JP2852950B2 - Regeneration method of olefin hydration catalyst - Google Patents

Regeneration method of olefin hydration catalyst

Info

Publication number
JP2852950B2
JP2852950B2 JP2019119A JP1911990A JP2852950B2 JP 2852950 B2 JP2852950 B2 JP 2852950B2 JP 2019119 A JP2019119 A JP 2019119A JP 1911990 A JP1911990 A JP 1911990A JP 2852950 B2 JP2852950 B2 JP 2852950B2
Authority
JP
Japan
Prior art keywords
catalyst
slurry
weight
reaction
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2019119A
Other languages
Japanese (ja)
Other versions
JPH03224633A (en
Inventor
浩 石田
賢治 赤岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to JP2019119A priority Critical patent/JP2852950B2/en
Publication of JPH03224633A publication Critical patent/JPH03224633A/en
Application granted granted Critical
Publication of JP2852950B2 publication Critical patent/JP2852950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種化学原料として重要なアルコールを、
オレフィンの水和によって製造する際の触媒の再生法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to an important alcohol as various chemical raw materials,
The present invention relates to a method for regenerating a catalyst when produced by hydration of an olefin.

(従来の技術) ゼオライトを触媒として用いて、液相でオレフィンの
水和反応を行う場合、反応の経過とともに触媒の活性が
徐々に低下する。この活性が低下した触媒の再生法とし
ては、液相で過酸化水素、オゾン、有機過酸、硝酸等の
酸化剤を用いて再生する方法(特開昭61−234945号公報
参照)や、ゼオライトを予めアルカリ金属イオンで交換
し、ついで分子状酸素を含有するガスと200〜600℃で接
触させた後、該アルカリ金属イオンを再交換により除去
する方法(特開昭61−234946号公報参照)等が提案され
ている。
(Prior art) When hydration of an olefin is performed in a liquid phase using zeolite as a catalyst, the activity of the catalyst gradually decreases as the reaction progresses. As a method for regenerating the catalyst whose activity has been reduced, a method of regenerating in the liquid phase using an oxidizing agent such as hydrogen peroxide, ozone, an organic peracid, or nitric acid (see JP-A-61-234945), a zeolite Is exchanged with an alkali metal ion in advance, and then contacted with a gas containing molecular oxygen at 200 to 600 ° C., and the alkali metal ion is removed by re-exchange (see JP-A-61-234946). Etc. have been proposed.

(発明が解決しようとする課題) 従来技術の中で、液相で酸化剤を用いる方法の中の過
酸化水素、オゾン等を用いる再生法は、確かに触媒の活
性低下が小さい場合は、再生率も高く有効な方法である
が、活性低下が著しい場合には、活性を完全に回復させ
ることは困難であった。このような欠点は、触媒を完全
混合状態のスラリー系で用い、ある割合で定期的に抜き
出して再生する場合に、長期間再生されずに残る触媒が
ある割合必ず存在するため特に問題となる。
(Problems to be Solved by the Invention) Among the prior arts, the regeneration method using hydrogen peroxide, ozone, etc. in the method using an oxidizing agent in the liquid phase, when the activity of the catalyst is certainly small, Although the method is effective at a high rate, it is difficult to completely restore the activity when the activity is significantly reduced. Such a drawback is particularly problematic when the catalyst is used in a completely mixed slurry system and is periodically extracted at a certain ratio and regenerated, because there is always a certain ratio of the catalyst remaining without being regenerated for a long period of time.

また、予めアルカリ金属イオンで交換し、その後、分
子状酸素と接触させる方法は、再生工程が長く、さら
に、液相処理と気相処理を含むため、乾燥、焼成等の操
作が入り、操作が極めて煩雑となる問題があった。
In addition, the method of exchanging with alkali metal ions in advance and then contacting with molecular oxygen involves a long regeneration step, and further includes a liquid phase treatment and a gas phase treatment. There was an extremely complicated problem.

(課題を解決するための手段) 本発明者らは、活性低下が著しい触媒の再生において
も、高い再生率を実現できる方法について鋭意検討を重
ねた結果、従来の液相において酸化剤と接触させる再生
の後、無機アルカリ水溶液と接触させ、さらに無機酸と
接触させることによって、ほとんど完全に活性を回復さ
せることができることを見出し、本発明を完成するに至
った。
(Means for Solving the Problems) The present inventors have conducted intensive studies on a method capable of realizing a high regeneration rate even in the regeneration of a catalyst whose activity is significantly reduced, and as a result, the catalyst is brought into contact with an oxidizing agent in a conventional liquid phase. After regeneration, they have found that the activity can be almost completely recovered by contact with an aqueous solution of an inorganic alkali and further contact with an inorganic acid, thereby completing the present invention.

すなわち、本発明は、液相でのオレフィン水和反応に
供したゼオライト触媒を再生するに当たり、該ゼオライ
トを液相で酸化剤と接触させた後、無機アルカリ水溶液
と接触させ、さらに、無機酸と接続させることを特徴と
するオレフィン水和触媒の再生法である。
That is, in the present invention, in regenerating the zeolite catalyst subjected to the olefin hydration reaction in the liquid phase, after contacting the zeolite with the oxidizing agent in the liquid phase, and then contact with an aqueous inorganic alkali solution, furthermore, with the inorganic acid This is a method for regenerating an olefin hydration catalyst, characterized in that the catalyst is connected.

本反応系でのゼオライトの活性低下の原因は、はっき
り分かっていないため、なぜアルカリ水溶液処理が有効
であるのかは明らかでないが、以下のようなことが考え
られる。
The cause of the decrease in zeolite activity in this reaction system is not clearly understood, and it is not clear why the alkali aqueous treatment is effective. However, the following may be considered.

液相におけるオレフィンの水和反応においては、通
常、酸型のゼオライトが用いられるが、酸触媒上では、
オレフィンの重合反応や、生成したアルコールの逐次生
成物であるエーテル等の生成する副反応も同時に起こ
る。これらの高沸生成物は、ゼオライトの細孔の閉塞を
招き活性低下の原因となる。液相での酸化剤による再生
は、この高沸物を酸化によって除去しているものと考え
られる。一方、長期に使用し劣化が著しい触媒を酸化剤
で処理した場合、ゼオライト上の有機物はほとんど除去
されているにもかかわらず、活性が完全に回復しない場
合がある。この場合は、おそらく本反応系が高温の水の
存在下であるために、長期に使用しているとゼオライト
の結晶格子からのアルミニウムの脱離が起こり、活性点
が減少するためと考えられる。そして、無機アルカリ水
溶液処理は、ゼオライト内に残留しているアルミニウム
を、結晶格子に戻す働きをしているものと考えられる。
また、無機酸との接触は、アルカリ処理でアルカリ型と
なったゼオライトを酸型にイオン交換していると考えら
れる。
In the hydration reaction of an olefin in a liquid phase, an acid-type zeolite is usually used, but on an acid catalyst,
An olefin polymerization reaction and a side reaction such as formation of ether, which is a successive product of the produced alcohol, also occur at the same time. These high-boiling products cause pores of the zeolite to be clogged and cause a decrease in activity. It is considered that the regeneration with the oxidizing agent in the liquid phase removes this high-boiling substance by oxidation. On the other hand, when a catalyst that has been used for a long period of time and is significantly deteriorated is treated with an oxidizing agent, the activity may not be completely recovered even though organic substances on the zeolite are almost completely removed. In this case, probably because the reaction system is in the presence of high-temperature water, if it is used for a long period of time, elimination of aluminum from the zeolite crystal lattice will occur, and the active sites will decrease. And, it is considered that the treatment with the aqueous solution of the inorganic alkali returns aluminum remaining in the zeolite to the crystal lattice.
Further, it is considered that the contact with the inorganic acid ion-exchanges the zeolite which has been made alkaline by the alkali treatment into the acid form.

本発明における酸化剤の種類としては、有機化合物の
酸化反応に一般的に使用されるものであれば特に制限は
ないが、例えば、過酸化水素、オゾン、有機過酸、四酢
酸鉛、過ヨウ素酸、過マンガン酸、硝酸、亜硝酸、窒素
酸化物等が挙げられる。これらの中で好ましいのは過酸
化水素、オゾンであり、特に好ましいのは過酸化水素で
ある。
The type of the oxidizing agent in the present invention is not particularly limited as long as it is generally used for an oxidation reaction of an organic compound. Examples of the oxidizing agent include hydrogen peroxide, ozone, an organic peracid, lead tetraacetate, and iodine. Acids, permanganic acid, nitric acid, nitrous acid, nitrogen oxides and the like. Among them, preferred are hydrogen peroxide and ozone, and particularly preferred is hydrogen peroxide.

これらの酸化剤の量は、触媒の劣化のレベルによって
異なるため、特に規定されるものではないが、通常、触
媒1kg当たり0.05〜50kg、好ましくは0.1〜20kg、さらに
好ましくは0.2〜10kgの範囲である。
The amount of these oxidizing agents is not particularly defined because it varies depending on the level of deterioration of the catalyst, but is usually in the range of 0.05 to 50 kg, preferably 0.1 to 20 kg, more preferably 0.2 to 10 kg per kg of the catalyst. is there.

本発明における酸化剤と接触させる際の温度は、液相
状態が保持されれば特に制限はないが、処理速度の点か
らは比較的高温が望ましく、通常は0〜200℃、好まし
くは20〜150℃、さらに好ましくは50〜100℃の範囲であ
る。また、酸化剤と接触させる際の液相のpHは、使用す
る酸化剤の種類によって異なり、特に規定されるもので
はないが、アルカリ側では、酸化剤の分解が著しいた
め、通常はpH3〜7の範囲で行われる。
The temperature at the time of contact with the oxidizing agent in the present invention is not particularly limited as long as the liquid state is maintained, but a relatively high temperature is desirable from the viewpoint of the processing speed, usually 0 to 200 ° C., preferably 20 to 200 ° C. It is in the range of 150 ° C, more preferably 50-100 ° C. The pH of the liquid phase at the time of contact with the oxidizing agent varies depending on the type of the oxidizing agent to be used and is not particularly limited. It is performed in the range.

本発明においては、液相で酸化剤と接触させた後、水
洗しても、また、直接次の無機アルカリ水溶液と接触さ
せてもよい。
In the present invention, after being brought into contact with the oxidizing agent in the liquid phase, it may be washed with water or may be brought into direct contact with the next aqueous inorganic alkali solution.

本発明に用いられる無機アルカリ水溶液とは、アルカ
リ性の無機塩の水溶液であれば特に制限はないが、例え
ば、アルカリ金属水酸化物、アルカリ金属炭酸塩、、ア
ルカリ金属炭酸水素塩素の水溶液が挙げられる。中でも
好ましいのはアルカリ金属水酸化物であり、特に好まし
いのは水酸化ナトリウムである。
The inorganic alkali aqueous solution used in the present invention is not particularly limited as long as it is an aqueous solution of an alkaline inorganic salt, and examples thereof include an aqueous solution of an alkali metal hydroxide, an alkali metal carbonate, and an alkali metal hydrogencarbonate. . Of these, alkali metal hydroxides are preferred, and sodium hydroxide is particularly preferred.

無機アルカリ水溶液中の無機塩の量は、触媒1kg当た
り0.1〜10当量の範囲であり、好ましくは0.5〜5当量、
さらに好ましくは1.0〜3.0当量の範囲である。特に水酸
化ナトリウム水溶液を用いる場合の水酸化ナトリウムの
量は、触媒1kg当たり0.5〜5モル、好ましくは0.8〜3
モル、さらに好ましくは1〜2モルの範囲である。この
無機塩の量が0.1当量より少ないと再生効果が低く、ま
た、10当量よりも多いとアルカリ性が強過ぎてゼオライ
トの溶解による結晶破壊が著しくなる。
The amount of the inorganic salt in the aqueous inorganic alkali solution is in the range of 0.1 to 10 equivalents, preferably 0.5 to 5 equivalents per kg of the catalyst,
It is more preferably in the range of 1.0 to 3.0 equivalents. Particularly when an aqueous sodium hydroxide solution is used, the amount of sodium hydroxide is 0.5 to 5 mol, preferably 0.8 to 3 mol per kg of the catalyst.
Mol, more preferably in the range of 1 to 2 mol. If the amount of the inorganic salt is less than 0.1 equivalent, the regenerating effect is low, and if it is more than 10 equivalents, the alkalinity is too strong and crystal breakage due to dissolution of zeolite becomes remarkable.

アルカリ水溶液の量は、無機塩の量が先に述べた範囲
に入っていれは特に制限はないが、通常、触媒1kg当た
り1〜100kg、好ましくは2〜50kg、さらに好ましくは
3〜30kgの範囲である。
The amount of the aqueous alkali solution is not particularly limited as long as the amount of the inorganic salt falls within the range described above, but is usually in the range of 1 to 100 kg, preferably 2 to 50 kg, more preferably 3 to 30 kg per kg of the catalyst. It is.

アルカリ水溶液と接触させる際の温度は、液相状態が
保たれていれば特に制限はないが、通常0〜200℃、好
ましくは10〜150℃、さらに好ましくは20〜100℃の範囲
である。
The temperature at the time of contact with the aqueous alkali solution is not particularly limited as long as the liquid phase is maintained, but is usually in the range of 0 to 200 ° C, preferably 10 to 150 ° C, and more preferably 20 to 100 ° C.

本発明においては、アルカリ水溶液と接触させた後、
水洗をしても、また、直接無機酸を加えて接触させても
よい。
In the present invention, after contacting with an alkaline aqueous solution,
Washing with water or contact with an inorganic acid may be directly added.

本発明における無機酸とは、数多くの酸が挙げられ
る。例えば、硝酸、硫酸、塩酸、リン酸、ヘテロポリ酸
等が挙げられるが、中でも好ましいのは硝酸、硫酸であ
り、特に好ましいのは硝酸である。
The inorganic acid in the present invention includes many acids. For example, nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, heteropoly acid and the like can be mentioned. Among them, nitric acid and sulfuric acid are preferable, and nitric acid is particularly preferable.

本発明における無機酸の量は、系が酸性になれば特に
制限はないが、通常、触媒1kg当たり1〜30当量の範囲
であり、好ましいのは2〜20当量、さらに好ましくは5
〜15当量の範囲である。
The amount of the inorganic acid in the present invention is not particularly limited as long as the system becomes acidic, but is usually in the range of 1 to 30 equivalents per kg of the catalyst, preferably 2 to 20 equivalents, more preferably 5 to 20 equivalents.
It is in the range of ~ 15 equivalents.

無機酸との接触の際の温度は、通常0〜150℃、好ま
しくは10〜120℃、さらに好ましくは20〜100℃の範囲で
ある。
The temperature at the time of contact with the inorganic acid is usually in the range of 0 to 150 ° C, preferably 10 to 120 ° C, more preferably 20 to 100 ° C.

本発明の各処理の実施態様は、特に制限はなく、例え
ば、固定床流通方式、固定床循環方式、スラリー状態で
の回分式等が挙げられるが、好ましいのはスラリー状態
での回分式である。
The embodiment of each treatment of the present invention is not particularly limited, and includes, for example, a fixed bed circulation system, a fixed bed circulation system, a batch system in a slurry state, and the like, and a batch system in a slurry state is preferable. .

本発明の再生法は、液相でのオレフィン水和反応で活
性が低下した触媒に対して有効である。ここで言うオレ
フィンとは、例えば、エチレン、プロピレン、ブテン等
の鎖状オレフィンや、シクロペンテン、シクロヘキセ
ン、シクロオクテン等の環状オレフィンが挙げられる。
中でも本発明の再生法が特に有効なのは、シクロヘキセ
ンの場合である。
The regeneration method of the present invention is effective for a catalyst whose activity has been reduced by an olefin hydration reaction in a liquid phase. The olefin mentioned here includes, for example, chain olefins such as ethylene, propylene, and butene, and cyclic olefins such as cyclopentene, cyclohexene, and cyclooctene.
Among them, the regeneration method of the present invention is particularly effective in the case of cyclohexene.

本発明で再生するゼオライトは、反応の種類によって
それぞれ異なるが、例えば、フォージャサイト、L型ゼ
オライト、フェリエライト、オフレタイト、エリオナイ
ト、ゼオライトベータ、モルデナイト、ZSM−4、ZSM−
5、ZSM−8、ZSM−11、ZSM−12、ZSM−20、ZSM−35、Z
SM−48等が挙げられる。中でも本発明の再生法が特に有
効なのは、ZSM−5である。
The zeolite to be regenerated in the present invention is different depending on the type of reaction.
5, ZSM-8, ZSM-11, ZSM-12, ZSM-20, ZSM-35, Z
SM-48 and the like. Among them, ZSM-5 is particularly effective for the regeneration method of the present invention.

(発明の効果) 本発明の再生法を用いると、液相でオレフィン水和反
応で活性低下した触媒を、ほとんど完全に再生すること
が可能となる。このことは、工業的に実施する上で非常
に有利となる。
(Effect of the Invention) By using the regeneration method of the present invention, it is possible to almost completely regenerate a catalyst whose activity has been reduced by an olefin hydration reaction in a liquid phase. This is very advantageous for industrial implementation.

(実施例) 次に、本発明を実施例で説明する。(Example) Next, the present invention will be described with an example.

参考例1 水ガラス(Na2O 8.9重量%、SiO2 28.9重量%、H2O 6
2.2重量%)79.5kgにNaOH 0.39kgとH2O 30kgを加えて均
一な溶液を得た。この溶液を600オートクレーブに仕
込み、撹拌しながら、H2O 225kgにAl2(SO4・18H2O
6kgと濃硫酸4.5kgを溶かした水溶液を室温で1時間か
けてポンプで送入した。その後、温度を170℃まで上げ
て、100rpmの撹拌条件下で10時間結晶化された。その
後、合成スラリーを抜き出して、一部を濾過洗浄、120
℃で4時間乾燥した後のX線回折分析の結果、結晶化度
35%のZSM−5であった。
Reference Example 1 Water glass (Na 2 O 8.9% by weight, SiO 2 28.9% by weight, H 2 O 6
(2.2% by weight) 0.39 kg of NaOH and 30 kg of H 2 O were added to 79.5 kg to obtain a uniform solution. This solution was charged into a 600 autoclave, and while stirring, 225 kg of H 2 O was added to Al 2 (SO 4 ) 3 · 18H 2 O
An aqueous solution in which 6 kg and 4.5 kg of concentrated sulfuric acid were dissolved was pumped in at room temperature for 1 hour. Thereafter, the temperature was increased to 170 ° C., and crystallization was performed for 10 hours under stirring conditions of 100 rpm. After that, the synthetic slurry was extracted, and a part thereof was filtered and washed.
X-ray diffraction analysis after drying at 4 ° C for 4 hours, crystallinity
35% ZSM-5.

ここで得られたスラリー158kgに、水ガラス86kg、NaO
H 0.42kg、さらにH2O 33kgを加え、そこにH2O 240kgにA
l2(SO4・18H2O 6.3kgと濃硫酸4.5kgを溶かした水
溶液を100rpmで撹拌しながらポンプで1時間かけて送入
した。その後、温度を150℃まで上げて、100rpmで撹拌
しながら30時間結晶化を行った。得られたスラリー400
を、コトブキ技研工業株式会社製ロータリーフィルタ
ーを用いて25重量%まで濃縮した後、一定スラリー濃度
で濾液のpHが10.5になるまで置換洗浄を行った。
To 158 kg of the slurry obtained here, 86 kg of water glass, NaO
Add 0.42 kg of H, 33 kg of H 2 O and add 240 kg of H 2 O to A
An aqueous solution in which 6.3 kg of l 2 (SO 4 ) 3 · 18H 2 O and 4.5 kg of concentrated sulfuric acid were dissolved was fed in with a pump for 1 hour while stirring at 100 rpm. Thereafter, the temperature was increased to 150 ° C., and crystallization was performed for 30 hours while stirring at 100 rpm. The resulting slurry 400
Was concentrated to 25% by weight using a rotary filter manufactured by Kotobuki Giken Kogyo Co., Ltd., and then subjected to displacement washing at a constant slurry concentration until the pH of the filtrate reached 10.5.

得られたスラリーに、63重量%濃度の硝酸25kgとH2O
137kgを加え、50℃で4時間イオン交換を行い、その
後、ロータリーフィルターで30重量%まで濃縮して、一
定スラリー濃度で濾液のpHが4.5になるまで置換洗浄を
行った。
25 kg of 63% by weight nitric acid and H 2 O were added to the obtained slurry.
137 kg was added, ion exchange was performed at 50 ° C. for 4 hours, and then concentration was performed with a rotary filter to 30% by weight, and replacement washing was performed at a constant slurry concentration until the pH of the filtrate reached 4.5.

このようにして、H型のZSM−5スラリーを得た。 Thus, an H-type ZSM-5 slurry was obtained.

参考例2 参考例1で得られたH型のZSM−5スラリーを触媒に
用いて、シクロヘキセンの水和反応を以下の条件で行っ
た。
Reference Example 2 Using the H-type ZSM-5 slurry obtained in Reference Example 1 as a catalyst, a hydration reaction of cyclohexene was performed under the following conditions.

反応部オイル/スラリー容量比=10/90 スラリー濃度:30重量% シクロヘキセン供給速度:1.7〔g−シクロヘキセン/g
−cat・hr〕 反応温度:120℃ 圧力:6kg/cm2(N2加圧) 反応装置:4 SUS 304製オートクレーブ (反応部上部に内部セトラーを有する) 撹拌回転数:200rpm 水の供給は、スラリー濃度が一定になるようにパルス
的に供給した。
Reaction part oil / slurry volume ratio = 10/90 Slurry concentration: 30% by weight Cyclohexene feed rate: 1.7 [g-cyclohexene / g
−cat · hr] Reaction temperature: 120 ° C. Pressure: 6 kg / cm 2 (N 2 pressurized) Reactor: 4 SUS 304 autoclave (with internal settler at the top of the reaction section) Stirring speed: 200 rpm The slurry was supplied in a pulsed manner so that the slurry concentration was constant.

反応開始直後の反応器出口オイル中のシクロヘキサノ
ール濃度は12.5重量%であったが、その後、3000時間連
続運転したところ、シクロヘキサノール濃度は7.0重量
%まで低下した。
The concentration of cyclohexanol in the oil at the outlet of the reactor immediately after the start of the reaction was 12.5% by weight, but after continuous operation for 3000 hours, the concentration of cyclohexanol was reduced to 7.0% by weight.

実施例1 参考例2で3000時間運転した触媒の再生を以下の手順
で行った。
Example 1 The regeneration of the catalyst operated for 3000 hours in Reference Example 2 was performed in the following procedure.

反応器からスラリー300ccを抜き出し、オイルとスラ
リーを分離した後、スラリー相をガラス容器中で加熱し
て、溶存オイルをストリッピングした。この操作によっ
て、35重量%濃度の劣化触媒スラリー250gを得た。
After 300 cc of the slurry was withdrawn from the reactor and the oil and the slurry were separated, the slurry phase was heated in a glass vessel to strip the dissolved oil. By this operation, 250 g of a deteriorated catalyst slurry having a concentration of 35% by weight was obtained.

このスラリーに、35重量%濃度の過酸化水素水125g
を、80℃、撹拌条件下にポンプで2時間かけて滴下し
た。滴下終了後、さらに2時間80℃で撹拌を続け、残存
過酸化水素がないことを確認して液相酸化剤処理を終了
した。このスラリーに、NaOH 5.6gを水50gに溶かした水
溶液を加え、80℃で4時間撹拌下にアルカリ水溶液処理
を行った。この際の触媒1kg当たりのNaOHの量は1.6モル
である。
125 g of 35% by weight hydrogen peroxide solution
Was added dropwise over 2 hours with a pump at 80 ° C. under stirring conditions. After completion of the dropwise addition, stirring was continued at 80 ° C. for another 2 hours, and after confirming that there was no residual hydrogen peroxide, the liquid phase oxidizing agent treatment was terminated. An aqueous solution in which 5.6 g of NaOH was dissolved in 50 g of water was added to this slurry, and an alkaline aqueous solution treatment was performed with stirring at 80 ° C. for 4 hours. At this time, the amount of NaOH per 1 kg of the catalyst was 1.6 mol.

次に、得られたスラリーに、61重量%濃度の硝酸74.3
gを加えて、90℃で4時間撹拌下に無機酸処理を行っ
た。この際の触媒1kg当たりの硝酸(純品換算)の量は
9当量である。この硝酸スラリーをヌッチェで減圧濾過
した後、濾液pHが5.0になるまで水洗して、含水率38重
量%の再生触媒のケークを得た。
Next, 74.3% by weight of nitric acid 74.3% was added to the obtained slurry.
g was added and the mixture was subjected to an inorganic acid treatment at 90 ° C. for 4 hours with stirring. At this time, the amount of nitric acid (in terms of pure product) per 1 kg of the catalyst was 9 equivalents. The nitric acid slurry was filtered under reduced pressure through a Nutsche filter, and then washed with water until the filtrate pH reached 5.0, to obtain a regenerated catalyst cake having a water content of 38% by weight.

この再生触媒を用いて、1のSUS 304製オートクレ
ーブ中で、参考例2と同じ条件でシクロヘキセンの水和
反応を行った。
Using this regenerated catalyst, a cyclohexene hydration reaction was carried out in the same SUS 304 autoclave under the same conditions as in Reference Example 2.

その結果、反応開始直後の反応器出口オイル中のシク
ロヘキサノール濃度は12.6重量%であり、活性は完全に
戻っていた。
As a result, the concentration of cyclohexanol in the oil at the outlet of the reactor immediately after the start of the reaction was 12.6% by weight, and the activity was completely restored.

比較例1 実施例1の過酸化水素処理後のスラリーを、ヌッチェ
で減圧濾過し、2の水で水洗して含水率40重量%の再
生触媒のケークを得た。
Comparative Example 1 The slurry after the hydrogen peroxide treatment of Example 1 was filtered under reduced pressure with a Nutsche, and washed with water to obtain a regenerated catalyst cake having a water content of 40% by weight.

この再生触媒を用いて、1のSUS 304製オートクレ
ーブ中で、参考例2と同じ条件でシクロヘキセンの水和
反応を行った。
Using this regenerated catalyst, a cyclohexene hydration reaction was carried out in the same SUS 304 autoclave under the same conditions as in Reference Example 2.

その結果、反応開始直後の反応器出口オイル中のシク
ロヘキサノール濃度は11.7重量%であり、元のレベルま
では回復していなかった。
As a result, the concentration of cyclohexanol in the oil at the outlet of the reactor immediately after the start of the reaction was 11.7% by weight, and had not recovered to the original level.

実施例2 参考例2で3000時間運転した触媒の再生を、以下の手
順で行った。
Example 2 The regeneration of the catalyst operated for 3000 hours in Reference Example 2 was performed in the following procedure.

反応器からスラリー300ccを抜き出し、オイルとスラ
リーを分離した後、スラリー相をガラス容器中で加熱し
てオイルストリッピングを行った。
After extracting 300 cc of the slurry from the reactor and separating the oil and the slurry, the slurry phase was heated in a glass container to perform oil stripping.

その後、日本オゾン株式会社製のオゾン発生機(型式
0−3−2)を使用し、空気流量10N/hr、加電圧100V
で発生させたオゾン含有ガスを、上記スラリー中へ80
℃、5時間供給した。
Thereafter, using an ozone generator (model 0-3-2) manufactured by Japan Ozone Co., Ltd., an air flow rate of 10 N / hr and an applied voltage of 100 V
The ozone-containing gas generated in
C. for 5 hours.

得られたスラリーを濾過水洗した後、ケーク140g(含
水率40重量%)を、NaOH 6.7gを水150gに溶かした水溶
液に加えて、90℃、8時間撹拌条件下でアルカリ水溶液
処理を行った。
After the obtained slurry was filtered and washed with water, 140 g of the cake (water content: 40% by weight) was added to an aqueous solution obtained by dissolving 6.7 g of NaOH in 150 g of water, and treated with an aqueous alkaline solution at 90 ° C. for 8 hours under stirring. .

この際の触媒1kg当たりのNaOHの量は1.99モルであっ
た。得られたスラリーを濾過、1の水で水洗した後、
30重量%濃度の硝酸200gを加え、90℃、5時間撹拌条件
下に無機酸処理を行った。
At this time, the amount of NaOH per 1 kg of the catalyst was 1.99 mol. The resulting slurry was filtered, washed with 1 water,
200 g of nitric acid having a concentration of 30% by weight was added, and an inorganic acid treatment was performed under stirring at 90 ° C. for 5 hours.

この際の触媒1kg当たりの硝酸(純品換算)の量は12.
モルであった。
At this time, the amount of nitric acid (converted to pure product) per 1 kg of catalyst is 12.
Mole.

このスラリーをヌッチェで減圧濾過した後、濾液のpH
が4.8になるまで水洗して、再生触媒のケークを得た。
After the slurry was filtered under reduced pressure with a nutsche, the pH of the filtrate was
Was reduced to 4.8 to obtain a regenerated catalyst cake.

この再生触媒を用いて、1のSUS 304製オートクレ
ーブ中で、参考例2と同じ条件でシクロヘキセンの水和
反応を行った。
Using this regenerated catalyst, a cyclohexene hydration reaction was carried out in the same SUS 304 autoclave under the same conditions as in Reference Example 2.

その結果、反応開始直後の反応器出口オイル中のシク
ロヘキサノール濃度は12.5重量%であった。
As a result, the concentration of cyclohexanol in the oil at the outlet of the reactor immediately after the start of the reaction was 12.5% by weight.

比較例2 実施例2のオゾン処理後のスラリーを、ヌッチェで減
圧濾過し、2の水で水洗して含水率38重量%の再生触
媒ケークを得た。
Comparative Example 2 The slurry after the ozone treatment in Example 2 was filtered under reduced pressure with Nutsche, and washed with water to obtain a regenerated catalyst cake having a water content of 38% by weight.

この再生触媒を用いて、1のSUS 304製オートクレ
ーブ中で、参考例2と同じ条件でシクロヘキセンの水和
反応を行った。
Using this regenerated catalyst, a cyclohexene hydration reaction was carried out in the same SUS 304 autoclave under the same conditions as in Reference Example 2.

その結果、反応開始直後の反応器出口オイル相中のシ
クロヘキサノール濃度は11.5重量%であった。
As a result, the concentration of cyclohexanol in the oil phase at the outlet of the reactor immediately after the start of the reaction was 11.5% by weight.

参考例3 参考例1で得られたH型のZSM−5スラリーを触媒に
用いて、プロピレンの水和反応を以下の条件で行った。
Reference Example 3 Using the H-form ZSM-5 slurry obtained in Reference Example 1 as a catalyst, hydration of propylene was carried out under the following conditions.

H−ZSM−5スラリーを5重量%濃度まで希釈して、
1のオートクレーブに420g仕込み、さらにプロピレン
を95g仕込んで、撹拌しながら250℃で20時間反応させ
た。反応後、未反応プロピレンを除去した後、触媒を濾
別して、濾液中のイソプロパノールの濃度を測定した結
果、9重量%であった。
Dilute the H-ZSM-5 slurry to a concentration of 5% by weight,
The autoclave No. 1 was charged with 420 g, and 95 g of propylene was further charged and reacted with stirring at 250 ° C. for 20 hours. After the reaction, unreacted propylene was removed, and the catalyst was separated by filtration. The concentration of isopropanol in the filtrate was measured, and as a result, it was 9% by weight.

回収した触媒を用いて、同様の実験を20回繰り返し
た。その結果、20回目の反応液の濾液中のイソプロパノ
ールの濃度は3重量%であった。
The same experiment was repeated 20 times using the recovered catalyst. As a result, the concentration of isopropanol in the filtrate of the twentieth reaction was 3% by weight.

実施例3 参考例3で20回反応を行った後の触媒を、以下の手順
で再生した。
Example 3 The catalyst after performing the reaction 20 times in Reference Example 3 was regenerated by the following procedure.

劣化触媒ケーク(含水率40重量%)52gに水100gを加
えてスラリー化した後、35%過酸化水素水60gを、80
℃、撹拌条件下に2時間かけて滴下ロートで滴下した。
その後、濾過、水洗して、1.2gのNaOHを水100gに溶かし
た溶液中に加えて、70℃で4時間、撹拌条件下で無機ア
ルカリ水溶液処理を行った。その後、濾過水洗し、1Nの
硫酸100ccに加えて50℃で4時間、撹拌条件下に無機酸
処理を行った。
A slurry was prepared by adding 100 g of water to 52 g of the deteriorated catalyst cake (water content: 40% by weight).
The mixture was dropped with a dropping funnel over 2 hours under a stirring condition at ° C.
Thereafter, the mixture was filtered and washed with water, added to a solution of 1.2 g of NaOH dissolved in 100 g of water, and treated with an aqueous solution of an inorganic alkali at 70 ° C. for 4 hours under stirring. Thereafter, the mixture was filtered, washed with water, added to 100 cc of 1N sulfuric acid, and subjected to an inorganic acid treatment under stirring at 50 ° C. for 4 hours.

得られたスラリーを濾過した後、濾液のpHが5.0にな
るまで水洗して、含水率38重量%の再生触媒ケークを得
た。
After the obtained slurry was filtered, the filtrate was washed with water until the pH of the filtrate became 5.0 to obtain a regenerated catalyst cake having a water content of 38% by weight.

この再生触媒を用いて、参考例3と同じ条件でプロピ
レンの水和反応を行った。
Using this regenerated catalyst, a hydration reaction of propylene was performed under the same conditions as in Reference Example 3.

その結果、反応後の濾液中のイソプロパノール濃度は
8.9重量%であった。
As a result, the isopropanol concentration in the filtrate after the reaction was
It was 8.9% by weight.

比較例3 実施例3の過酸化水素処理後、濾過水洗したケークを
用いて、参考例3と同じ条件でプロピレンの水和反応を
行った。
Comparative Example 3 After the hydrogen peroxide treatment of Example 3, hydration of propylene was carried out under the same conditions as in Reference Example 3, using the cake washed with filtered water.

その結果、反応後の濾液中のイソプロパノール濃度は
7.7重量%であった。
As a result, the isopropanol concentration in the filtrate after the reaction was
7.7% by weight.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】液相でのオレフィン水和反応に供したゼオ
ライト触媒を再生するに当たり、該ゼオライトを液相で
酸化剤と接触させた後、無機アルカリ水溶液と接触さ
せ、さらに、無機酸と接触させることを特徴とするオレ
フィン水和触媒の再生方法。
In regenerating a zeolite catalyst subjected to an olefin hydration reaction in a liquid phase, the zeolite is brought into contact with an oxidizing agent in a liquid phase, then with an aqueous inorganic alkali solution, and further with an inorganic acid. A method for regenerating an olefin hydration catalyst.
【請求項2】酸化剤が過酸化水素である請求項1記載の
オレフィン水和触媒の再生方法。
2. The method according to claim 1, wherein the oxidizing agent is hydrogen peroxide.
【請求項3】無機アルカリ水溶液がアルカリ金属水酸化
物の水溶液である請求項1記載のオレフィン水和触媒の
再生方法。
3. The method for regenerating an olefin hydration catalyst according to claim 1, wherein the aqueous inorganic alkali solution is an aqueous solution of an alkali metal hydroxide.
JP2019119A 1990-01-31 1990-01-31 Regeneration method of olefin hydration catalyst Expired - Fee Related JP2852950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019119A JP2852950B2 (en) 1990-01-31 1990-01-31 Regeneration method of olefin hydration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019119A JP2852950B2 (en) 1990-01-31 1990-01-31 Regeneration method of olefin hydration catalyst

Publications (2)

Publication Number Publication Date
JPH03224633A JPH03224633A (en) 1991-10-03
JP2852950B2 true JP2852950B2 (en) 1999-02-03

Family

ID=11990584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019119A Expired - Fee Related JP2852950B2 (en) 1990-01-31 1990-01-31 Regeneration method of olefin hydration catalyst

Country Status (1)

Country Link
JP (1) JP2852950B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734944B2 (en) * 1993-08-27 1998-04-02 三菱化学株式会社 Method for producing cyclohexanol
KR100473986B1 (en) * 2001-11-01 2005-03-07 서곤 Preparation of catalysts from used fcc catalysts for the liquid-phase degradation of waste polymer, and catalytic degradation process using the same
US7037871B1 (en) * 2001-11-21 2006-05-02 Uop Llc Low-temperature regeneration of zeolite L using ozone
CN113289679B (en) * 2021-06-24 2023-09-26 陕西延长石油(集团)有限责任公司 Method for regenerating waste catalyst framework containing molecular sieve by supplementing aluminum and reactivating

Also Published As

Publication number Publication date
JPH03224633A (en) 1991-10-03

Similar Documents

Publication Publication Date Title
CN1147510A (en) Process for production of epoxides from olefins
RU2336225C2 (en) Novel water hydrogen peroxide solutions
JPS59222431A (en) Method for hydrating olefin
JP2852950B2 (en) Regeneration method of olefin hydration catalyst
JP2577941B2 (en) Method for producing alcohol using ZSM-5
JP2903326B2 (en) Regeneration method of olefin hydration catalyst
US5906954A (en) Removal of titanium atoms from titanium silicate molecular sieves
ES2207049T3 (en) A METHOD FOR THE PREPARATION OF SALTS OF CARBOXYL ACIDS.
FR2665375A1 (en) CATALYST OF THE GALLOALUMINOSILICATE TYPE AND ITS USE IN THE AROMATISATION OF HYDROCARBONS CONTAINING BETWEEN 2 AND 7 ATOMS OF CARBON BY MOLECULE.
CN1025849C (en) Continuous industrial process for manufacturing aqueous solution of glyoxylic acid
KR20040083435A (en) Process for preparing alkylaryl hydroperoxide containing product
JPH0380783B2 (en)
JP2534871B2 (en) Method for synthesizing zeolite ZSM-5
JP3554924B2 (en) Method for producing free hydroxylamine aqueous solution
JPH0930999A (en) Hydration of olefin
JP3158162B2 (en) Method for producing olefin hydration catalyst
JP3969078B2 (en) Method for producing pentasil-type zeolite and method for producing ε-caprolactam
EP1303554B1 (en) Polyol processing
JP2512959B2 (en) Highly active nitrogen oxide decomposition catalyst and catalytic decomposition method of nitrogen oxide
JPH032014B2 (en)
JPH10175896A (en) Production of alcohol
EP1008386A1 (en) Process for the regeneration of hydration catalyst for cyclic olefins
JPH03229637A (en) Preparation of slurry catalyst
JP2562641B2 (en) Olefin hydration method
JPH09328479A (en) Production of propylene oxide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees