の量が0.1当量より少ないと再生効果が低く、ま
た、10当量よりも多いとアルカリ性が強過ぎてゼオライ
トの溶解による結晶破壊が著しくなる。
The amount of the inorganic salt in the aqueous inorganic alkali solution is in the range of 0.1 to 10 equivalents, preferably 0.5 to 5 equivalents per kg of the catalyst,
It is more preferably in the range of 1.0 to 3.0 equivalents. Particularly when an aqueous sodium hydroxide solution is used, the amount of sodium hydroxide is 0.5 to 5 mol, preferably 0.8 to 3 mol per kg of the catalyst.
Mol, more preferably in the range of 1 to 2 mol. If the amount of the inorganic salt is less than 0.1 equivalent, the regenerating effect is low, and if it is more than 10 equivalents, the alkalinity is too strong and crystal breakage due to dissolution of zeolite becomes remarkable.

アルカリ水溶液の量は、無機塩の量が先に述べた範囲
に入っていれは特に制限はないが、通常、触媒1kg当た
り1〜100kg、好ましくは2〜50kg、さらに好ましくは
3〜30kgの範囲である。
The amount of the aqueous alkali solution is not particularly limited as long as the amount of the inorganic salt falls within the range described above, but is usually in the range of 1 to 100 kg, preferably 2 to 50 kg, more preferably 3 to 30 kg per kg of the catalyst. It is.

アルカリ水溶液と接触させる際の温度は、液相状態が
保たれていれば特に制限はないが、通常0〜200℃、好
ましくは10〜150℃、さらに好ましくは20〜100℃の範囲
である。
The temperature at the time of contact with the aqueous alkali solution is not particularly limited as long as the liquid phase is maintained, but is usually in the range of 0 to 200 ° C, preferably 10 to 150 ° C, and more preferably 20 to 100 ° C.

アルカリ水溶液と接触させる際の実施態様は、固定床
方式でもスラリー状態でもかまわないが、好ましいのは
スラリー状態である。
The embodiment in contact with the aqueous alkali solution may be a fixed bed system or a slurry state, but a slurry state is preferred.

本発明においては、アルカリ水溶液と接触させた後、
濾過水洗を行っても、また、直接硝酸を加えて硝酸と接
触させてもよい。
In the present invention, after contacting with an alkaline aqueous solution,
Washing may be performed by filtration, or nitric acid may be directly added to contact with nitric acid.

本発明における硝酸の量は、触媒1kg当たり1〜30モ
ルの範囲であり、好ましいのは2〜20モル、さらに好ま
しいのは5〜15モルの範囲である。
The amount of nitric acid in the present invention is in the range of 1 to 30 mol per kg of the catalyst, preferably 2 to 20 mol, more preferably 5 to 15 mol.

硝酸と接触させる際の温度は、通常0〜150℃、好ま
しくは10〜120℃、さらに好ましくは20〜100℃の範囲で
ある。
The temperature for contacting with nitric acid is usually in the range of 0 to 150 ° C, preferably 10 to 120 ° C, more preferably 20 to 100 ° C.

本発明においては、硝酸と接触させる際に、触媒とし
てバナジン酸アンモニウムや亜硝酸ナトリウム等の塩を
加えてもかまわない。
In the present invention, when contacting with nitric acid, a salt such as ammonium vanadate or sodium nitrite may be added as a catalyst.

硝酸と接触させる際の実施態様は、特に制限はなく、
例えば、固定床方式でも、スラリー状態でもかまわない
が、好ましいのはスラリー状態である。
The embodiment when contacting with nitric acid is not particularly limited,
For example, a fixed bed system or a slurry state may be used, but a slurry state is preferred.

本発明においてアルカリ水溶液、硝酸と接触させる時
間は特に制限はないが、通常10分〜100時間、好ましく
は30分〜50時間、さらに好ましくは1〜20時間の範囲で
ある。
In the present invention, the time of contact with the aqueous alkali solution or nitric acid is not particularly limited, but is usually in the range of 10 minutes to 100 hours, preferably 30 minutes to 50 hours, and more preferably 1 to 20 hours.

本発明の再生法は、液相でのオレフィン水和反応で活
性が低下した触媒に対して有効である。ここで言うオレ
フィンとは、例えば、エチレン、プロピレン、ブテン等
の鎖状オレフィンや、シクロペンテン、シクロヘキセ
ン、シクロオクテン等の環状オレフィンが挙げられる。
中でも本発明の再生法が特に有効なのは、シクロへキセ
ンの場合である。
The regeneration method of the present invention is effective for a catalyst whose activity has been reduced by an olefin hydration reaction in a liquid phase. The olefin mentioned here includes, for example, chain olefins such as ethylene, propylene, and butene, and cyclic olefins such as cyclopentene, cyclohexene, and cyclooctene.
Among them, the regeneration method of the present invention is particularly effective in the case of cyclohexene.

本発明で再生するゼオライトは、反応の種類によって
それぞれ異なるが、例えば、フォージャサイト、L型ゼ
オライト、フェリエライト、オフレタイト、エリオナイ
ト、ゼオライトベータ、モルデナイト、ZSM-4、ZSM-5、
ZSM-8、ZSM-11、ZSM-12、ZSM-20、ZSM-35、ZSM-48等が
挙げられる。中でも本発明の再生法が特に有効なのは、
ZSM-5である。
The zeolite to be regenerated in the present invention is different depending on the type of reaction.For example, faujasite, L-type zeolite, ferrierite, offretite, erionite, zeolite beta, mordenite, ZSM-4, ZSM-5,
ZSM-8, ZSM-11, ZSM-12, ZSM-20, ZSM-35, ZSM-48 and the like. Among them, the regeneration method of the present invention is particularly effective,
ZSM-5.

(発明の効果) 本発明の再生法を用いると、液相でオレフィン水和反
応で活性が低下した触媒を、簡便な方法で高い再生率で
再生することができる。このことは、工業的に実施する
上で非常に有利となる。
(Effect of the Invention) By using the regeneration method of the present invention, a catalyst whose activity has been reduced by an olefin hydration reaction in a liquid phase can be regenerated at a high regeneration rate by a simple method. This is very advantageous for industrial implementation.

(実施例) 次に、本発明を実施例で説明する。(Example) Next, the present invention will be described with an example.

参考例1 水ガラス(Na2O 8.9重量%、SiO2 28.9重量%、H2O 6
2.2重量%)79.5kgにNaOH 0.39kgとH2O 30kgを加えて均
一な溶液を得た。この溶液を600lオートクレーブに仕込
み、攪拌しながら、H2O 225kgにAl2(SO4)3・18H2O 6kg
と濃硫酸4.5kgを溶かした水溶液を室温で1時間かけて
ポンプで送入した。その後、温度を170℃まで上げて、1
00rpmの攪拌条件下で10時間結晶化させた。その後、合
成スラリーを抜き出して、一部を濾過洗浄、120℃で4
時間乾操した後のX繰回折分析の結果、結晶化度35%の
ZSM-5であった。
Reference Example 1 Water glass (Na 2 O 8.9% by weight, SiO 2 28.9% by weight, H 2 O 6
(2.2% by weight) 0.39 kg of NaOH and 30 kg of H 2 O were added to 79.5 kg to obtain a uniform solution. This solution was charged into a 600-liter autoclave, and while stirring, Al 2 (SO 4 ) 3 · 18H 2 O 6 kg was added to H 2 O 225 kg.
And 4.5 kg of concentrated sulfuric acid were pumped in over 1 hour at room temperature. Then raise the temperature to 170 ° C,
Crystallization was carried out for 10 hours under stirring conditions of 00 rpm. After that, the synthetic slurry was extracted, a part of the slurry was filtered and washed,
As a result of X-ray diffraction analysis after drying for hours, the crystallinity was 35%.
ZSM-5.

ここで得られたスラリー158kgに、水ガラス86kg、NaO
H 0.42kg、さらにH2O 33kgを加え、そこにH2O 240kgにA
l2(SO4)3・18H2O 6.3kgと濃硫酸4.5kgを溶かした水溶液
を100rpmで攪拌しながらポンプで1時間かけて送入し
た。その後、温度を150℃まで上げて、100rpmで攪拌し
ながら30時間結晶化を行った。得られたスラリー400l
を、コトブキ技研工業株式会社製ロータリーフィルター
を用いて25重量%まで濃縮した後、一定スラリー濃度で
濾液のpHが10.5になるまで置換洗浄を行った。
To 158 kg of the slurry obtained here, 86 kg of water glass, NaO
Add 0.42 kg of H, 33 kg of H 2 O and add 240 kg of H 2 O to A
An aqueous solution in which 6.3 kg of l 2 (SO 4 ) 3 .18H 2 O and 4.5 kg of concentrated sulfuric acid were dissolved was fed in with a pump over 1 hour while stirring at 100 rpm. Thereafter, the temperature was increased to 150 ° C., and crystallization was performed for 30 hours while stirring at 100 rpm. 400l of obtained slurry
Was concentrated to 25% by weight using a rotary filter manufactured by Kotobuki Giken Kogyo Co., Ltd., and then subjected to displacement washing at a constant slurry concentration until the pH of the filtrate reached 10.5.

得られたスラリーに、63重量%濃度の硝酸25kgとH2O
137kgを加え、50℃で4時間イオン交換を行い、その
後、ロータリーフィルターで30重量%まで濃縮して、一
定スラリー濃度で濾液のpHが4.5になるまで置換洗浄を
行った。
25 kg of 63% by weight nitric acid and H 2 O were added to the obtained slurry.
137 kg was added, ion exchange was performed at 50 ° C. for 4 hours, and then concentration was performed with a rotary filter to 30% by weight, and replacement washing was performed at a constant slurry concentration until the pH of the filtrate reached 4.5.

このようにして、H型のZSM-5スラリーを得た。 Thus, an H-type ZSM-5 slurry was obtained.

参考例2 参考例1で得られたH型のZSM-5スラリーを触媒に用
いて、シクロへキセンの水和反応を以下の条件で行っ
た。
Reference Example 2 Using the H-form ZSM-5 slurry obtained in Reference Example 1 as a catalyst, a hydration reaction of cyclohexene was performed under the following conditions.

反応部オイル/スラリー容量比=10/90 スラリー濃度:30重量% シクロヘキセン供給速度:1.7〔g−シクロヘキセン/g-c
at・hr〕 反応温度:120℃ 圧力:6kg/cm2(N2加圧) 反応装置:4l SUS 304製オートクレーブ(反応部上部に
内部セトラーを有する) 攪拌回転数:200rpm 水の供給は、スラリー濃度が一定になるようにパルス
的に供給した。
Reaction part oil / slurry volume ratio = 10/90 Slurry concentration: 30% by weight Cyclohexene feed rate: 1.7 [g-cyclohexene / gc
at · hr] Reaction temperature: 120 ° C Pressure: 6kg / cm 2 (N 2 pressure) Reactor: 4l SUS 304 autoclave (with internal settler on top of reaction section) Stirring speed: 200rpm Water supply is slurry Pulsed supply was performed so that the concentration became constant.

反応開始直後の反応器出口オイル中のシクロヘキサノ
ール濃度は12.5重量%であったが、その後、3000時間連
続運転したところ、シクロヘキサノール濃度は7.0重量
%まで低下した。
The concentration of cyclohexanol in the oil at the outlet of the reactor immediately after the start of the reaction was 12.5% by weight, but after continuous operation for 3000 hours, the concentration of cyclohexanol was reduced to 7.0% by weight.

実施例1 参考例2で3000時間運転した触媒の再生を以下の手順
で行った。
Example 1 The regeneration of the catalyst operated for 3000 hours in Reference Example 2 was performed in the following procedure.

反応器からスラリー300ccを抜き出し、静置してオイ
ルとスラリーが分離したならば、スラリーだけを取り、
ガラス製容器中で加熱して溶存オイルをストリッピング
によって除去する。この操作によって、35重量%の劣化
触媒スラリー250gを得た。このスラリーに、NaOH 5.6g
をH2O 50gに溶かした水溶液を加え、80℃で4時間攪拌
下に、アルカリ水溶液処理を行った。この際の触媒1kg
当たりのNaOHの量は1.6モルである。
Withdraw 300 cc of slurry from the reactor, let it stand and separate the oil and slurry.
Heat in a glass vessel to remove the dissolved oil by stripping. By this operation, 250 g of a 35% by weight deteriorated catalyst slurry was obtained. To this slurry, add NaOH 5.6g
Was dissolved in 50 g of H 2 O, and treated with an aqueous alkali solution at 80 ° C. for 4 hours with stirring. 1 kg of catalyst at this time
The amount of NaOH per unit is 1.6 mol.

次に、得られたスラリーに、61重量%濃度の硝酸74.3
gを加えて、90℃で4時間攪拌下に硝酸処理を行った。
この際の触媒1kg当たりの硝酸(純品換算)の量は9モ
ルであった。
Next, 74.3% by weight of nitric acid 74.3% was added to the obtained slurry.
g was added, and nitric acid treatment was performed at 90 ° C. for 4 hours with stirring.
At this time, the amount of nitric acid (in terms of pure product) per 1 kg of the catalyst was 9 mol.

この硝酸処理スラリーをヌッチェで減圧濾過した後、
濾液のpHが5.0になるまで水洗して、合水率40重量%の
再生触媒のケークを得た。
After filtering this nitric acid treated slurry under reduced pressure with Nutsche,
The filtrate was washed with water until the pH reached 5.0 to obtain a regenerated catalyst cake having a water content of 40% by weight.

この再生触媒を用いて、1のSUS 304製オートクレ
ーブ中で、参考例2と同じ条件でシクロへキセンの水和
反応を行った。
Using this regenerated catalyst, a hydration reaction of cyclohexene was performed in the same SUS 304 autoclave under the same conditions as in Reference Example 2.

その結果、反応開始直後の反応器出口オイル中のシク
ロへキサノール濃度は11.0重量%であった。
As a result, the concentration of cyclohexanol in the oil at the outlet of the reactor immediately after the start of the reaction was 11.0% by weight.

実施例2 参考例2で3000時間連続運転した触媒の再生を、以下
の手順で行った。
Example 2 Regeneration of the catalyst which was continuously operated for 3000 hours in Reference Example 2 was performed in the following procedure.

反応器からスラリー300ccを抜き出し、オイルとスラ
リーを分離して、スラリーを滅圧濾過、2lのH2Oで水洗
した。その後、得られたケーク146g(合水率40重量%)
を、NaOH 6.7gをH2O 150gに溶かした水溶液に加えて、9
0℃、8時間攪拌条件下でアルカリ水溶液処理を行っ
た。この際の触媒1kg当たりのNaOHの量は1.9モルであっ
た。得られたスラリーを濾過、1のH2Oで水洗した
後、6l重量%濃度の硝酸100gとバナジン酸アンモニウム
0.1g、亜硝酸ナトリウム2.0gをH2O 100gに溶かした溶液
に加え、90℃、5時間攪拌条件下に硝酸処理を行った。
この際の触媒1kg当たりの硝酸(純品換算)の量は12.1
モルであった。
300 cc of the slurry was withdrawn from the reactor, the oil and the slurry were separated, and the slurry was filtered under reduced pressure and washed with 2 l of H 2 O. Then, 146 g of the cake obtained (water content 40% by weight)
Was added to an aqueous solution in which 6.7 g of NaOH was dissolved in 150 g of H 2 O, and 9
An alkaline aqueous solution treatment was performed under stirring conditions at 0 ° C. for 8 hours. At this time, the amount of NaOH per 1 kg of the catalyst was 1.9 mol. The obtained slurry was filtered, washed with 1 H 2 O, and then 100 g of 6 lwt% nitric acid and ammonium vanadate.
0.1 g and 2.0 g of sodium nitrite were added to a solution of 100 g of H 2 O, and nitric acid treatment was performed at 90 ° C. for 5 hours under stirring.
At this time, the amount of nitric acid (pure product equivalent) per 1 kg of catalyst was 12.1
Mole.

このスラリーをヌッチェで減圧濾過した後、濾液のpH
が4.8になるまで水洗して、再生触媒のケークを得た。
After the slurry was filtered under reduced pressure with a nutsche, the pH of the filtrate was
Was reduced to 4.8 to obtain a regenerated catalyst cake.

この再生触媒を用いて、1のSUS 304製オートクレ
ーブ中で、参考例2と同じ条件でシクロへキセンの水和
反応を行った。
Using this regenerated catalyst, a hydration reaction of cyclohexene was performed in the same SUS 304 autoclave under the same conditions as in Reference Example 2.

その結果、反応開始直後の反応器出口オイル中のシク
ロヘキサノール濃度は11.3重量%であった。
As a result, the concentration of cyclohexanol in the oil at the outlet of the reactor immediately after the start of the reaction was 11.3% by weight.

比較例1 実施例1の最初のオイルストリッピング後の35重量%
の劣化触媒スラリー250gに、6l重量%濃度の硝酸74.3g
を加えて、90℃で4時間攪拌下に硝酸処理を行った。こ
の際の触媒1kg当たりの硝酸(純品換算)の量は9モル
であった。
Comparative Example 1 35% by weight after the first oil stripping of Example 1
250g of degraded catalyst slurry, 74.3g of 6lwt% nitric acid
Was added and nitric acid treatment was performed at 90 ° C. for 4 hours with stirring. At this time, the amount of nitric acid (in terms of pure product) per 1 kg of the catalyst was 9 mol.

この硝酸処理スラリーをヌッチェで減圧濾過した後、
濾液のpHが5.0になるまで水洗して、合水率38重量%の
再生触媒ケークを得た。
After filtering this nitric acid treated slurry under reduced pressure with Nutsche,
The filtrate was washed with water until the pH reached 5.0 to obtain a regenerated catalyst cake having a water content of 38% by weight.

この再生触媒を用いて、1のSUS 304製オートクレ
ーブ中で、参考例2と同じ条件でシクロヘキセンの水和
反応を行った。
Using this regenerated catalyst, a cyclohexene hydration reaction was carried out in the same SUS 304 autoclave under the same conditions as in Reference Example 2.

その結果、反応開始直後の反応器出口オイル中のシク
ロヘキサノール濃度は10重量%であった。この値は、実
施例1に比べてかなり低く、アルカリ水溶液処理の効果
が大きいことが分かる。
As a result, the concentration of cyclohexanol in the oil at the outlet of the reactor immediately after the start of the reaction was 10% by weight. This value is considerably lower than that of Example 1, and it can be seen that the effect of the alkaline aqueous solution treatment is large.

参考例3 50重量%NaOH水溶液138g、Al2(SO4)3・14H2O 118g、
沈降性シリカ粉末320g、H2O 750gの混合物にピロリドン
320gを加えて、2lのオートクレーブ中で、攪拌しながら
110℃、14日間結晶化させた。
Reference Example 3 138 g of 50 wt% NaOH aqueous solution, 118 g of Al 2 (SO 4 ) 3 .14H 2 O,
Pyrrolidone in a mixture of 320 g of precipitated silica powder and 750 g of H 2 O
Add 320g and in a 2l autoclave with stirring
Crystallized at 110 ° C. for 14 days.

得られたスラリーを濾過、洗浄した後、120℃で8時
間乾燥させた後、X線回折分析を行った結果、この生成
物は、ZSM-35であった。
The obtained slurry was filtered and washed, dried at 120 ° C. for 8 hours, and then subjected to X-ray diffraction analysis. As a result, the product was ZSM-35.

この乾燥した生成物をアルミナと混ぜ合わせ、水を加
えた後、押出機を用いて押出成型を行った。その結果、
ZSM-35を65重量%含む押出成型物を得た。これを、先ず
500℃、窒素雰囲気中で焼成し、次いで、1Nの硝酸アン
モニウム水溶液でイオン交換した後、600℃で空気中で
焼成して、ZSM-35を含む成型触媒を得た。
The dried product was mixed with alumina, added with water, and extruded using an extruder. as a result,
An extruded product containing 65% by weight of ZSM-35 was obtained. First,
After calcination in a nitrogen atmosphere at 500 ° C. and then ion exchange with a 1N aqueous solution of ammonium nitrate, calcination was performed in air at 600 ° C. to obtain a molded catalyst containing ZSM-35.

参考例4 参考例3の触媒を用いて、プロピレンの水和反応を以
下の条件で行った。
Reference Example 4 Using the catalyst of Reference Example 3, hydration of propylene was carried out under the following conditions.

H2O/プロピレンモル比=2/1 WHSV(プロピレンおよびゼオライト基準)=0.6hr-1 反応温度:170℃ 圧力:70kg/cm2 反応開始後直後のプロピレン転化率は55%であった
が、300時間運転後には、20%まで低下した。
H 2 O / propylene molar ratio = 2/1 WHSV (based on propylene and zeolite) = 0.6 hr −1 Reaction temperature: 170 ° C. Pressure: 70 kg / cm 2 The propylene conversion immediately after the start of the reaction was 55%, After 300 hours of operation, it dropped to 20%.

実施例3 参考例4で300時間運転後の触媒層に、100℃で窒素を
1時間流した後、0.8NのNaOH水溶液を、WHSV(ゼオライ
ト基準)=2hr-1、80℃で4時間、ポンプで循環させ
た。その後、H2Oを同条件で2時間循環させた後、1Nの
硝酸を、WHSV=2hr-1、80℃で4時間ポンプで循環させ
た。その後、H2Oを同条件で4時間循環させて再生を終
了した。
Example 3 After flowing nitrogen at 100 ° C. for 1 hour through the catalyst layer after 300 hours of operation in Reference Example 4, 0.8N NaOH aqueous solution was added at WHSV (zeolite standard) = 2 hr −1 at 80 ° C. for 4 hours. Circulated by pump. Then, after circulating H 2 O under the same conditions for 2 hours, 1N nitric acid was circulated with a pump at 80 ° C. for 4 hours at WHSV = 2 hr −1 . Thereafter, H 2 O was circulated under the same conditions for 4 hours to terminate the regeneration.

この再生触媒を用いて、参考例4と同じ条件でプロピ
レンの水和反応を行った。
Using this regenerated catalyst, a hydration reaction of propylene was performed under the same conditions as in Reference Example 4.

その結果、反応開始直後のプロピレンの転化率は40%
であった。
As a result, the conversion of propylene immediately after the start of the reaction was 40%
Met.

比較例2 参考例4で300時間運転後の触媒層に、100℃で窒素を
1時間流した後、1Nの硝酸を、WHSV=2hr-1、80℃で4
時間ポンプで循環させた。その後、H2Oを同条件で4時
間循環させて再生を終了した。
Comparative Example 2 After flowing nitrogen at 100 ° C. for 1 hour through the catalyst layer after 300 hours of operation in Reference Example 4, 1N nitric acid was added at 80 ° C. with WHSV = 2 hr −1 .
Circulated with time pump. Thereafter, H 2 O was circulated under the same conditions for 4 hours to terminate the regeneration.

この再生触媒を用いて、参考例4と同じ条件でプロピ
レンの水和反応を行った。
Using this regenerated catalyst, a hydration reaction of propylene was performed under the same conditions as in Reference Example 4.

その結果、反応開始直後のプロピレンの転化率は31%
であった。
As a result, the conversion of propylene immediately after the start of the reaction was 31%
Met.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】液相でのオレフィン水和反応に供したゼオ
ライト触媒を再生するに当たり、該ゼオライトを無機ア
ルカリ水溶液と接触させた後、硝酸と接触させることを
特徴とするオレフィン水和触媒の再生法。
1. A method for regenerating a zeolite catalyst subjected to an olefin hydration reaction in a liquid phase, wherein the zeolite is brought into contact with an aqueous solution of an inorganic alkali and then with nitric acid. Law.
【請求項2】無機アルカリ水溶液がアルカリ金属水酸化
物の水溶液である請求項1記載のオレフィン水和触媒の
再生法。
2. The method for regenerating an olefin hydration catalyst according to claim 1, wherein the aqueous inorganic alkali solution is an aqueous solution of an alkali metal hydroxide.
JP2019118A 1990-01-31 1990-01-31 Regeneration method of olefin hydration catalyst Expired - Fee Related JP2903326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019118A JP2903326B2 (en) 1990-01-31 1990-01-31 Regeneration method of olefin hydration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019118A JP2903326B2 (en) 1990-01-31 1990-01-31 Regeneration method of olefin hydration catalyst

Publications (2)

Publication Number Publication Date
JPH03224632A JPH03224632A (en) 1991-10-03
JP2903326B2 true JP2903326B2 (en) 1999-06-07

Family

ID=11990559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019118A Expired - Fee Related JP2903326B2 (en) 1990-01-31 1990-01-31 Regeneration method of olefin hydration catalyst

Country Status (1)

Country Link
JP (1) JP2903326B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734944B2 (en) * 1993-08-27 1998-04-02 三菱化学株式会社 Method for producing cyclohexanol
WO1999004902A1 (en) * 1996-01-26 1999-02-04 Mitsubishi Chemical Corporation Process for the regeneration of hydration catalyst for cyclic olefins

Also Published As

Publication number Publication date
JPH03224632A (en) 1991-10-03

Similar Documents

Publication Publication Date Title
ES2544744T3 (en) Procedure for the preparation of triethylenediamine (TEDA)
US7838455B2 (en) Method of regeneration of titanium-containing molecular sieve catalyst
RU2336225C2 (en) Novel water hydrogen peroxide solutions
EP0181790B1 (en) Method for the synthesis of iodobenzene
JP2002102709A (en) Crystalline mww type titanosilicate catalyst for production of oxidized compound, method for producing the same and method for producing oxidized compound using the same
EP0311066A2 (en) Process for the production of copper-containing zeolite and the method of application thereof
EP0172068A1 (en) Process for synthesizing zeolites of the aluminosilicate-type, products obtained by this process and use thereof
JP2903326B2 (en) Regeneration method of olefin hydration catalyst
JP2852950B2 (en) Regeneration method of olefin hydration catalyst
JP2577941B2 (en) Method for producing alcohol using ZSM-5
CN106395850B (en) Method for producing zeolite and method for producing epsilon-caprolactam
WO2000021885A1 (en) Removal of titanium atoms from titanium silicate molecular sieves
EP0129239A2 (en) Method for the synthesis of ZSM-5 zeolite, at atmospheric pressure and at low temperature
JP3158162B2 (en) Method for producing olefin hydration catalyst
JPS61234945A (en) Regenerating method for catalyst
JPH0930999A (en) Hydration of olefin
JP2512959B2 (en) Highly active nitrogen oxide decomposition catalyst and catalytic decomposition method of nitrogen oxide
JPH0985098A (en) Regeneration of hydrated catalyst
JP2553609B2 (en) Method for synthesizing zeolite ZSM-5
JPH032015B2 (en)
JPH0912493A (en) Hydration reaction of olefin
WO2022195076A1 (en) Process for the dealumination of zeolitic materials
JPH03229637A (en) Preparation of slurry catalyst
RU1777954C (en) Method for producing n-h@@@-form of mordenite
CN115155649A (en) Heteroatom microporous molecular sieve catalyst, preparation method thereof, application of catalyst in isobutene amination and continuous regeneration method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees