JPH032015B2 - - Google Patents

Info

Publication number
JPH032015B2
JPH032015B2 JP60076725A JP7672585A JPH032015B2 JP H032015 B2 JPH032015 B2 JP H032015B2 JP 60076725 A JP60076725 A JP 60076725A JP 7672585 A JP7672585 A JP 7672585A JP H032015 B2 JPH032015 B2 JP H032015B2
Authority
JP
Japan
Prior art keywords
zeolite
hydration reaction
alkali metal
catalyst
exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60076725A
Other languages
Japanese (ja)
Other versions
JPS61234946A (en
Inventor
Masahiro Tojo
Yohei Fukuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP60076725A priority Critical patent/JPS61234946A/en
Publication of JPS61234946A publication Critical patent/JPS61234946A/en
Publication of JPH032015B2 publication Critical patent/JPH032015B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、觊媒の新芏な再生方法に関するもの
である。さらに詳しくは、液盞でのオレフむン氎
和反応に䟛したれオラむト觊媒を再生するに圓
り、該れオラむトを予めアルカリ金属むオンで亀
換し、぀いで分子状酞玠を含有するガスず200〜
600℃で接觊させた埌、該アルカリ金属むオンを
再亀換により埐去するこずを特城ずする觊媒再生
方法に関するものである。 埓来の技術 オレフむン氎和反応は、オレフむンず氎から、
盞圓するアルコヌルを補造する方法である。氎和
反応による工業的アルコヌル補造法ずしおは、埓
来、鉱酞等を甚いた均䞀系觊媒による氎和反応が
甚いられおきたが、近幎、これに代るものずしお
固䜓酞觊媒、特にれオラむトを觊媒ずしお䜿甚す
る方法が提案されおいる特開昭57−70828、特
開昭58−124723、特開昭58−194828等。この堎
合、れオラむトを長時間にわたり液盞でのオレフ
むン氎和反応の觊媒ずしお䜿甚するず、原料䞭の
䞍玔物の蓄積等により、反応掻性は次第に䜎䞋す
るため、觊媒の再生が必芁ずなる。 埓来、このような觊媒の再生方法ずしおは、通
垞、分子状酞玠を含むガスによる高枩での焌成凊
理が知られおいる。 発明が解決しようずする問題点 しかしながら、䞊蚘の焌成凊理においおは、掻
性回埩の皋床が䜎いなど、未だ䞍充分な方法であ
り、特に液盞での氎和反応に䟛する觊媒の再生方
法ずしおは問題を残す。すなわち、空気焌成法に
おいおは、觊媒を酞化雰囲気䞋高枩で凊理するた
め、れオラむトの物性が倉化する。具䜓的には、
れオラむトの氎和反応掻性点の䞀぀であるブレン
ステツド酞点の䞀郚が、脱氎反応によりルむス酞
点に倉化する。このように倉化したれオラむト
は、氎により凊理しおも、元の氎和反応掻性を瀺
さない。すなわち、埓来の空気焌成法においお
は、觊媒に蓄積した有機化合物の陀去は可胜であ
るが、氎和反応掻性点を本質的に枛少させるた
め、液盞でのオレフむン氎和反応に察する工業的
觊媒再生方法ずしおは甚だ䞍充分である。 問題点を解決するための手段 本発明者らは、䞊蚘の問題点を解決するため鋭
意研究を重ねた結果、液盞でのオレフむン氎和反
応に䟛したれオラむト觊媒を再生するに圓り、該
れオラむトを予めアルカリ金属むオンで亀換し、
぀いで分子状酞玠を含有するガスず200〜600℃の
枩床で觊媒させた埌、該アルカリ金属むオンを再
亀換により陀去するこずによ぀お、埓来の方法に
比し著しく高い再生率で再生できるこずを芋出
し、本発明を完成するに至぀た。 すなわち、本発明は、液盞でのオレフむン氎和
反応に䟛したれオラむト觊媒を再生するに圓り、
該れオラむトを予めアルカリ金属むオンで亀換
し、぀いで分子状酞玠を含有するガスず200〜600
℃で接觊させた埌、該アルカリ金属むオンを再亀
換により陀去するこずを特城ずする觊媒再生方法
に関するものである。 埓来の再生方法が䜎い再生率しか瀺さないのに
察し、本発明における方法で凊理するこずによ
り、実質的に高い再生率を瀺す。 本発明で甚いる再生方法が高い再生率を瀺す理
由は明らかずはな぀おいないが、およそ次のよう
に考えられる。 液盞でのオレフむン氎和反応における掻性䜎䞋
の原因は、觊媒掻性点に察する被毒物質の蓄積で
ある。ここで被毒物質ずは、原料䞭に埮量存圚す
る極性物質および副反応生成物であり、觊媒掻性
点に察し吞着あるいは化孊的に結合を行なうこず
により、結果的に掻性点における氎和反応の進行
を劚げる物質を意味する。液盞でのオレフむン氎
和反応におけるこの被毒物質は、れオラむトを觊
媒ずしお甚いる有機化合物の転化工皋においお、
䞀般的に知られおいるコヌクの堆積ずは異なり、
比范的枩和な方法で陀去できるものず考えられる
が、通垞の空気焌成法では、有機物質は陀去でき
るが、匏に瀺すように、れオラむトの氎和反応
掻性点の䞀぀であるブレンステツド酞点の非可逆
的な倉化がもたらされ、結果ずしおオレフむン氎
和反応の掻性が䜎䞋する。 䞀方、本発明においおは、れオラむトを予めア
ルカリ金属で亀換凊理した埌に、酞玠含有ガスず
接觊させ有機物質を焌成するため、䞊蚘の脱氎反
応は本質的に進行せず、酞玠含有ガスずの接觊埌
に再亀換を行なうこずにより、結果ずしお掻性が
回埩できるものず考えられる。 本発明においお䜿甚されるれオラむトは公知の
ものである。䟋えば、モルデナむト、゚リオナむ
ト、プリ゚ラむト、モヌビル瀟発衚のZSMç³»
れオラむト等の結晶性アルミノシリケヌトおよび
ボロシリケヌト等の異元玠含有れオラむトが甚い
られる。 本発明においお䜿甚されるれオラむトは、その
亀換可胜なカチオン皮は、通垞、プロトン亀換型
が甚いられるが、その䞀郚がMg、Ca、Sr等のア
ルカリ土類元玠、La、Ce等の垌土類元玠、Fe、
Co、Ni、Ru、Pd、Pt等の族元玠から遞ばれ
た少なくずも䞀皮のカオチン皮で亀換されおいお
もよい。あるいはTi、Zr、Hf、Cr、Mo、、
Th等を含有しおいおもよい。 これらのカオチン皮で亀換されたれオラむトを
本発明の方法により凊理する堎合、該カチオンの
䞀郚が亀換および再亀換をうけるこずによりカチ
オン皮の組成が倉化しおも、結果ずしお液盞での
オレフむン氎和反応に察する掻性が回埩できれば
よい。 本発明においお甚いられるれオラむトの䜿甚さ
れる圢態は劂䜕なるものでよく、粉末状、顆粒状
等のものが䜿甚できる。たた、担䜓あるいはバむ
ンダヌずしおアルミナ、シリカ、チタニア等を䜿
甚するこずもできる。 本発明で凊理できる氎和反応のオレフむン皮ず
しおは、奜たしく炭玠数〜12の盎鎖たたは分枝
構造を有するオレフむンおよび炭玠数〜12の環
状オレフむンであり、特に環状オレフむンの堎合
に有効である。すなわち、埓来の空気焌成法によ
る再生を詊みた堎合、液盞での環状オレフむンの
氎和反応に䟛したれオラむト觊媒は、液盞での鎖
状オレフむンの氎和反応に䟛したれオラむトず比
范しお、コヌクが生成しやすい。環状オレフむン
の氎和反応における被毒物質は、原料環状オレフ
むンの構造を反映しおおり、焌成凊理により容易
に酞化脱氎玠反応を受け、倚環匏芳銙族化合物を
経由しお焌成し難いグラフアむト状の物質が生成
し易いためず掚枬される。䞀方、本発明では、高
枩で焌成凊理を行なうこずによる掻性点の枛少
は、本質的に起こり埗ないので、埓来の焌成法に
比范しお、より高枩で焌成を行なうこずも可胜で
ある。すなわち、本発明では、埓来の焌成法では
比范的困難であ぀た環状オレフむンの氎和反応に
䟛した觊媒の再生においお、埓来の方法ず比范し
お実質的な効果が特に倧きい。 本反応で察象ずなり埗る氎和反応条件ずしお
は、觊媒が氎盞たたはオむル盞たたは䞡者の混合
盞からなる液盞に存圚しおいる範囲であればよ
く、反応枩床、反応圧力を特に芏定するものでは
ない。しかし、䞀般的にオレフむン氎和反応の枩
床は、氎和反応の平衡の面および副反応等の増倧
の意味から䜎枩が有利であるが、反応速床の面か
らは高枩が有利であるため、本発明では、通垞50
〜250℃の反応枩床で氎和反応に甚いられた觊媒
が䜿甚される。 本発明におけるアルカリ金属による亀換工皋の
凊理方法ずしおは、通垞、以䞋に瀺すものが適甚
される。凊理されるれオラむトは、アルカリ金属
亀換される前に、氎もしくはメタノヌル、゚タノ
ヌル等のアルコヌル、ゞ゚チル゚ヌテル、テトラ
ヒドロフラン、−ゞメトキシ゚タン等の゚
ヌテル類、スルホラン等のスルホン類などの極性
容媒で掗浄しおおくこずが奜たしい。 アルカリ金属源ずしおは、アルカリ金属の塩が
甚いられる。塩ずしおは、奜たしくは塩化リチり
ム、硝酞リチりム、硫酞リチりム、酢酞リチりム
等のリチりム塩、塩化ナトリりム、硝酞ナトリり
ム、硫酞ナトリりム、酢酞ナトリりム等のナトリ
りム塩、塩化カリりム、硝酞カリりム、硫酞カリ
りム、酢酞カリりム等のカリりム塩、塩化ルビゞ
りム、硝酞ルビゞりム、硫酞ルビゞりム等のルビ
ゞりム塩、塩化セシりム、硝酞セシりム、硫酞セ
シりム、酢酞セシりム等のセシりム塩から遞ばれ
た少なくずも䞀皮の塩が䜿甚される。 たた、亀換方法ずしおは、通垞、䞊蚘のアルカ
リ金属塩の氎溶液ぞ凊理すべきれオラむトを浞挬
し、撹拌あるいは静眮により亀換を進行させる。 金属塩氎溶液の濃床は、甚いる塩の皮類により
異なるが、通垞0.0001〜10molが甚いられ
奜たしくは0.05〜5molが甚いられる。亀換
凊理時の圧力は、通垞、垞圧が䜿甚されるが、も
ちろん枛圧䞋あるいは加圧䞋で凊理するこずもで
きる。亀換凊理時の液枩は、垞圧で行なう堎合、
通垞〜100℃が甚いられ、奜たしくは20〜90℃
が甚いられる。さらに、甚いる塩のれオラむトに
察する量比は、塩のモル数のれオラむトの亀換容
量に察する比の倀で衚珟しお0.1〜100が甚いら
れ、奜たしくは〜20が甚いられる。アルカリ亀
換凊理時の氎溶液のPHは特に芏定しないが、匷ア
ルカリ条件䞋ではれオラむト構造が倉化あるいは
砎壊される可胜性があるため、通垞、PH13以䞋、
奜たしくはPH以䞋で凊理が行なわれる。凊理時
間は0.1〜100時間、奜たしくは0.5〜50時間が甚
いられる。たた、アルカリ金属による亀換凊理を
くり返し行なうこずは有効である。アルカリ金属
凊理を終えたれオラむトを、次の工皋ぞ進む前に
氎掗するこずにより、れオラむトぞの塩の残留を
防ぐこずもたた有効である。 本発明においお、れオラむトを分子状酞玠を含
有するガスを接觊させる工皋の凊理方法ずしお
は、通垞、以䞋に瀺すものが適甚される。予めア
ルカリ金属むオンで亀換したれオラむトは、也燥
した埌に管状炉、マツフル炉等の任意の圢匏の加
熱装眮で、ガス流通法により固定床もしくは流動
床反応圢匏で行なわれる。 分子状酞玠を含むガス䞭の酞玠濃床は、通垞
0.01〜90モルであり、奜たしくは〜30モル
で䜿甚される。分子状酞玠以倖のガス成分ずしお
は、奜たしくはN2、He、Ar、空気が甚いられ、
ガス䞭の氎分は予め陀かれおいるこずが望たし
い。たた、ガス流量はれオラむトに察する重量時
間空間速床WHSVで衚珟しお0.25〜10hr-1で
あり、凊理枩床は200〜600℃が甚いられる。凊理
時間は通垞〜96時間、奜たしくは〜20時間で
ある。䞊蚘の凊理は、通垞、垞圧䞋に行なわれる
が、もちろん枛圧䞋もしくは加圧䞋に凊理するこ
ずもできる。 本発明においお、アルカリ金属を再亀換により
陀去する工皋の凊理方法ずしおは、通垞、以䞋に
瀺すものが適甚される。すなわち、アルカリ金属
むオンを陀去するための再亀換に䜿甚されるカチ
オン皮ずしおは、通垞、ブロトン、アンモニりム
むオン、アルカリ土類元玠、垌土類元玠、族元
玠から遞ばれた少なくずも䞀皮のカチオン皮が䜿
甚される。特に奜たしくはプロトンが䜿甚され
る。再亀換の方法ずしおは、カチオン源が異なる
こずの他は、先に述べたアルカリ金属による亀換
ず同䞀の手法により行なう。すなわち、カチオン
源がプロトンである堎合には、塩酞、硝酞、硫酞
等の酞の氎溶液を甚いる。たた、カチオン源が金
属むオンの堎合には、該圓するカチオンの塩酞
塩、硝酞塩、硫酞塩等の氎溶液を甚いる。これら
酞氎溶液あるいは金属塩氎溶液の濃床、枩床、圧
力、れオラむトに察する比は、先のアルカリ金属
亀換凊理ず同䞀である。たた、再亀換凊理をくり
返し行なうこずは有効である。さらに、再亀換さ
れたれオラむトは、環状オレフむンの氎和反応に
再び䟛する前に、氎掗、也燥、焌成等の操䜜を行
な぀おもよい。 実斜䟋 以䞋、実斜䟋および比范䟋を瀺し、本発明を具
䜓的に述べる。 参考䟋  号珪酞゜ヌダ7785ず氎9690の混合物ぞ、
硫酞アルミニりム225、塩化ナトリりム2285、
濃硫酞98、臭化テトラプロピルアンモニりム
266および氎13255からなる混合物を加え、ホ
モゞナむザヌで混合した。埗られたゲル状の氎性
混合物をオヌトクレヌブぞ仕蟌み、撹拌呚速1.4
secで撹拌しながら70時間110℃に加熱した。
埗られた結晶性アルミノシリケヌトを氎掗、也
燥、焌成埌、塩酞芏定氎溶液でむオン亀換を行
ない、プロトン亀換型結晶アルミノシリケヌトず
した。 䞊蚘で埗た觊媒の螢光線析法によるSiO2
Al2O3比は64であ぀た。たた、粉末法線回析法
により、ZSM−れオラむトず同定された。 参考䟋  図面に瀺すような連続流通反応装眮を甚いお、
シクロヘキセンの氎和反応を行な぀た。 内容積の撹拌装眮付ステンレス補オヌトク
レヌブ反応噚に、䞊蚘で調敎したれオラむト
400ず氎1200を仕蟌み、系内を窒玠ガス眮換
した。回転数500rpmで撹拌し぀぀反応噚を昇枩
し、反応枩床120℃ずした埌、䟛絊管よりシク
ロヘキセンを1500hrの速床で、たた、反応噚
䞭の氎の量が䞀定ずなるように、䟛絊管から氎
をそれぞれ䟛絊する。反応噚䞭から溢流した反応
混合物は、溢流管より液々分離噚ぞ導入され
る。分離された反応混合物䞭のオむル盞は、排出
管より系倖ぞ抜き出され、觊媒−氎盞は埩垰管
により反応噚ぞ回収される。原料シクロヘキセ
ン䟛絊開始時間埌における排出オむル䞭のシク
ロヘキサノヌル濃床は10.2重量であ぀た。た
た、1900時間経過埌の排出オむル䞭のシクロヘキ
サノヌル濃床は7.9重量であ぀た。 参考䟋  参考䟋で合成したHZSM−れオラむトを
觊媒ずしお、バツチ匏氎和反応を行な぀た。すな
わち、前蚘HZSM−れオラむト10ず氎30
およびシクロヘキセン15ずを、内容積100mlの
撹拌匏オヌトクレヌブぞ仕蟌み、系内の空気を窒
玠眮換した埌、120℃で30分間撹拌しながら氎和
反応を行な぀た。反応埌、生成物をガスクロマト
グラフむヌ法により分析した。結果を第衚に瀺
す。 実斜䟋 〜 参考䟋で氎和反応に䜿甚したれオラむトを回
収し、過、氎掗埌、再生凊理を行な぀た。すな
わち、 (1) 内容積1000mlのガラス補容噚ぞ、䞊蚘の回収
れオラむト15、氎500ml、アルカリ金属塩を
加え、湯济䞊で撹拌し぀぀所定の枩床に加熱し
た。所定時間撹拌埌、れオラむトを過、氎掗
し、120℃で時間也燥等の埌凊理を行な぀た。 (2) 䞊蚘(1)で凊理したれオラむトを石英ガラス補
反応管の䞭ぞ入れ、也燥空気ず也燥窒玠ガスず
の混合ガスを所定の流速で垞圧で流し぀぀、管
状炉䞊で所定の枩床、所定の時間だけ加熱した
埌、攟冷した。 (3) 内容積1000mlのガラス補容噚ぞ䞊蚘(2)で凊理
したれオラむト、氎500ml、カチオン源を加え、
湯济䞊で撹拌し぀぀所定の枩床に加熱した。所
定時間撹拌埌、れオラむトを過、氎掗、也燥
等の埌凊理を行な぀た。 再生凊理埌のれオラむト10を甚いお、参考䟋
ず同様の方法により氎和反応の掻性を枬定し、
再生凊理の評䟡を行な぀た。いずれの堎合にも、
生成物はシクロヘキサノヌルのみであり、その他
の生成物は怜出できなか぀た。 再生条件、および凊理を行な぀た觊媒による氎
和反応の結果を第衚に瀺す。 比范䟋 参考䟋で氎和反応に䜿甚したれオラむトを回
収し、過、氎掗、也燥埌に空気焌成凊理を行な
぀た。すなわち、也燥した䞊蚘回収れオラむト10
を石英ガラス補反応管の䞭ぞ入れ、也燥空気ず
也燥窒玠ガスの混合ガスを1N
minの流速で垞圧䞋に流し぀぀、管状炉で時
間、520℃に加熱した。攟冷埌のれオラむトは玔
癜であり、光孊顕埮鏡による芳察では、残存コヌ
クは認められなか぀た。 䞊蚘で再生したれオラむトを甚いた他は、参考
䟋ず同様の方法で氎和反応を行な぀た。結果を
第衚に瀺す。
(Industrial Application Field) The present invention relates to a novel method for regenerating a catalyst. More specifically, when regenerating a zeolite catalyst that has been subjected to an olefin hydration reaction in the liquid phase, the zeolite is exchanged with alkali metal ions in advance, and then exchanged with a gas containing molecular oxygen at
The present invention relates to a method for regenerating a catalyst, which comprises contacting at 600° C. and then gradually removing the alkali metal ions by re-exchange. (Prior art) The olefin hydration reaction consists of olefin and water.
This is a method for producing the corresponding alcohol. Conventionally, hydration reactions using homogeneous catalysts using mineral acids have been used as industrial methods for producing alcohol through hydration reactions, but in recent years solid acid catalysts, especially zeolite catalysts, have been used as an alternative. A method has been proposed for use as a method (Japanese Patent Application Laid-open Nos. 57-70828, 1982-124723, 1987-194828, etc.). In this case, if zeolite is used as a catalyst for the olefin hydration reaction in the liquid phase for a long period of time, the reaction activity will gradually decrease due to the accumulation of impurities in the raw materials, and the catalyst will need to be regenerated. Conventionally, as a method for regenerating such a catalyst, firing treatment at high temperature using a gas containing molecular oxygen is generally known. (Problems to be Solved by the Invention) However, the above-mentioned calcination treatment is still an insufficient method, such as a low degree of activity recovery, and is particularly suitable as a method for regenerating a catalyst used in a hydration reaction in a liquid phase. leaves a problem. That is, in the air calcination method, since the catalyst is treated at high temperature in an oxidizing atmosphere, the physical properties of the zeolite change. in particular,
A part of the BrÞnsted acid sites, which are one of the active sites for the hydration reaction in zeolite, change to Lewis acid sites due to the dehydration reaction. Zeolites modified in this way do not exhibit their original hydration reaction activity even when treated with water. That is, in the conventional air calcination method, although it is possible to remove the organic compounds accumulated on the catalyst, it essentially reduces the hydration reaction active sites, so it is difficult to regenerate the industrial catalyst for the olefin hydration reaction in the liquid phase. As a method, it is extremely inadequate. (Means for Solving the Problems) As a result of intensive research in order to solve the above problems, the present inventors found that in regenerating the zeolite catalyst used in the olefin hydration reaction in the liquid phase, The zeolite is exchanged with alkali metal ions in advance,
Then, by catalyzing it with a gas containing molecular oxygen at a temperature of 200 to 600°C, and then removing the alkali metal ions by re-exchange, it has been shown that regeneration can be achieved at a significantly higher regeneration rate than in conventional methods. This finding led to the completion of the present invention. That is, in the present invention, when regenerating a zeolite catalyst subjected to an olefin hydration reaction in a liquid phase,
The zeolite is exchanged with alkali metal ions in advance, and then exchanged with a gas containing molecular oxygen for 200-600 min.
The present invention relates to a method for regenerating a catalyst, characterized in that the alkali metal ions are removed by re-exchange after contact at .degree. While conventional regeneration methods show only low regeneration rates, processing with the method of the present invention shows a substantially high regeneration rate. Although the reason why the regeneration method used in the present invention exhibits a high regeneration rate is not clear, it is thought to be approximately as follows. The cause of the decrease in activity in the olefin hydration reaction in the liquid phase is the accumulation of poisonous substances at the catalyst active sites. Here, poisonous substances are polar substances and side reaction products that exist in small amounts in raw materials, and by adsorbing or chemically bonding to the catalyst active sites, they result in the hydration reaction at the active sites being inhibited. A substance that obstructs progress. This poisonous substance in the olefin hydration reaction in the liquid phase is used in the conversion process of organic compounds using zeolite as a catalyst.
Unlike the commonly known coke deposit,
Although it is thought that organic substances can be removed by a relatively mild method, organic substances can be removed by the ordinary air calcination method, but as shown in Formula 1, the BrÞnsted acid site, which is one of the active sites for hydration reaction in zeolite, This results in an irreversible change in the olefin hydration reaction, resulting in a decrease in the activity of the olefin hydration reaction. On the other hand, in the present invention, the zeolite is exchanged with an alkali metal in advance and then brought into contact with an oxygen-containing gas to calcine the organic substance, so the above dehydration reaction essentially does not proceed, and after contact with the oxygen-containing gas, It is thought that activity can be recovered by performing re-exchange. The zeolites used in the present invention are known. For example, zeolites containing different elements such as mordenite, erionite, ferrierite, crystalline aluminosilicate such as ZSM zeolite published by Mobil, and borosilicate are used. In the zeolite used in the present invention, the exchangeable cation species are usually proton exchange type, and some of them are alkaline earth elements such as Mg, Ca, and Sr, and rare earth elements such as La and Ce. ,Fe,
It may be replaced with at least one cationic species selected from group elements such as Co, Ni, Ru, Pd, and Pt. Or Ti, Zr, Hf, Cr, Mo, W,
It may also contain Th and the like. When zeolites exchanged with these cationic species are treated by the method of the present invention, even though the composition of the cationic species changes due to the exchange and re-exchange of some of the cations, the result is that the olefins in the liquid phase are It is sufficient if the activity for hydration reaction can be recovered. The zeolite used in the present invention may be in any form, such as powder or granules. Furthermore, alumina, silica, titania, etc. can also be used as a carrier or binder. The olefin species for the hydration reaction that can be treated in the present invention are preferably olefins having a linear or branched structure having 2 to 12 carbon atoms and cyclic olefins having 5 to 12 carbon atoms, and is particularly effective in the case of cyclic olefins. be. In other words, when regeneration using the conventional air calcination method is attempted, the zeolite catalyst used for the hydration reaction of cyclic olefins in the liquid phase has a lower performance compared to the zeolite used for the hydration reaction of chain olefins in the liquid phase. , easy to generate coke. The poisonous substance in the hydration reaction of cyclic olefin reflects the structure of the raw material cyclic olefin, and it easily undergoes an oxidative dehydrogenation reaction during calcination treatment, and it passes through polycyclic aromatic compounds to graphite, which is difficult to calcinate. It is presumed that this is because it is easy to generate a substance like this. On the other hand, in the present invention, it is essentially impossible to reduce the number of active sites due to firing at a high temperature, so it is possible to perform firing at a higher temperature than in conventional firing methods. That is, the present invention has a particularly large substantial effect compared to the conventional method in regenerating the catalyst subjected to the hydration reaction of cyclic olefin, which was relatively difficult with the conventional calcination method. The hydration reaction conditions that can be used in this reaction are those in which the catalyst is present in a liquid phase consisting of an aqueous phase, an oil phase, or a mixture of both, and the reaction temperature and reaction pressure are particularly specified. isn't it. However, in general, a low temperature is advantageous for the olefin hydration reaction from the viewpoint of equilibrium of the hydration reaction and an increase in side reactions, etc., but a high temperature is advantageous from the viewpoint of reaction rate. In inventions, usually 50
A catalyst used for the hydration reaction is used at a reaction temperature of ~250°C. As a treatment method for the alkali metal exchange step in the present invention, the following methods are usually applied. The zeolite to be treated is treated with a polar medium such as water or an alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, or 1,2-dimethoxyethane, or a sulfone such as sulfolane, before being subjected to alkali metal exchange. It is preferable to wash it. As the alkali metal source, an alkali metal salt is used. Preferred salts include lithium salts such as lithium chloride, lithium nitrate, lithium sulfate, and lithium acetate; sodium salts such as sodium chloride, sodium nitrate, sodium sulfate, and sodium acetate; potassium chloride, potassium nitrate, potassium sulfate, and potassium acetate; At least one salt selected from potassium salts, rubidium salts such as rubidium chloride, rubidium nitrate, and rubidium sulfate, and cesium salts such as cesium chloride, cesium nitrate, cesium sulfate, and cesium acetate is used. As for the exchange method, the zeolite to be treated is usually immersed in the above aqueous solution of the alkali metal salt, and the exchange proceeds by stirring or standing still. The concentration of the metal salt aqueous solution varies depending on the type of salt used, but is usually 0.0001 to 10 mol/.
Preferably 0.05 to 5 mol/ is used. Normal pressure is normally used during the exchange process, but it is of course possible to perform the process under reduced pressure or increased pressure. The liquid temperature during the exchange process is as follows:
Usually 0~100℃ is used, preferably 20~90℃
is used. Furthermore, the quantitative ratio of the salt to the zeolite used is 0.1 to 100, preferably 1 to 20, expressed as the ratio of the number of moles of the salt to the exchange capacity of the zeolite. The pH of the aqueous solution during alkali exchange treatment is not particularly specified, but the zeolite structure may change or be destroyed under strong alkaline conditions, so it is usually PH13 or lower,
Preferably, the treatment is carried out at a pH of 9 or lower. The treatment time used is 0.1 to 100 hours, preferably 0.5 to 50 hours. Furthermore, it is effective to repeatedly perform the exchange treatment with an alkali metal. It is also effective to prevent salts from remaining on the zeolite by washing the zeolite that has been treated with alkali metal with water before proceeding to the next step. In the present invention, as a treatment method for the step of contacting zeolite with a gas containing molecular oxygen, the following methods are usually applied. After drying the zeolite which has been exchanged with alkali metal ions in advance, it is subjected to a fixed bed or fluidized bed reaction using a gas flow method using any type of heating device such as a tube furnace or a matzuru furnace. The oxygen concentration in gases containing molecular oxygen is usually
0.01 to 90 mol%, preferably 1 to 30 mol%
used in As the gas component other than molecular oxygen, N 2 , He, Ar, and air are preferably used,
It is desirable that moisture in the gas be removed in advance. Further, the gas flow rate is 0.25 to 10 hr −1 expressed in weight hourly space velocity (WHSV) for zeolite, and the treatment temperature is 200 to 600°C. The treatment time is usually 1 to 96 hours, preferably 2 to 20 hours. The above treatment is usually carried out under normal pressure, but of course it can also be carried out under reduced pressure or increased pressure. In the present invention, as a treatment method for the step of removing the alkali metal by re-exchange, the following methods are usually applied. That is, as the cation species used for re-exchange to remove alkali metal ions, at least one cation species selected from broton, ammonium ions, alkaline earth elements, rare earth elements, and group elements is usually used. Ru. Particular preference is given to using protons. The re-exchange method is the same as the above-mentioned exchange with an alkali metal, except that the cation source is different. That is, when the cation source is a proton, an aqueous solution of an acid such as hydrochloric acid, nitric acid, or sulfuric acid is used. Further, when the cation source is a metal ion, an aqueous solution of a hydrochloride, nitrate, sulfate or the like of the corresponding cation is used. The concentration, temperature, pressure, and ratio of these acid aqueous solutions or metal salt aqueous solutions to zeolite are the same as in the alkali metal exchange treatment described above. It is also effective to repeat the re-exchange process. Furthermore, the reexchanged zeolite may be subjected to operations such as washing with water, drying, and calcination before being subjected to the hydration reaction of the cyclic olefin again. (Example) Hereinafter, the present invention will be specifically described by showing Examples and Comparative Examples. Reference example 1 To a mixture of 7785g of No. 3 sodium silicate and 9690g of water,
225g of aluminum sulfate, 2285g of sodium chloride,
98g concentrated sulfuric acid, tetrapropylammonium bromide
A mixture of 266 g and 13255 g of water was added and mixed with a homogenizer. The resulting gel-like aqueous mixture was charged into an autoclave and stirred at a peripheral speed of 1.4.
The mixture was heated to 110° C. for 70 hours while stirring at m/sec.
The obtained crystalline aluminosilicate was washed with water, dried, and calcined, and then ion-exchanged with a 1N aqueous solution of hydrochloric acid to obtain a proton-exchange type crystalline aluminosilicate. SiO 2 / by fluorescence X-ray analysis of the catalyst obtained above
The Al 2 O 3 ratio was 64. Furthermore, it was identified as ZSM-5 zeolite by powder method X-ray diffraction method. Reference Example 2 Using a continuous flow reactor as shown in the drawing,
The hydration reaction of cyclohexene was carried out. The zeolite prepared above was placed in a stainless steel autoclave reactor 3 with an internal volume of 5 and equipped with a stirring device.
400g and 1200g of water were charged, and the inside of the system was replaced with nitrogen gas. The temperature of the reactor was increased while stirring at a rotational speed of 500 rpm to reach a reaction temperature of 120°C, and then cyclohexene was added from supply pipe 1 at a rate of 1500 g/hr, and the amount of water in the reactor was kept constant. , water is supplied from the supply pipes 2, respectively. The reaction mixture overflowing from the reactor is introduced into the liquid-liquid separator 5 through the overflow pipe 4. The oil phase in the separated reaction mixture is taken out of the system through a discharge pipe 6, and the catalyst-water phase is recovered into the reactor through a return pipe 7. The concentration of cyclohexanol in the discharged oil 3 hours after the start of supply of the raw material cyclohexene was 10.2% by weight. Furthermore, the concentration of cyclohexanol in the discharged oil after 1900 hours was 7.9% by weight. Reference Example 3 A batch hydration reaction was carried out using the HZSM-5 zeolite synthesized in Reference Example 1 as a catalyst. That is, 10 g of the HZSM-5 zeolite and 30 g of water.
and 15 g of cyclohexene were charged into a stirring autoclave having an internal volume of 100 ml, and after replacing the air in the system with nitrogen, a hydration reaction was carried out at 120° C. for 30 minutes with stirring. After the reaction, the product was analyzed by gas chromatography. The results are shown in Table 1. Examples 1 to 5 The zeolite used in the hydration reaction in Reference Example 2 was recovered, filtered, washed with water, and then subjected to regeneration treatment. Specifically, (1) 15 g of the recovered zeolite, 500 ml of water, and an alkali metal salt were added to a glass container with an internal volume of 1000 ml, and heated to a predetermined temperature while stirring on a hot water bath. After stirring for a predetermined time, the zeolite was filtered, washed with water, and subjected to post-treatments such as drying at 120° C. for 5 hours. (2) The zeolite treated in (1) above is placed in a quartz glass reaction tube, and heated to a specified temperature on a tube furnace while flowing a mixed gas of dry air and dry nitrogen gas at a specified flow rate and at normal pressure. After heating for a predetermined time, it was allowed to cool. (3) Add the zeolite treated in (2) above, 500 ml of water, and a cation source to a glass container with an internal volume of 1000 ml,
The mixture was heated to a predetermined temperature while stirring on a hot water bath. After stirring for a predetermined time, the zeolite was subjected to post-treatments such as filtering, washing with water, and drying. Using 10 g of the regenerated zeolite, the hydration reaction activity was measured in the same manner as in Reference Example 3.
We evaluated the regeneration process. In either case,
The product was only cyclohexanol, and no other products could be detected. Table 1 shows the regeneration conditions and the results of the hydration reaction using the treated catalyst. Comparative Example The zeolite used in the hydration reaction in Reference Example 2 was recovered, filtered, washed with water, dried, and then subjected to air calcination treatment. That is, the dried recovered zeolite 10
g into a quartz glass reaction tube, and mixed gas (1:4) of dry air and dry nitrogen gas at 1N/
The mixture was heated to 520° C. for 8 hours in a tube furnace while flowing under normal pressure at a flow rate of min. The zeolite after cooling was pure white, and no residual coke was observed when observed using an optical microscope. A hydration reaction was carried out in the same manner as in Reference Example 3, except that the zeolite regenerated above was used. The results are shown in Table 1.

【衚】 発明の効果 本発明によれば、液盞でのオレフむン氎和反応
に䟛したれオラむト觊媒を再生するに圓り、該れ
オラむトを予めアルカリ金属むオンで亀換し、぀
いで分子状酞玠を含有するガスず200〜600℃で接
觊させた埌、該アルカリ金属むオンを再亀換によ
り陀去するこずにより、埓来の方法に比范しお高
い再生率で再生するこずができる。
[Table] (Effects of the invention) According to the present invention, when regenerating a zeolite catalyst that has been subjected to an olefin hydration reaction in a liquid phase, the zeolite is exchanged with alkali metal ions in advance, and then the zeolite containing molecular oxygen is exchanged with alkali metal ions. By bringing the alkali metal ions into contact with a gas at 200 to 600° C. and then removing the alkali metal ions by re-exchange, regeneration can be achieved at a higher regeneration rate than in conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は参考䟋で䜿甚した装眮を瀺すフロヌシヌ
トである。
The drawing is a flow sheet showing the apparatus used in the reference example.

Claims (1)

【特蚱請求の範囲】[Claims]  液盞でのオレフむン氎和反応に䟛したれオラ
むト觊媒を再生するに圓り、該れオラむトを予め
アルカリ金属むオンで亀換し、぀いで分子状酞玠
を含有するガスず200〜600℃で接觊させた埌、該
アルカリ金属むオンを再亀換により陀去するこず
を特城ずする觊媒再生方法。
1. In regenerating the zeolite catalyst subjected to the olefin hydration reaction in the liquid phase, the zeolite is exchanged with alkali metal ions in advance, and then brought into contact with a gas containing molecular oxygen at 200 to 600 °C, A catalyst regeneration method characterized in that the alkali metal ions are removed by re-exchange.
JP60076725A 1985-04-12 1985-04-12 Regenerating method for catalyst Granted JPS61234946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60076725A JPS61234946A (en) 1985-04-12 1985-04-12 Regenerating method for catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60076725A JPS61234946A (en) 1985-04-12 1985-04-12 Regenerating method for catalyst

Publications (2)

Publication Number Publication Date
JPS61234946A JPS61234946A (en) 1986-10-20
JPH032015B2 true JPH032015B2 (en) 1991-01-14

Family

ID=13613542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60076725A Granted JPS61234946A (en) 1985-04-12 1985-04-12 Regenerating method for catalyst

Country Status (1)

Country Link
JP (1) JPS61234946A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5047070A (en) * 1988-04-11 1991-09-10 Mobil Oil Corporation Integrated process for production of gasoline and ether from alcohol with feedstock extraction

Also Published As

Publication number Publication date
JPS61234946A (en) 1986-10-20

Similar Documents

Publication Publication Date Title
JP7075901B2 (en) Zeolite SSZ-52x
JPS58159432A (en) Preparation of branched dimerized alcohol
JPS6143127A (en) Collection of 2-butene
JPH026323A (en) Noble metal-containing titanium silicate and aromatic hydrocarbon
JPH032015B2 (en)
JPH032014B2 (en)
JP7046847B2 (en) Zeolite SSZ-52x
JP2987420B2 (en) Method for producing branched hydrocarbon
JPH0380783B2 (en)
JPH07171402A (en) Regenerated zeolite catalyst
JPH0930999A (en) Hydration of olefin
JPH03207454A (en) Method for regenerating catalyst
JP2903326B2 (en) Regeneration method of olefin hydration catalyst
RU2072897C1 (en) Catalyst for removing nitrogen oxides from exhaust gases and method of preparation thereof
JP3489869B2 (en) Method for producing methylamines
JP2501210B2 (en) Method for producing cyclic alcohol
RU1615941C (en) Method of preparing of catalyst on the basis of zeolite of "pentasil" type
JPH0659406B2 (en) Method for producing platinum group metal-supported zeolite catalyst
JPS6364914A (en) Production of iron-containing aluminosilicate
JPH06157359A (en) Method for low polymerizing lower hydrocarbon
JPH0193545A (en) Production of lower olefin
JPS58161916A (en) Manufacture of mordenite having high content of silica
JPH0610149B2 (en) Method for producing cyclohexanol by hydration of cyclohexene
JPH0985098A (en) Regeneration of hydrated catalyst
US4423020A (en) Crystalline metal silicate compositions

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees