JPH03224632A - Method for regenerating catalyst for hydration of olefin - Google Patents

Method for regenerating catalyst for hydration of olefin

Info

Publication number
JPH03224632A
JPH03224632A JP2019118A JP1911890A JPH03224632A JP H03224632 A JPH03224632 A JP H03224632A JP 2019118 A JP2019118 A JP 2019118A JP 1911890 A JP1911890 A JP 1911890A JP H03224632 A JPH03224632 A JP H03224632A
Authority
JP
Japan
Prior art keywords
catalyst
nitric acid
slurry
aqueous solution
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019118A
Other languages
Japanese (ja)
Other versions
JP2903326B2 (en
Inventor
Hiroshi Ishida
浩 石田
Kenji Akakishi
賢治 赤岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2019118A priority Critical patent/JP2903326B2/en
Publication of JPH03224632A publication Critical patent/JPH03224632A/en
Application granted granted Critical
Publication of JP2903326B2 publication Critical patent/JP2903326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To regenerate a zeolite catalyst at a high rate of regeneration by bringing the catalyst having reduced catalytic activity after use in the hydration reaction of olefin in a liq. phase into successive contact with an aq. soln. of an inorg. alkali and nitric acid. CONSTITUTION:Faujasite, ZSM-5 or other zeolite catalyst having reduced catalytic activity after use in the hydration reaction of olefin in a liq. phase is brought into successive contact with an aq. soln. of an inorg. alkali such as the hydroxide, carbonate or hydrogencarbonate of an alkali metal and an aq. soln. of nitric acid. By this contact, the zeolite catalyst is regenerated at a high rate of regeneration. The pref. amt. of the inorg. salt in the aq. alkali soln. is about 0.5-5 equiv. per 1kg of the catalyst and the pref. temp. of the soln. brought into contact with the catalyst is about 10-150 deg.C. The pref. amt. of the nitric acid brought into contact with the catalyst is about 2-20 mol per 1kg of the catalyst.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種化学原料として重要なアルコールを、オ
レフィンの水和によって製造する際の触媒の再生法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for regenerating a catalyst when producing alcohol, which is important as a raw material for various chemicals, by hydration of an olefin.

(従来の技術) ゼオライトを触媒として用いて、液相でオレフィンの水
和反応を行う場合、反応の経過とともに触媒の活性が徐
々に低下する。この活性が低下した触媒の再生法として
は、液相で過酸化水素、オゾン、有機過酸、硝酸等の酸
化剤を用いて再生する方法(特開昭61−234945
号公報参照)や、ゼオライトを予めアルカリ金属イオン
で交換し、ついで分子状酸素を含有するガスと200〜
600℃で接触させた後、該アルカリ金属イオンを再交
換により除去する方法(特開昭61−234946号公
報参照)等が提案されている。
(Prior Art) When a hydration reaction of olefin is carried out in a liquid phase using zeolite as a catalyst, the activity of the catalyst gradually decreases as the reaction progresses. A method for regenerating a catalyst whose activity has decreased is a method of regenerating it in a liquid phase using an oxidizing agent such as hydrogen peroxide, ozone, organic peracid, or nitric acid (Japanese Patent Laid-Open No. 61-234945
zeolite is exchanged with alkali metal ions in advance and then exchanged with a gas containing molecular oxygen for 200~
A method has been proposed in which the alkali metal ions are removed by re-exchange after contact at 600° C. (see Japanese Patent Laid-Open No. 61-234946).

(発明が解決しようとする課題) 従来技術の中で、液相で酸化剤を用いる方法の中の過酸
化水素、オゾン、有機過酸は高価であり、また、爆発の
危険性があるため安全上の設備を必要とする問題があっ
た。その点で、安価で取り扱いも容易な硝酸を用いる再
生法は有利であるが、この方法では、酸化力が弱いため
に、触媒の活性低下が著しい場合や、長期に亘って劣化
再生を繰り返すにつれて再生率が低(なるという問題を
有していた。また、予めアルカリ金属イオンで交換し、
その後、分子状酸素と接触させる方法は、再生工程が長
く、さらに、液相処理と気相処理を含むため、乾燥、焼
成等の操作が入り、操作が極めて煩雑となる問題があっ
た。
(Problems to be Solved by the Invention) In the prior art, hydrogen peroxide, ozone, and organic peracids in methods using oxidizing agents in the liquid phase are expensive and have the risk of explosion, so they are not safe. There was a problem that required the above equipment. In this respect, the regeneration method using nitric acid, which is cheap and easy to handle, is advantageous, but due to its weak oxidizing power, this method may cause a significant drop in catalyst activity, or may deteriorate over a long period of time and cause repeated regeneration. There was a problem that the regeneration rate was low.Also, by exchanging with alkali metal ions in advance,
The method of subsequently contacting with molecular oxygen requires a long regeneration step, and furthermore, since it includes liquid phase treatment and gas phase treatment, operations such as drying and baking are required, making the operation extremely complicated.

(課題を解決するための手段) 本発明者らは、価格や安全上有利な硝酸を用いる再生法
の再生率を高める目的で鋭意検討を重ねた結果、反応系
で活性低下した触媒を無機アルカリ水溶液と接触させた
後、硝酸水溶液と接触させることが再生率を高める上で
有効であることを見出し、本発明を完成するに至った。
(Means for Solving the Problems) As a result of intensive studies aimed at increasing the regeneration rate of the regeneration method using nitric acid, which is advantageous in terms of cost and safety, the present inventors discovered that the catalyst with decreased activity in the reaction system could be replaced with an inorganic alkali. It has been found that contacting with an aqueous solution and then a nitric acid aqueous solution is effective in increasing the regeneration rate, and the present invention has been completed.

すなわち、本発明は、液相でのオレフィン水和反応に供
したゼオライト触媒を再生するに当たり、該ゼオライト
を無機アルカリ水溶液と接触させた後、硝酸水溶液と接
触させることを特徴どする触媒の再生法である。
That is, the present invention provides a method for regenerating a catalyst, which comprises, in regenerating a zeolite catalyst subjected to an olefin hydration reaction in a liquid phase, contacting the zeolite with an inorganic alkali aqueous solution and then contacting it with a nitric acid aqueous solution. It is.

本反応系でのゼオライトの活性低下の原因は、はっきり
分かっていないため、なぜアルカリ水溶液と接触させる
ことが有効であるかは明らかでないが、以下のようなこ
とが考えられる。
The cause of the decrease in zeolite activity in this reaction system is not clearly understood, and it is not clear why contact with an alkaline aqueous solution is effective, but the following may be considered.

液相におけるオレフィンの水和反応においては、長期間
反応系で使用していると、触媒上に徐々に高沸物が蓄積
してくる。これらの高沸物は、ゼオライトの細孔を閉塞
して活性低下の原因となる。
In the hydration reaction of olefins in the liquid phase, if the reaction system is used for a long period of time, high-boiling substances gradually accumulate on the catalyst. These high boiling substances clog the pores of zeolite and cause a decrease in activity.

これらの高沸物の中には、生成物のアルコールがオレフ
ィンと反応してできる高沸のエーテル、アルコール等が
含まれ、アルカリは、これらの分解、ならびにアルコラ
ード化して水溶性を増すのに効いている可能性が考えら
れる。また、別の原因としては、本反応系は高温の水の
存在下であるため、長期に使用しているとゼオライトの
結晶格子からのアルミニウムの脱離が起こり、活性点の
減少による活性低下が起こり、アルカリ処理は、ゼオラ
イト内に残留している脱離したアルミニウムを、結晶格
子に戻す働きをしている可能性もある。
These high-boiling substances include high-boiling ethers and alcohols, which are produced when the alcohol product reacts with olefins, and alkalis are effective in decomposing these substances and in increasing their water solubility by converting them into alcoholades. It is possible that Another cause is that this reaction system is in the presence of high-temperature water, so if it is used for a long time, aluminum will be desorbed from the zeolite crystal lattice, resulting in a decrease in activity due to a decrease in active sites. It is also possible that the alkali treatment serves to return the desorbed aluminum remaining in the zeolite to the crystal lattice.

一方、硝酸の役割は、アルカリ処理によってアルカリ型
となったゼオライトを酸型に戻すためのイオン交換剤と
しての役割と、先に述べた有機物除去のための酸化剤と
して役割を果たしているものと考えられる。
On the other hand, the role of nitric acid is thought to be as an ion exchange agent to return the alkaline form of zeolite to the acid form due to alkali treatment, and as an oxidizing agent for removing organic matter as mentioned earlier. It will be done.

本発明に用いられる無機アルカリ水溶液とは、アルカリ
性の無機塩の水溶液であれば特に制限はないが、例えば
、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカ
リ金属炭酸水素塩等の水溶液が挙げられる。中でも好ま
しいのはアルカリ金属水酸化物であり、特に好ましいの
は水酸化ナトリウムである。
The inorganic alkaline aqueous solution used in the present invention is not particularly limited as long as it is an aqueous solution of an alkaline inorganic salt, and examples include aqueous solutions of alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, etc. . Among them, preferred are alkali metal hydroxides, and particularly preferred is sodium hydroxide.

無機アルカリ水溶液中の無機塩の量は、触媒1kg当た
り0.1−10当量の範囲であり、好ましくは0.5〜
5当量、さらに好ましくは1.0〜380当量の範囲で
ある。特に水酸化ナトリウム水溶液を用いる場合の水酸
化ナトリウムの量は、触媒1 kg当たり0.5〜5モ
ル、好ましくは0゜8〜3モル、さらに好ましくは1〜
2モルの範囲である。この無機塩の量が0. 1当量よ
り少ないと再生効果が低く、また、10当量よりも多い
とアルカリ性が強過ぎてゼオライトの溶解による結晶破
壊が著しくなる。
The amount of inorganic salt in the inorganic alkaline aqueous solution is in the range of 0.1-10 equivalents per kg of catalyst, preferably 0.5-10 equivalents.
5 equivalents, more preferably 1.0 to 380 equivalents. In particular, when an aqueous sodium hydroxide solution is used, the amount of sodium hydroxide is 0.5 to 5 mol, preferably 0.8 to 3 mol, more preferably 1 to 3 mol, per 1 kg of catalyst.
The range is 2 moles. The amount of this inorganic salt is 0. If the amount is less than 1 equivalent, the regeneration effect will be low, and if it is more than 10 equivalents, the alkalinity will be too strong, resulting in significant crystal destruction due to zeolite dissolution.

アルカリ水溶液の量は、無機塩の量が先に述べた範囲に
入っていれは特に制限はないが、通常、触媒1 kg当
たり1〜100kg、好ましくは2〜50kg、さらに
好ましくは3〜30kgの範囲である。
The amount of the alkaline aqueous solution is not particularly limited as long as the amount of the inorganic salt is within the range mentioned above, but it is usually 1 to 100 kg, preferably 2 to 50 kg, more preferably 3 to 30 kg per 1 kg of catalyst. range.

アルカリ水溶液と接触させる際の温度は、液相状態が保
たれていれば特に制限はないが、通常0〜200°C1
好ましくは10〜150°C1さらに好ましくは20〜
100°Cの範囲である。
There is no particular restriction on the temperature when contacting with the alkaline aqueous solution as long as the liquid state is maintained, but it is usually 0 to 200°C.
Preferably 10-150°C1, more preferably 20-150°C
The range is 100°C.

アルカリ水溶液と接触させる際の実施態様は、固定床方
式でもスラリー状態でもかまわないが、好ましいのはス
ラリー状態である。
The embodiment of contacting with the alkaline aqueous solution may be a fixed bed method or a slurry state, but a slurry state is preferable.

本発明においては、アルカリ水溶液と接触させた後、濾
過水洗を行っても、また、直接硝酸を加えて硝酸と接触
させてもよい。
In the present invention, after contacting with an alkaline aqueous solution, filtration and washing with water may be performed, or nitric acid may be directly added and contact may be made with nitric acid.

本発明における硝酸の量は、触媒1 kg当たり1〜3
0モルの範囲であり、好ましいのは2〜20モル、さら
に好ましいのは5〜15モルの範囲である。
The amount of nitric acid in the present invention is 1 to 3 per kg of catalyst.
The amount is in the range of 0 mol, preferably 2 to 20 mol, and more preferably 5 to 15 mol.

硝酸と接触させる際の温度は、通常0〜150°C1好
ましくは10〜120℃、さらに好ましくは20〜10
0°Cの範囲である。
The temperature during contact with nitric acid is usually 0 to 150°C, preferably 10 to 120°C, more preferably 20 to 10°C.
It is in the range of 0°C.

本発明においては、硝酸と接触させる際に、触媒として
バナジン酸アンモニウムや亜硝酸ナトリウム等の塩を加
えてもかまわない。
In the present invention, when contacting with nitric acid, a salt such as ammonium vanadate or sodium nitrite may be added as a catalyst.

硝酸と接触させる際の実施態様は、特に制限はなく、例
えば、固定床方式でも、スラリー状態でもかまわないが
、好ましいのはスラリー状態である。
There are no particular limitations on the embodiment in which the mixture is brought into contact with nitric acid; for example, a fixed bed method or a slurry state may be used, but a slurry state is preferred.

本発明においてアルカリ水溶液、硝酸と接触させる時間
は特に制限はないが、通常10分〜100時間、好まし
くは30分〜50時間、さらに好ましくは1〜20時間
の範囲である。
In the present invention, the time for contacting with the alkaline aqueous solution and nitric acid is not particularly limited, but is usually in the range of 10 minutes to 100 hours, preferably 30 minutes to 50 hours, and more preferably 1 to 20 hours.

本発明の再生法は、液相でのオレフィン水和反応で活性
が低下した触媒に対して有効である。ここで言うオレフ
ィンとは、例えば、エチレン、プロピレン、ブテン等の
鎖状オレフィンや、シクロペンテン、シクロヘキセン、
シクロオクテン等の環状オレフィンが挙げられる。中で
も本発明の再生法が特に有効なのは、シクロヘキセンの
場合である。
The regeneration method of the present invention is effective for catalysts whose activity has decreased due to the olefin hydration reaction in the liquid phase. The olefins mentioned here include, for example, chain olefins such as ethylene, propylene, butene, cyclopentene, cyclohexene,
Examples include cyclic olefins such as cyclooctene. Among these, the regeneration method of the present invention is particularly effective in the case of cyclohexene.

本発明で再生するゼオライトは、反応の種類によってそ
れぞれ異なるが、例えば、フォージャサイト、L型ゼオ
ライト、フェリエライト、オフレタイト、エリオナイト
、ゼオライトベータ、モルデナイト、ZSM−4、ZS
M−5、ZSM−8、ZSM−11、ZSM−12、Z
SM−20、ZSM−35、ZSM−48等が挙げられ
る。中でも本発明の再生法が特に有効なのは、ZSM−
5である。
The zeolite regenerated in the present invention varies depending on the type of reaction, but for example, faujasite, L-type zeolite, ferrierite, offretite, erionite, zeolite beta, mordenite, ZSM-4, ZS
M-5, ZSM-8, ZSM-11, ZSM-12, Z
Examples include SM-20, ZSM-35, and ZSM-48. Among them, the regeneration method of the present invention is particularly effective for ZSM-
It is 5.

(発明の効果) 本発明の再生法を用いると、液相でオレフィン水和反応
で活性が低下した触媒を、簡便な方法で高い再生率で再
生することができる。このことは、工業的に実施する上
で非常に有利となる。
(Effects of the Invention) By using the regeneration method of the present invention, a catalyst whose activity has decreased due to an olefin hydration reaction in the liquid phase can be regenerated at a high regeneration rate using a simple method. This is very advantageous for industrial implementation.

(実施例) 次に、本発明を実施例で説明する。(Example) Next, the present invention will be explained with examples.

参考例1 水ガラス(Nato 8. 9重量%、5iOz28.
 9重量%、Hg062.2重量%)79.5kgにN
a0HO,39kgとnzo30kgを加えて均一な溶
液を得た。この溶液を600!オートクレーブに仕込み
、攪拌しながら、Hg0225kgにA f t (S
O4) 3  ・18Hz06kgと濃硫酸4.5kg
を溶かした水溶液を室温で1時間かけてポンプで送入し
た。その後、温度を170℃まで上げて、1100rp
の攪拌条件下で10時間結晶化させた。その後、合成ス
ラリーを抜き出して、一部を濾過洗浄、120°Cで4
時間乾燥した後のX線回折分析の結果、結晶化度35%
のZSM−5であった。
Reference Example 1 Water glass (Nato 8.9% by weight, 5iOz28.
9% by weight, Hg062.2% by weight) 79.5kg of N
A homogeneous solution was obtained by adding 39 kg of a0HO and 30 kg of nzo. 600 yen of this solution! A f t (S
O4) 3 ・18Hz06kg and concentrated sulfuric acid 4.5kg
An aqueous solution of was pumped in at room temperature over a period of 1 hour. After that, increase the temperature to 170℃ and 1100rpm.
Crystallization was carried out for 10 hours under stirring conditions. After that, the synthetic slurry was taken out, a part was filtered and washed, and heated at 120°C for 4 hours.
As a result of X-ray diffraction analysis after drying for a period of time, the crystallinity is 35%.
It was ZSM-5.

ここで得られたスラリー158kgに、水ガラス86k
g、  NaOH0,42kg、さらにIIzo 33
 kgを加え、そこにoto240kgにAj!□(S
O4) 3  ・18H!06.3kgと濃硫酸4.5
kgを溶かした水溶液を100rpn+で攪拌しながら
ポンプで1時間かけて送入した。その後、温度を150
℃まで上げて、1100rpで攪拌しながら30時間結
晶化を行った。得られたスラリー4001!、を、コト
ブキ技研工業株式会社製ロータリーフィルターを用いて
25重量%まで濃縮した後、一定スラリー濃度で濾液の
pHが10.5になるまで置換洗浄を行った。
To 158 kg of the slurry obtained here, 86 kg of water glass was added.
g, NaOH 0,42 kg, plus IIzo 33
Add kg, and add Aj to oto240kg! □(S
O4) 3 ・18H! 06.3 kg and concentrated sulfuric acid 4.5
An aqueous solution containing 1.0 kg was pumped in for 1 hour while stirring at 100 rpm+. Then increase the temperature to 150
The temperature was raised to 0.degree. C., and crystallization was performed for 30 hours while stirring at 1100 rpm. Obtained slurry 4001! , was concentrated to 25% by weight using a rotary filter manufactured by Kotobuki Giken Kogyo Co., Ltd., and then displacement washing was performed at a constant slurry concentration until the pH of the filtrate reached 10.5.

得られたスラリーに、63重量%濃度の硝酸25 kg
とHg0137kgを加え、50’Cで4時間イオン交
換を行い、その後、ロータリーフィルターで30重量%
まで濃縮して、一定スラリー濃度で濾液のpHが4.5
になるまで置換洗浄を行った。
25 kg of nitric acid with a concentration of 63% by weight was added to the slurry obtained.
and 137 kg of Hg were added, ion exchanged at 50'C for 4 hours, and then 30% by weight was added using a rotary filter.
The pH of the filtrate is 4.5 at a constant slurry concentration.
Displacement cleaning was performed until the

このようにして、H型のZSM−5スラリーを得た。In this way, H-type ZSM-5 slurry was obtained.

参考例2 参考例1で得られたH型のZSM−5スラリーを触媒に
用いて、シクロヘキセンの水和反応を以下の条件で行っ
た。
Reference Example 2 Using the H-type ZSM-5 slurry obtained in Reference Example 1 as a catalyst, a hydration reaction of cyclohexene was carried out under the following conditions.

反応部オイル/スラリー容量比−10/90スラリー濃
度=30重量% シクロヘキセン供給速度:1.7(g−シクロヘキセン
/g−cat −hr) 反応温度:120°C 圧カニ 6 kg/ cnl (Nt加圧)反応装置:
 41 SUS 304製オートクレーブ(反応部上部
に内部セトラーを有する)撹拌回転数:20Orpm 水の供給は、スラリー濃度が一定になるようにパルス的
に供給した。
Reaction section oil/slurry volume ratio - 10/90 Slurry concentration = 30% by weight Cyclohexene supply rate: 1.7 (g-cyclohexene/g-cat-hr) Reaction temperature: 120°C Pressure crab 6 kg/cnl (Nt added Pressure) Reactor:
41 Autoclave made of SUS 304 (having an internal settler in the upper part of the reaction part) Stirring rotation speed: 20 rpm Water was supplied in a pulsed manner so that the slurry concentration was constant.

反応開始直後の反応器出口オイル中のシクロヘキサノー
ル濃度は12.5重量%であったが、その後、3000
時間連続運転したところ、シクロヘキサノール濃度は7
.0重量%まで低下した。
Immediately after the start of the reaction, the cyclohexanol concentration in the reactor outlet oil was 12.5% by weight, but after that, it increased to 3000% by weight.
After continuous operation for hours, the cyclohexanol concentration was 7.
.. It decreased to 0% by weight.

実施例1 参考例2で3000時間運転した触媒の再生を以下の手
順で行った。
Example 1 The catalyst that had been operated for 3000 hours in Reference Example 2 was regenerated according to the following procedure.

反応器からスラリー300ccを抜き出し、静置してオ
イルとスラリーが分離したならば、スラリーだけを取り
、ガラス製容器中で加熱して溶存オイルをストリッピン
グによって除去する。この操作によって、35重量%の
劣化触媒スラリー250gを得た。このスラリーに、N
aO!l 5. 6 gをLO50gに溶かした水溶液
を加え、80’Cで4時間撹拌下に、アルカリ水溶液処
理を行った。この際の触媒1 kg当たりのN a O
IIの量は1.6モルである。
300 cc of slurry is taken out from the reactor and allowed to stand until the oil and slurry are separated. Only the slurry is taken and heated in a glass container to remove the dissolved oil by stripping. Through this operation, 250 g of a 35% by weight degraded catalyst slurry was obtained. In this slurry, N
aO! l 5. An aqueous solution in which 6 g of LO was dissolved in 50 g of LO was added, and the mixture was treated with an alkaline aqueous solution while stirring at 80'C for 4 hours. At this time, N a O per 1 kg of catalyst
The amount of II is 1.6 mol.

次に、得られたスラリーに、61重量%濃度の硝酸74
.3gを加えて、90゛cで4時間攪拌下に硝酸処理を
行った。この際の触媒1 kg当たりの硝酸(純品換算
)の量は9モルであった。
Next, the obtained slurry was added with nitric acid 74 at a concentration of 61% by weight.
.. 3 g was added thereto, and the mixture was treated with nitric acid while stirring at 90°C for 4 hours. At this time, the amount of nitric acid (purity equivalent) per 1 kg of catalyst was 9 mol.

この硝酸処理スラリーをヌッチェで減圧濾過した後、濾
液のpHが5.0になるまで水洗して、含水率40重量
%の再生触媒のケークを得た。
This nitric acid-treated slurry was filtered under reduced pressure using a Nutsche filter, and then washed with water until the pH of the filtrate reached 5.0 to obtain a regenerated catalyst cake with a water content of 40% by weight.

この再生触媒を用いて、1!の5IIS 304製オー
トクレーブ中で、参考例2と同じ条件でシクロヘキセン
の水和反応を行った。
Using this regenerated catalyst, 1! The hydration reaction of cyclohexene was carried out under the same conditions as in Reference Example 2 in a 5IIS 304 autoclave.

その結果、反応開始直後の反応器出口オイル中のシクロ
ヘキサノール濃度は11.0重量%であった。
As a result, the cyclohexanol concentration in the reactor outlet oil immediately after the start of the reaction was 11.0% by weight.

実施例2 参考例2で3000時間連続運転した触媒の再生を、以
下の手順で行った。
Example 2 The catalyst that had been operated continuously for 3000 hours in Reference Example 2 was regenerated using the following procedure.

反応器からスラリー300 ccを抜き出し、オイルと
スラリーを分離して、スラリーを減圧濾過、2fのHz
Oで水洗した。その後、得られたケーク146g (含
水率40重量%)を、NaOH6,7gをH2O150
gに溶かした水溶液に加えて、90°C18時間攪拌条
件下でアルカリ水溶液処理を行った。この際の触媒1 
kg当たりのNa1l(の量は1.9モルであった。得
られたスラリーを濾過、1iの1120で水洗した後、
61重量%濃度の硝酸100gとバナジン酸アンモニウ
ム0.1g、亜硝酸ナトリウム2.0gを020100
gに溶かした溶液に加え、90°C15時間撹拌条件下
に硝酸処理を行った。この際の触媒1kg当たりの硝酸
(純品換算)の量は12.1モルであった。
300 cc of slurry was extracted from the reactor, the oil and slurry were separated, and the slurry was filtered under reduced pressure and heated at 2 f Hz.
Washed with water. Thereafter, 146 g of the obtained cake (water content 40% by weight) was mixed with 6.7 g of NaOH and 150 g of H2O.
In addition to the aqueous solution dissolved in g, an alkaline aqueous solution treatment was performed under stirring conditions at 90° C. for 18 hours. Catalyst 1 in this case
The amount of Na1/kg was 1.9 mol. The resulting slurry was filtered and washed with 1120 ml of water.
100 g of nitric acid with a concentration of 61% by weight, 0.1 g of ammonium vanadate, and 2.0 g of sodium nitrite
The mixture was added to the solution dissolved in 100 g and treated with nitric acid under stirring conditions at 90° C. for 15 hours. At this time, the amount of nitric acid (purity equivalent) per 1 kg of catalyst was 12.1 mol.

このスラリーをヌッチェで減圧濾過した後、濾液のPH
が4.8になるまで水洗して、再生触媒のケークを得た
After filtering this slurry under reduced pressure using Nutsche, the pH of the filtrate was
A cake of regenerated catalyst was obtained by washing with water until the pH value reached 4.8.

この再生触媒を用いて、11のSOS 304製オート
クレーブ中で、参考例2と同じ条件でシクロヘキセンの
水和反応を行った。
Using this regenerated catalyst, hydration reaction of cyclohexene was carried out under the same conditions as in Reference Example 2 in 11 SOS 304 autoclaves.

その結果、反応開始直後の反応器出口オイル中のシクロ
ヘキサノール濃度は11.3重量%であった。
As a result, the cyclohexanol concentration in the reactor outlet oil immediately after the start of the reaction was 11.3% by weight.

比較例1 実施例1の最初のオイルストリッピング後の35重量%
の劣化触媒スラリー250gに、61重量%濃度の硝酸
74.3gを加えて、90°Cで4時間撹拌下に硝酸処
理を行った。この際の触媒1kg当たりの硝酸(純品換
算)の量は9モルであった。
Comparative Example 1 35% by weight after first oil stripping of Example 1
74.3 g of nitric acid with a concentration of 61% by weight was added to 250 g of the degraded catalyst slurry, and the mixture was treated with nitric acid at 90° C. for 4 hours with stirring. At this time, the amount of nitric acid (purity equivalent) per 1 kg of catalyst was 9 mol.

この硝酸処理スラリーをヌッチヱで減圧濾過した後、濾
液のpHが5.0になるまで水洗して、含水率38重量
%の再生触媒ケークを得た。
This nitric acid-treated slurry was filtered under reduced pressure using a Nutschie filter, and then washed with water until the pH of the filtrate reached 5.0 to obtain a regenerated catalyst cake with a water content of 38% by weight.

この再生触媒を用いて、11のSUS 304製オート
クレーブ中で、参考例2と同じ条件でシクロヘキセンの
水和反応を行った。
Using this regenerated catalyst, a cyclohexene hydration reaction was carried out under the same conditions as in Reference Example 2 in 11 SUS 304 autoclaves.

その結果、反応開始直後の反応器出口オイル中のシクロ
ヘキサノール濃度は10重量%であった。
As a result, the cyclohexanol concentration in the reactor outlet oil immediately after the start of the reaction was 10% by weight.

この値は、実施例1に比べてかなり低く、アルカリ水溶
液処理の効果が大きいことが分かる。
This value is considerably lower than that of Example 1, and it can be seen that the effect of the alkaline aqueous solution treatment is large.

参考例3 50重量%N a OII水溶液138 g、  Af
t(SOa)、・14Hz0118 g、沈降性シリカ
粉末320 g。
Reference example 3 50% by weight Na OII aqueous solution 138 g, Af
t(SOa), 14Hz0118 g, 320 g of precipitated silica powder.

uzo750gの混合物にピロリドン320gを加えて
、2!のオートクレーブ中で、撹拌しなから110°C
114日間結晶化させた。
Add 320g of pyrrolidone to the mixture of 750g of uzo, 2! in an autoclave at 110°C without stirring.
Crystallized for 114 days.

得られたスラリーを濾過、洗浄した後、120°Cで8
時間乾燥させた後、X線回折分析を行った結果、この生
成物は、ZSM−35であった。
After filtering and washing the obtained slurry, it was heated at 120°C for 8
After drying for an hour, X-ray diffraction analysis revealed that the product was ZSM-35.

この乾燥した生成物をアルミナと混ぜ合わせ、水を加え
た後、押出機を用いて押出成型を行った。
This dried product was mixed with alumina, water was added, and extrusion molding was performed using an extruder.

その結果、ZSt−35を65重量%含む押出成型物を
得た。これを、先ず500°C1窒素雰囲気中で焼成し
、次いで、lNの硝酸アンモニウム水溶液でイオン交換
した後、600°Cで空気中で焼成して、ZSM−35
を含む成型触媒を得た。
As a result, an extrusion molded product containing 65% by weight of ZSt-35 was obtained. This was first fired at 500°C in a nitrogen atmosphere, then ion-exchanged with a 1N ammonium nitrate aqueous solution, and then fired at 600°C in air to form ZSM-35.
A shaped catalyst containing the following was obtained.

参考例4 参考例3の触媒を用いて、プロピレンの水和反応を以下
の条件で行った。
Reference Example 4 Using the catalyst of Reference Example 3, a hydration reaction of propylene was carried out under the following conditions.

H!0/プロピレンモル比=2/1 WH3V(プロピレンおよびゼオライト基準)=0.6
hr柑 反応温度=170°C 圧カニ 70 kg/cff1 反応開始後直後のプロピレン転化率は55%であったが
、300時間運転後には、20%まで低下した。
H! 0/propylene molar ratio = 2/1 WH3V (based on propylene and zeolite) = 0.6
hr. reaction temperature = 170°C pressure crab 70 kg/cff1 The propylene conversion rate was 55% immediately after the start of the reaction, but it decreased to 20% after 300 hours of operation.

実施例3 参考例4で300時間運転後の触媒層に、100°Cで
窒素を1時間流した後、0.8NのNaOH水溶液を、
WH3V (ゼオライト基準)=2hr”80”Cで4
時間、ポンプで循環させた。その後、H2Oを同条件で
2時間循環させた後、INの硝酸を、WH3V=2hr
−’、80°Cで4時間ポンプで循環させた。その後、
820を同条件で4時間循環させて再生を終了した。
Example 3 After flowing nitrogen at 100°C for 1 hour on the catalyst layer after 300 hours of operation in Reference Example 4, a 0.8N NaOH aqueous solution was added.
WH3V (zeolite standard) = 4 at 2hr"80"C
Circulated with a pump for an hour. After that, after circulating H2O under the same conditions for 2 hours, IN nitric acid was added to WH3V=2hr.
-', pumped for 4 hours at 80°C. after that,
820 was circulated under the same conditions for 4 hours to complete the regeneration.

この再生触媒を用いて、参考例4と同じ条件でプロピレ
ンの水和反応を行った。
Using this regenerated catalyst, a propylene hydration reaction was carried out under the same conditions as in Reference Example 4.

その結果、反応開始直後のプロピレンの転化率は40%
であった。
As a result, the conversion rate of propylene immediately after the start of the reaction was 40%.
Met.

比較例2 参考例4で300時間運転後の触媒層に、100°Cで
窒素を1時間流した後、INの硝酸を、WH3V=2h
r−’、80°Cで4時間ポンプで循環させた。その後
、H2Oを同条件で4時間循環させて再生を終了した。
Comparative Example 2 After flowing nitrogen at 100°C for 1 hour through the catalyst layer after 300 hours of operation in Reference Example 4, IN nitric acid was added to the catalyst layer at WH3V=2h.
r-', pumped for 4 hours at 80°C. Thereafter, H2O was circulated under the same conditions for 4 hours to complete the regeneration.

この再生触媒を用いて、参考例4と同じ条件でプロピレ
ンの水和反応を行った。
Using this regenerated catalyst, a propylene hydration reaction was carried out under the same conditions as in Reference Example 4.

その結果、反応開始直後のプロピレンの転化率は31%
であった。
As a result, the conversion rate of propylene immediately after the start of the reaction was 31%.
Met.

(ほか1名)(1 other person)

Claims (2)

【特許請求の範囲】[Claims] (1)液相でのオレフィン水和反応に供したゼオライト
触媒を再生するに当たり、該ゼオライトを無機アルカリ
水溶液と接触させた後、硝酸と接触させることを特徴と
するオレフィン水和触媒の再生法。
(1) A method for regenerating an olefin hydration catalyst, which comprises, in regenerating a zeolite catalyst subjected to an olefin hydration reaction in a liquid phase, contacting the zeolite with an inorganic alkaline aqueous solution and then contacting it with nitric acid.
(2)無機アルカリ水溶液がアルカリ金属水酸化物の水
溶液である請求項1記載のオレフィン水和触媒の再生法
(2) The method for regenerating an olefin hydration catalyst according to claim 1, wherein the aqueous inorganic alkali solution is an aqueous solution of an alkali metal hydroxide.
JP2019118A 1990-01-31 1990-01-31 Regeneration method of olefin hydration catalyst Expired - Fee Related JP2903326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019118A JP2903326B2 (en) 1990-01-31 1990-01-31 Regeneration method of olefin hydration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019118A JP2903326B2 (en) 1990-01-31 1990-01-31 Regeneration method of olefin hydration catalyst

Publications (2)

Publication Number Publication Date
JPH03224632A true JPH03224632A (en) 1991-10-03
JP2903326B2 JP2903326B2 (en) 1999-06-07

Family

ID=11990559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019118A Expired - Fee Related JP2903326B2 (en) 1990-01-31 1990-01-31 Regeneration method of olefin hydration catalyst

Country Status (1)

Country Link
JP (1) JP2903326B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769947A (en) * 1993-08-27 1995-03-14 Mitsubishi Chem Corp Pretreatment of zeolite catalyst
WO1999004902A1 (en) * 1996-01-26 1999-02-04 Mitsubishi Chemical Corporation Process for the regeneration of hydration catalyst for cyclic olefins

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769947A (en) * 1993-08-27 1995-03-14 Mitsubishi Chem Corp Pretreatment of zeolite catalyst
WO1999004902A1 (en) * 1996-01-26 1999-02-04 Mitsubishi Chemical Corporation Process for the regeneration of hydration catalyst for cyclic olefins
US6432858B1 (en) 1996-01-26 2002-08-13 Mitsubishi Chemical Corporation Process for the regeneration of hydration catalyst for cyclic olefins

Also Published As

Publication number Publication date
JP2903326B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
US7838455B2 (en) Method of regeneration of titanium-containing molecular sieve catalyst
KR20010013462A (en) Method for regenerating a zeolitic catalyst
KR20010020462A (en) Method for oxidizing an organic compound containing at least one c-c double bond
JP2002102709A (en) Crystalline mww type titanosilicate catalyst for production of oxidized compound, method for producing the same and method for producing oxidized compound using the same
EP0311066A2 (en) Process for the production of copper-containing zeolite and the method of application thereof
JPH03224632A (en) Method for regenerating catalyst for hydration of olefin
JP2852950B2 (en) Regeneration method of olefin hydration catalyst
CZ313797A3 (en) Oxidation process of hydrocarbons, alcohols or ketones by making use of a heterogeneous catalyst
US5906954A (en) Removal of titanium atoms from titanium silicate molecular sieves
RU2251451C2 (en) Method of a catalyst carrier material production of and a method of production of the catalyst
JP2577941B2 (en) Method for producing alcohol using ZSM-5
JPS61234945A (en) Regenerating method for catalyst
JPH0517106A (en) Production of hydrogen peroxide
JPH10175896A (en) Production of alcohol
JP2512959B2 (en) Highly active nitrogen oxide decomposition catalyst and catalytic decomposition method of nitrogen oxide
JP2017030986A (en) PROCESS FOR PRODUCING ZEOLITE AND PROCESS FOR PRODUCING ε-CAPROLACTAM
JP3830329B2 (en) Method for regenerating catalyst for alkanolamine production
JPH0930999A (en) Hydration of olefin
JPH0985098A (en) Regeneration of hydrated catalyst
JPH10316417A (en) Production of titanium-containing beta-zeolite
WO2022195076A1 (en) Process for the dealumination of zeolitic materials
JPH0912493A (en) Hydration reaction of olefin
JP2001302784A (en) Method for polymerizing cyclic ether
JPH04187243A (en) Production of olefin hydration catalyst
JP2001302786A (en) Method for polymerizing cyclic ether

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees