JPH0193545A - Production of lower olefin - Google Patents

Production of lower olefin

Info

Publication number
JPH0193545A
JPH0193545A JP63008130A JP813088A JPH0193545A JP H0193545 A JPH0193545 A JP H0193545A JP 63008130 A JP63008130 A JP 63008130A JP 813088 A JP813088 A JP 813088A JP H0193545 A JPH0193545 A JP H0193545A
Authority
JP
Japan
Prior art keywords
alkaline earth
earth metal
crystalline aluminosilicate
methanol
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63008130A
Other languages
Japanese (ja)
Other versions
JPH0327541B2 (en
Inventor
Hideo Okado
岡戸 秀夫
Kazuo Hashimoto
和生 橋本
Yoshinari Kawamura
川村 吉成
Yasuyoshi Yamazaki
山崎 康義
Haruo Takatani
高谷 晴生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP57205839A external-priority patent/JPS5997523A/en
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63008130A priority Critical patent/JPH0193545A/en
Publication of JPH0193545A publication Critical patent/JPH0193545A/en
Publication of JPH0327541B2 publication Critical patent/JPH0327541B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound readily and in high selectivity, by using a novel crystalline aluminosilicate zeolite containing an alkaline earth metal having stable activity as a catalyst and bringing methanol into contact with the catalyst under a specific reaction condition in a gas phase. CONSTITUTION:Methanol and/or dimethyl ether in a gas phase is brought into contact with an crystalline aluminosilicate zeolite catalyst containing an alkaline earth metal which has 5-6Angstrom pore diameter, a composition shown by the formula (M is alkali metal and/or H; M' is alkaline earth metal, preferably Ca; a=0-1.5; b=0.2-40; with the proviso that a+b>1; c=12-3,000: n:0-40), X-ray diffraction figure shown by the table and is produced by previously adding an alkaline earth metallic salt to a crystal producing raw material in the production of the crystal, at 0.1-20hr<-1> weight time space velocity at 300-600 deg.C under 0.1-100atm. total pressure to give the aimed compound, especially ethylene or propylene.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は新規なアルカリ土類金属含有結晶性アルミノシ
リケートゼオライトを触媒として用い、メタノール及び
l又はジメチルエーテルから低級オレフィンを製造する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing lower olefins from methanol and l or dimethyl ether using a novel alkaline earth metal-containing crystalline aluminosilicate zeolite as a catalyst.

本発明で用いるアルカリ土類金属含有結晶性アルミノシ
リケートゼオライト(以下単にゼオライト又は結晶性ア
ルミノシリケートと記す場合もある)は従来公知のゼオ
ライト触媒に較べて高いSiO□/An、 03比を有
し、又高いアルカリ土類金属含量を有するものであって
、このアルカリ土類金属の少なくとも一部はイオン交換
法によっては容易に他のイオンに交換されえず、そして
この高いアルド製造用原料の一部として予めアルカリ土
類金属塩を存在させておく点にある。従来公知の結晶性
アルミノシリケートではa+bは1又は1以下であるが
、本発明の結晶性アルミノシリケートはa+bが1より
大である点が特徴的である。
The alkaline earth metal-containing crystalline aluminosilicate zeolite (hereinafter sometimes simply referred to as zeolite or crystalline aluminosilicate) used in the present invention has a higher SiO□/An, 03 ratio than conventionally known zeolite catalysts, It also has a high content of alkaline earth metals, at least a part of which cannot be easily exchanged to other ions by ion exchange methods, and some of the raw materials for producing high aldo The key point is that an alkaline earth metal salt is pre-existing as a salt. In conventionally known crystalline aluminosilicates, a+b is 1 or less than 1, but the crystalline aluminosilicate of the present invention is characterized in that a+b is greater than 1.

本発明の低級オレフィンの製法は、メタノール及び/又
はジメチルエーテルを気相で加熱下に上記のゼオライト
触媒と接触させることからなるC1−04低級オレフィ
ンの製法に関するものであり、CO及びCO□への分解
が少なく低級オレフィンが高選択率で得られ、パラフィ
ン、芳香族の副生が少なく、触媒上へのカーボン析出が
抑制され高温でも触媒活性の低下、触媒の劣化をもたら
さない。
The method for producing lower olefins of the present invention relates to a method for producing C1-04 lower olefins, which comprises contacting methanol and/or dimethyl ether with the above-mentioned zeolite catalyst under heating in the gas phase, and includes decomposition into CO and CO□. It produces lower olefins with high selectivity, produces less paraffin and aromatic by-products, suppresses carbon deposition on the catalyst, and does not cause a decrease in catalyst activity or deterioration of the catalyst even at high temperatures.

〔従来技術〕[Prior art]

近年石油資源の供給に心配がもたれ、殊に我国では海外
に依存する率が99%を超える現状にあっては、石炭、
天然ガス等の有効利用が重要な課題となっており、メタ
ン、CO等から得られるメタノールからオレフィン、パ
ラフィン、芳香族等の有機化合物の工業的合成法の確立
が求められている。
In recent years, there has been concern about the supply of petroleum resources, especially as Japan's dependence on foreign sources exceeds 99%.
Effective utilization of natural gas and the like has become an important issue, and there is a need to establish an industrial synthesis method for organic compounds such as olefins, paraffins, and aromatics from methanol obtained from methane, CO, and the like.

従来、各種の結晶性アルミノシリケートが知られている
が、それらの中、結晶性アルミノシリケートゼオライト
は最も代表的なものである6結晶性アルミノシリケート
ゼオライトは天然に数多く存在すると共に、合成によっ
ても得られ、一定の結品枯造を有し、構造内に多数の空
隙及びトンネルがあり、これによりある大きさまでの分
子は吸着するが、それ以上のものは排斥するという機能
をもち1分子篩とも称される。空隙やトンネルによる細
孔は結晶構造中でSin、とAn、 O,が酸素を共有
して結合する形態によって決まる。アルミニウムを含有
する四面体の電気的陰性は通常アルカリ金属イオン、特
にナトリウム及び/又はカリウムにより電気的中性に保
たれている。
Various types of crystalline aluminosilicate have been known, but among them, crystalline aluminosilicate zeolite is the most representative. It has a certain grain structure, and has many voids and tunnels within its structure, and has the function of adsorbing molecules up to a certain size, but excluding molecules larger than that, and is also called a single-molecular sieve. be done. Pores caused by voids and tunnels are determined by the form in which Sin, An, and O bond together by sharing oxygen in the crystal structure. The electronegativity of the aluminum-containing tetrahedra is usually kept electroneutral by alkali metal ions, especially sodium and/or potassium.

通常、結晶性アルミノシリケートゼオライトを製造する
には、Sin、、An’、o、、アルカリ金屑イオな吸
着能や触媒作用を持った各種のゼオライトが合成され、
近年この種のゼオライトの合成が非常に盛んである。特
にモーピルオイル社によるZSM系ゼオライトはテトラ
アルキルアンモニウム化合物、テトラアルキルホスホニ
ウム化合物、ピロリジン、エチレンジアミン、コリン等
を用いて合成され、その特異な吸着能と触媒作用が注目
を集めている。そのうち、ZSM−5は5〜6人の中程
度の大きさの細孔径を有するため、直鎖状炭化水素及び
わずかに枝分れした炭化水素は吸着するが、高度に分岐
した炭化水素は吸着しない特性を有する。このZSM−
5は通常Sin、、AQ20:I、アルカリ金属の各供
給源、水及びテトラ−n−プロピルアンモニウム化合物
とからなる混合物を水熱処理することによって合成され
る。
Normally, to produce crystalline aluminosilicate zeolite, various zeolites with adsorption ability and catalytic activity for Sin, An', o, and alkali metal ions are synthesized.
In recent years, the synthesis of this type of zeolite has become very popular. In particular, ZSM zeolite manufactured by Mopil Oil is synthesized using tetraalkylammonium compounds, tetraalkylphosphonium compounds, pyrrolidine, ethylenediamine, choline, etc., and its unique adsorption ability and catalytic action are attracting attention. Among them, ZSM-5 has a medium pore size of 5 to 6 people, so it can adsorb linear hydrocarbons and slightly branched hydrocarbons, but it cannot adsorb highly branched hydrocarbons. It has the characteristic that it does not. This ZSM-
5 is usually synthesized by hydrothermally treating a mixture consisting of Sin, AQ20:I, each source of alkali metal, water, and a tetra-n-propylammonium compound.

メタノール及び/又はジメチルエーテルを反応願されて
いる。特に前述のモーピルオイル社によるZSM−5は
メタノールを原料にして、炭素数10までのガソリン留
分を主体とする炭化水素を合成するのに優れており、そ
の触媒としての寿命も比較的長く、安定した活性を示す
触媒であるが、エチレン、プロピレン等の低級オレフィ
ンを製造するのには不適である。また、同じ< ZSM
−34は、同じ反応で、低級オレフィンを製造するため
の触媒として高いエチレン、プロピレンへの選択性を有
するとはいうものの活性の低下が極めて早く、実用的で
ない。
It is proposed to react with methanol and/or dimethyl ether. In particular, the aforementioned ZSM-5 made by Mopil Oil is excellent for synthesizing hydrocarbons, mainly gasoline fractions with up to 10 carbon atoms, using methanol as a raw material, and its life as a catalyst is relatively long and stable. However, it is not suitable for producing lower olefins such as ethylene and propylene. Also, the same < ZSM
-34 has high selectivity to ethylene and propylene as a catalyst for producing lower olefins in the same reaction, but its activity decreases extremely quickly and is not practical.

〔目  的〕〔the purpose〕

本発明は、メタノール及び/又はジメチルエーテルを原
料として炭化水素、特にエチレン、プロピレン等の低級
オレフィンを選択的に生成し、かつ安定した活性を有す
る触媒を提供することを目製造原料中に予めアルカリ土
類金属塩を存在させて製造した組成式 aM、0〜 bM’0 ・i、o、 ・csiO,・n
H,0(式中にはアルカリ金属及び/又は水素原子、H
′はアルカリ土類金属、aは0〜1.5. bは0.2
〜40.但しa+b>1.cは12〜3000及びnは
0〜40である)で表わされ、後記する特定のX線回折
像を示す結晶性アルミノシリケートがその目的に適合す
ることを見い出した。
The present invention aims to provide a catalyst that selectively produces hydrocarbons, particularly lower olefins such as ethylene and propylene, using methanol and/or dimethyl ether as a raw material, and has stable activity. Compositional formula aM, 0 ~ bM'0 ・i, o, ・csiO, ・n produced in the presence of similar metal salts
H,0 (alkali metal and/or hydrogen atom, H
' is an alkaline earth metal, a is 0 to 1.5. b is 0.2
~40. However, a+b>1. It has been found that a crystalline aluminosilicate having a specific X-ray diffraction pattern as described below is suitable for the purpose.

上記のアルカリ土類金属含有結晶性アルミノシリケート
ゼオライトは従来公知の5〜6人の細孔径を有するゼオ
ライト触媒とX線回折像においては近似しているが、そ
れに較べ5iOi/ALOa比及びアルカリ土類金属/
AΩ比が共に高く、又触媒活性において区別され新規な
物質である。又本発明のアルミノシリケートの製法は結
晶製造時に原料中にり土類金属イオンで修飾することは
広く知られており、通常はプロトン(H′″)の結晶性
アルミノシリケートにアルカリ土類金属イオンをイオン
交換により担持する方法が用いられる。
The above-mentioned alkaline earth metal-containing crystalline aluminosilicate zeolite has an X-ray diffraction pattern similar to that of a conventionally known zeolite catalyst having a pore size of 5 to 6 people. metal/
Both have high AΩ ratios, and are distinguished in terms of catalytic activity, making them novel substances. In addition, it is widely known that the method for producing aluminosilicate of the present invention involves modifying raw materials with earth metal ions during crystal production, and usually proton (H''') crystalline aluminosilicate is modified with alkaline earth metal ions. A method is used in which the particles are supported by ion exchange.

しかしながら、このイオン交換法では、アルカリ土類金
属イオンを多量に担持せしめるのは困難であり、また多
大な労力を要し、経済的でない。
However, with this ion exchange method, it is difficult to support a large amount of alkaline earth metal ions, and it requires a lot of labor and is not economical.

例えば理論量の80程度迄を導入するのが限度であり1
通常は50%程度迄しか導入できない。
For example, the limit is to introduce up to the theoretical amount of about 80.
Normally, it can only be introduced up to about 50%.

ところが驚くべきことに、本発明者等は結晶性アルミノ
シリケートの合成時にアルカリ土類金属塩を添加するこ
とにより極めて容易に所望の量を含有させることができ
、又アルミニウムに対して等電的量以上にアルカリ土類
金属イオンを含有させうろこと、そしと更にはメタノー
ル及び/又はジメチルエーテルの転化反応において本発
明によ完成するに至った。
Surprisingly, however, the present inventors were able to very easily incorporate a desired amount of alkaline earth metal salt by adding an alkaline earth metal salt during the synthesis of crystalline aluminosilicate. According to the present invention, the conversion reaction of scales containing alkaline earth metal ions and methanol and/or dimethyl ether has been completed.

従来結晶性アルミノシリケートの製造にあたって製造原
料中にアルカリ土類金属塩を共存させると、結晶格子の
配列が乱れ、結晶の成長が防げられ非晶質の製品ができ
やすいので避けられてきた。
Conventionally, when producing crystalline aluminosilicate, the coexistence of alkaline earth metal salts in the production raw materials has been avoided because it disrupts the crystal lattice arrangement, prevents crystal growth, and tends to produce amorphous products.

しかしながら、本発明者らの研究によれば、結晶化調整
剤としてテトラプロピルアンモニウム化合物を用い、Z
SM−5型結晶性アルミノシリケートを製造する際に、
従来採用されていたよりも高いSiO,/Afl、 O
,を採用することによって、アルミノシリケート結晶製
造用原料中に予め多量のアルカリ土類金属塩を存在させ
ても何等の支障なく結晶性アルミノシリケートを得るこ
とができ、それが予期せざる優れた触媒活性を示すこと
を見い出したものである。
However, according to the research of the present inventors, using a tetrapropylammonium compound as a crystallization regulator, Z
When producing SM-5 type crystalline aluminosilicate,
Higher SiO,/Afl, O than conventionally adopted
, it is possible to obtain crystalline aluminosilicate without any problems even if a large amount of alkaline earth metal salt is pre-existing in the raw material for producing aluminosilicate crystals, which results in an unexpectedly excellent catalyst. It was discovered that this substance shows activity.

次に本発明によるアルカリ土類金属を含む結晶シリカゾ
ルが好適に用いられる。
Next, the crystalline silica sol containing an alkaline earth metal according to the present invention is preferably used.

アルミナ源としては、硝酸アルミニウム、硫酸アルミ、
ニウム、アルミン酸ナトリウム、アルミナ等が使用でき
るが、硝酸アルミニウム、硫酸アルミニウム、アルミン
酸ナトリウムが好ましい。
Alumina sources include aluminum nitrate, aluminum sulfate,
aluminum, sodium aluminate, alumina, etc. can be used, and aluminum nitrate, aluminum sulfate, and sodium aluminate are preferred.

アルカリ金属イオンとしては1例えば水ガラス中の酸化
ナトリウム、アルミン酸ナトリウム、水酸化ナトリウム
、水酸化カリウム、塩化ナトリウムや塩化カリウム等が
用いられる。
Examples of alkali metal ions used include sodium oxide, sodium aluminate, sodium hydroxide, potassium hydroxide, sodium chloride, and potassium chloride in water glass.

アルカリ土類金属イオンとしては、酢酸塩、プロピオン
酸塩等の有機塩や塩化物、硝酸塩等の無機塩が用いられ
ている。
As the alkaline earth metal ion, organic salts such as acetate and propionate, and inorganic salts such as chloride and nitrate are used.

アルカリ土類金属としては、殊にカルシウムが好ましく
、次いでマグネシウムが良く、ストロンチウム、バリウ
ムは触媒活性の発現に高温度を必要とする傾向が強い。
As the alkaline earth metal, calcium is particularly preferred, followed by magnesium, and strontium and barium tend to require high temperatures to develop their catalytic activity.

合で調合する。すなわち、 5i02/AQzOa (
モル比)は12〜3000、更に好ましくは50〜50
0;OH−/Sin、 (モ/L/比)は0.02〜1
0、更に好ましくは0.1−0.5;)1.0/SiO
Mix together. That is, 5i02/AQzOa (
molar ratio) is 12 to 3000, more preferably 50 to 50
0; OH-/Sin, (Mo/L/ratio) is 0.02-1
0, more preferably 0.1-0.5;)1.0/SiO
.

(モル比)は1〜1000.更に好“ましくは30〜8
0;テトラプロピルアンモニウム化合物/SiO□(モ
ル比)は0.02〜2、更に好ましくは0.05〜0.
5そしてアルカリ土類金属/AΩ(yX子比)は0.0
3〜300、更に好ましくは0.5−8が良い。この範
囲の組成を有する混合物を得るために必要に応じて適宜
塩酸、硫醜、硝酸等の酸あるいはアルカリ金属の水酸化
物を添加して系のPHを11以下の適当な値にU8整す
る。
(mole ratio) is 1 to 1000. More preferably 30-8
0; Tetrapropylammonium compound/SiO□ (mole ratio) is 0.02 to 2, more preferably 0.05 to 0.0;
5 and alkaline earth metal/AΩ (yX ratio) is 0.0
3 to 300, more preferably 0.5 to 8. In order to obtain a mixture having a composition within this range, the pH of the system is adjusted to an appropriate value of 11 or less by adding an acid such as hydrochloric acid, sulfuric acid, nitric acid, or an alkali metal hydroxide as necessary. .

この混合物を80〜200℃、好ましくは150〜18
0”Cで約1〜200時間、好ましくは5〜50時間常
圧又は加圧下で加熱、一般には加熱撹拌する。反応生成
物は濾過ないし遠心分離により分離し、水洗により余剰
のイオン性物質を除去した後乾燥、焼成する。
This mixture is heated to 80-200°C, preferably 150-18°C.
Heating at 0"C for about 1 to 200 hours, preferably 5 to 50 hours under normal pressure or increased pressure, generally heating and stirring. The reaction product is separated by filtration or centrifugation, and excess ionic substances are removed by washing with water. After removing it, it is dried and fired.

例えば塩酸や硫酸、硝酸等の無機酸や、ギ酸、酢酸等の
有機酸を用いてイオン交換させるが若しくはアンモニウ
ム化合物を用いてイオン交換させた後焼成することによ
って、プロトン(Hl)で置換された水素型の結晶性ア
ルミノシリケートに変換することができる。この場合、
アルカリ金属はその一部又は全部がプロトン(Hl)で
容易に置換されるが、アルカリ土類金属はその一部しか
プロトン(H勺で置換されない。
For example, by ion-exchanging using an inorganic acid such as hydrochloric acid, sulfuric acid, or nitric acid, or an organic acid such as formic acid or acetic acid, or by ion-exchanging using an ammonium compound and then firing, the proton (Hl) is substituted. It can be converted to the hydrogen form of crystalline aluminosilicate. in this case,
Alkali metals are easily partially or entirely replaced by protons (Hl), but alkaline earth metals are only partially replaced by protons (Hl).

従来公知のアルカリ土類金属で修飾されたアルミノシリ
ケートは水素型又はアルカリ金属型アルミノシリケート
にイオン交換法によりアルカリ土類金属イオンを導入し
たものであり、この場合には導入されたアルカリ土類金
属イオンはイオン交換法によって再び水素型等に変換す
ることができ、本発明で得られたアルミノシリケートと
区別しうこのようにして製造された結晶性アルミノシリ
ケートは前記した如く aM20 ” bM′O ” AQ、O,” csio
2” nH,0(ここでa、b、c、M、M’は前記と
同じである)の組成を有し5〜6人の細孔径を有し、焼
成品は下記の代表的なX線回折像を示す。
Conventionally known aluminosilicates modified with alkaline earth metals are hydrogen type or alkali metal type aluminosilicate into which alkaline earth metal ions are introduced by an ion exchange method, and in this case, the introduced alkaline earth metal The ions can be converted back into the hydrogen form etc. by an ion exchange method, and the crystalline aluminosilicate produced in this way can be distinguished from the aluminosilicate obtained in the present invention by aM20 `` bM'O '' as described above. AQ, O,” csio
It has a composition of 2" nH,0 (where a, b, c, M, M' are the same as above) and a pore size of 5 to 6 people, and the fired product has the following representative X A line diffraction image is shown.

第1表 尚、3.85人及び3.82人の回折像は、焼成前は一
体化して最強の像を与える。
Table 1: Before firing, the diffraction images of 3.85 and 3.82 people are integrated to give the strongest image.

このアルミノシリケートはn−ヘキサン及び3−メチル
ペンタンの如き直鎖又は僅かに分岐したパラフィンは吸
着するが、2.2〜ジメチルブタン等第三級炭素原子を
有する化合物は吸着しない。
This aluminosilicate adsorbs straight chain or slightly branched paraffins such as n-hexane and 3-methylpentane, but does not adsorb compounds having tertiary carbon atoms such as 2.2 to dimethylbutane.

本発明において、前記の結晶性アルミノシリケートをメ
タノール及び/又はジメチルエーテルから低級オレフィ
ンを製造する触媒として使用するには、アルカリ金属の
全部若しくは大部分及びアルカリ土類金属の一部分をプ
ロトン(H+)で置換した水素型とするのが通常である
In the present invention, in order to use the crystalline aluminosilicate as a catalyst for producing lower olefins from methanol and/or dimethyl ether, all or most of the alkali metal and a part of the alkaline earth metal are replaced with protons (H+). It is usually the hydrogen type.

この交換は公知のイオン交換技術を利用してアンモニウ
ム化合物の水溶液、例えば塩化アンモニ型に変換するこ
とも可能である。アンモニウム水溶液又は塩化水素水溶
液で処理した後、充分水洗を行い、乾燥し、焼成する。
This exchange can also be performed by converting into an aqueous solution of an ammonium compound, such as an ammonium chloride type, using known ion exchange techniques. After being treated with an ammonium aqueous solution or a hydrogen chloride aqueous solution, it is thoroughly washed with water, dried, and fired.

この焼成は例えば300〜700℃の温度で1〜100
時間処理することによって達成される。
This firing is performed at a temperature of, for example, 300 to 700°C for 1 to 100°C.
This is achieved through time processing.

前述したように、ここでアルカリ金属イオンはその一部
又は全部がプロトン(H+)に変換されるが、アルカリ
土類金属イオンは結晶内に残存しており、その触媒性能
に極めて特徴的な効果を及ぼしており、公知のイオン交
換法によりアルカリ土類金属イオンを担持した場合とは
異っている。
As mentioned above, some or all of the alkali metal ions are converted to protons (H+), but the alkaline earth metal ions remain within the crystal and have a very characteristic effect on its catalytic performance. This is different from the case where alkaline earth metal ions are supported by a known ion exchange method.

かくして得られたアルミノシリケートはそのまま触媒と
して使用されるが、また通常のイオン交換または含浸操
作によってさらに修飾することもできる。修飾する金属
としては、1価のアルカリ金属、2価のアルカリ土類金
属、ランタン、アルいは希望によっては適当な担体、例
えば粘土、カオリン、アルミナ等と混合して用いること
も出来る。
The aluminosilicates thus obtained can be used as catalysts as is, but can also be further modified by conventional ion exchange or impregnation operations. The metal to be modified may be a monovalent alkali metal, a divalent alkaline earth metal, lanthanum, alkali, or, if desired, may be mixed with a suitable carrier such as clay, kaolin, alumina, etc.

次に本発明触媒を用いてメタノール及び/又はジメチル
エーテルから低級オレフィンを製造する方法について述
べる。
Next, a method for producing lower olefins from methanol and/or dimethyl ether using the catalyst of the present invention will be described.

メタノール及び/又はジメチルエーテルの転化反応は、
これら原料をガスとして供給し、固体である触媒と充分
接触させ得るものであればどんな反応形式でもよく、固
定床反応方式、流動床反応方式、移動床反応方式等があ
げられる。
The conversion reaction of methanol and/or dimethyl ether is
Any reaction method may be used as long as these raw materials are supplied as a gas and can be brought into sufficient contact with a solid catalyst, such as a fixed bed reaction method, a fluidized bed reaction method, and a moving bed reaction method.

反応は、広い範囲の条件で行うことができる。The reaction can be carried out under a wide range of conditions.

例えば反応温度300〜600℃、重量時間空間速度0
.1−20hr−’、好ましくは1−10hr−1、全
圧力0.1−100気圧、好ましくは0.5〜10気圧
の条件下で行うことができる。yK料は水蒸気あるいは
不活性ガス、例えに設定するごとにより炭化水素中にエ
チレン、プロピレン等の低級オレフィンの割合を高める
ことが出来る。エチレンの製造には低温側が好ましく、
プロピレンの製造には高温側の反応温度を採用するのが
好ましい、水蒸気及び炭化水素生成物は公知の方法によ
って互いに分離、精製される。
For example, the reaction temperature is 300-600℃, the weight-time space velocity is 0.
.. It can be carried out under conditions of 1-20 hr-', preferably 1-10 hr-1, and a total pressure of 0.1-100 atm, preferably 0.5-10 atm. The proportion of lower olefins such as ethylene and propylene in the hydrocarbon can be increased by setting the yK additive to water vapor or an inert gas, for example. For the production of ethylene, the lower temperature is preferable;
Preferably, elevated reaction temperatures are employed for the production of propylene; the steam and hydrocarbon products are separated from each other and purified by known methods.

〔効  果〕〔effect〕

第1図に示したように、カルシウム等のアルカリ土類金
属イオンを担持していないプロトン型の結晶性アルミノ
シリケートでは、510℃で活性の殆んど完全な低下が
みられる(■)、このプロトン型の結晶性アルミノシリ
ケートにイオン交換法によりカルシウムを担持させると
、エチレンとプロピレンの収率の向上がみられるものの
、540℃以上では触媒の劣化傾向が認められる(■)
、これに対して本発明による結晶性アルミノシリケート
で本発明方法であるメタノール及び/又はジメチルエー
テルからのオレフィンの合成反応は発熱反応であり、反
応系の温度は自然に上昇するので、反応を高温で行わす
ことに特にエネルギー消費の面で問題はなく、むしろ反
応系の温度制御が低温に保つより容易であり且つ反応速
度が増大するので小さい反応器が採用しうる利点もある
。しかしながら1反応器の材質、例えばステンレス鋼の
面で600℃以上の高温の採用は問題があり、更に60
0℃以上の高温では反応系中に存在する水蒸気に基づく
触媒結晶の崩壊の問題も考えられるので実際上採用され
る反応温度の上限は600℃程度に制限される。
As shown in Figure 1, in proton-type crystalline aluminosilicate that does not support alkaline earth metal ions such as calcium, an almost complete decrease in activity is observed at 510°C (■). When calcium is supported on proton-type crystalline aluminosilicate by an ion exchange method, the yield of ethylene and propylene is improved, but the catalyst tends to deteriorate at temperatures above 540°C (■)
On the other hand, the synthesis reaction of olefin from methanol and/or dimethyl ether using the crystalline aluminosilicate according to the present invention is an exothermic reaction, and the temperature of the reaction system naturally rises, so the reaction is carried out at a high temperature. There is no particular problem in terms of energy consumption; rather, it is easier to control the temperature of the reaction system than keeping it at a low temperature, and the reaction rate increases, so there is an advantage that a small reactor can be used. However, due to the material of the reactor, such as stainless steel, there are problems with using high temperatures of 600°C or higher;
At high temperatures of 0°C or higher, there is a possibility that the catalyst crystals may collapse due to water vapor present in the reaction system, so the upper limit of the reaction temperature that can be practically adopted is limited to about 600°C.

本発明の触媒が用いられるオレフィン製造反応において
は、メタノールもジメチルエーテルも共に出発原料であ
るので選択率の計算にあたってほの他の比較例触媒に較
べて低級オレフィンへの選択率が高くパラフィン及びB
、T、X、の生成が少なく。
In the olefin production reaction in which the catalyst of the present invention is used, methanol and dimethyl ether are both starting materials, so when calculating the selectivity, the selectivity to lower olefins is higher than that of other comparative catalysts, and paraffins and B
,T,X, are generated less.

高温での触媒活性の低下がみられない点である。The point is that there is no decrease in catalytic activity at high temperatures.

本発明で規定されている以上にアルカリ土類金属を含有
させたアルミノシリケートを作り、その後イオン交換法
によってアルカリ土類金属の一部を除去してアルカリ土
類金属含有量を本発明で規定した範囲内に減少させた触
媒は、驚くべきことにオレフィンへの選択率が低くCO
及びCO8への分解が促進され触媒性能に著しい差異が
認められる。
An aluminosilicate containing an alkaline earth metal in a higher amount than that specified in the present invention was prepared, and then a part of the alkaline earth metal was removed by an ion exchange method to obtain the alkaline earth metal content specified in the present invention. Catalysts reduced within this range have surprisingly low selectivity to olefins and CO
The decomposition into CO8 and CO8 is promoted, and a significant difference in catalyst performance is observed.

〔実施例〕〔Example〕

次に本発明を実施例、比較例により具体的に説明するが
、本発明はその要旨を越えない限りこれに限定されるも
のではない。
Next, the present invention will be explained in detail using Examples and Comparative Examples, but the present invention is not limited thereto unless it exceeds the gist thereof.

参考例1 硝酸アルミニウム9水和物0.75g酢酸カルシウム水
20gに水酸化ナトリウム1.14gを溶かしたものを
加える。更に水30gにテトラプロピルアンモニウムブ
ロマイド8.11Kを溶かしたものを加え、約10分間
撹拌を続けて、水性ゲル混合物を得た。この仕込みモル
比5iO1,/AΩ、O,=300である。
Reference Example 1 A solution of 1.14 g of sodium hydroxide dissolved in 0.75 g of aluminum nitrate nonahydrate and 20 g of calcium acetate water is added. Furthermore, a solution of 8.11K of tetrapropylammonium bromide in 30 g of water was added, and stirring was continued for about 10 minutes to obtain an aqueous gel mixture. This charging molar ratio is 5iO1,/AΩ,O,=300.

この水性ゲル混合物を内容積・300〜のオートクレー
ブに仕込み、自己圧下160℃で18時間撹拌しながら
(500r、p、m)水熱処理をした6反応生成物は遠
心分離器を用いて固体成分と溶液部に分け、固体成分は
充分水洗をほどこし、更に120℃で5時間乾燥した1
次に空気中520℃で5〜10時間処理した。
This aqueous gel mixture was charged into an autoclave with an internal volume of 300~ and subjected to hydrothermal treatment at 160°C under self-pressure for 18 hours with stirring (500 r, p, m). 6 The reaction product was separated into solid components using a centrifuge. The solid components were separated into solution parts, thoroughly washed with water, and then dried at 120°C for 5 hours.
Next, it was treated in air at 520°C for 5 to 10 hours.

次にこの焼成済結晶性アルミノシリケート1gに対して
0.6N塩化水素水溶液を15−の割合で混合し、室温
で24時間撹拌処理をした。その後室温で充分水洗の後
、120℃で乾燥し次いで520℃で5時間空気中で焼
成を行い、水素型に変換した。
Next, 1 g of this calcined crystalline aluminosilicate was mixed with a 0.6N aqueous hydrogen chloride solution at a ratio of 15 to 1, followed by stirring at room temperature for 24 hours. Thereafter, it was thoroughly washed with water at room temperature, dried at 120°C, and then fired in air at 520°C for 5 hours to convert it into a hydrogen type.

土類金属含有結晶性アルミノシリケートゼオライトを製
造した0M料仕込み割合を第2表に、そして参考例4及
び7で得られた結晶性アルミノシリケート並びに水素型
に変換したそれらの分析結果を第3A及びB表に示す、
また参考例4で得られた製品(焼成品)のX線回折図を
第3図に示す。
Table 2 shows the charging ratio of the 0M material used to produce the earth metal-containing crystalline aluminosilicate zeolite, and the analysis results of the crystalline aluminosilicate obtained in Reference Examples 4 and 7 and those converted into hydrogen form are shown in Table 3A and 3A. Shown in Table B,
Moreover, the X-ray diffraction pattern of the product (fired product) obtained in Reference Example 4 is shown in FIG.

なお、この目新データは銅のに一アルファ線の照射によ
る標準のX線技術によって得られたもので、ピークの高
さIがブラック角θの2倍の20の関数としてレコーダ
ーに記録される。I/Ioは相対強度であり、最強のピ
ークを示す2θ=23.1°を100とした場合の相対
値である。
Note that this novel data was obtained using standard X-ray techniques by irradiating the copper with alpha radiation, and the peak height I is recorded on a recorder as a function of twice the Black angle θ, which is 20. . I/Io is a relative intensity, and is a relative value when 2θ=23.1° showing the strongest peak is set as 100.

比較参考例1〜3 アルカリ土類金属塩を加えなかった点を除いては参考例
1と同様の方法で3種類の結晶性アルミノシリケートを
合成した。
Comparative Reference Examples 1 to 3 Three types of crystalline aluminosilicates were synthesized in the same manner as in Reference Example 1, except that no alkaline earth metal salt was added.

比較参考例1は参考例1〜3に対応し、比較参考例の分
析結果を第2表及び第3表にそれぞれ示す。
Comparative Reference Example 1 corresponds to Reference Examples 1 to 3, and the analysis results of the Comparative Reference Example are shown in Tables 2 and 3, respectively.

比較参考例4 比較参考例1で合成した、仕込みモル比(Sin、 /
Afl、O,=300)の結晶性アルミノシリケートを
水素型に変換した後、常法によりカルシウムイオンでイ
オン交換を行なった。
Comparative Reference Example 4 The charging molar ratio (Sin, /
After converting the crystalline aluminosilicate (Afl, O, = 300) into a hydrogen form, ion exchange with calcium ions was performed using a conventional method.

試料5gに対しINのCaCl2.溶液を初回に40m
1加え、還流コンデンサーを装着して80℃に調節した
オイルバス中で撹拌を行なった。
IN CaCl2. for 5 g of sample. 40m of solution for the first time
1 and stirred in an oil bath adjusted to 80°C equipped with a reflux condenser.

約3時間ごとにデカンテーションにより交換液を除き、
新しい交換液を30mQ加えた。この操作を20回繰り
返した後、 CQ−イオンが認められなくなるまでよく
水洗濾過し、乾燥後500℃で3時間焼成を行なってカ
ルシウム担持型とした。カルシウムの担持量は等電的量
の45%であった。
Remove the replacement solution by decantation every 3 hours,
Added 30 mQ of fresh exchange solution. After repeating this operation 20 times, the product was thoroughly washed with water and filtered until no CQ-ions were observed, dried, and then calcined at 500°C for 3 hours to obtain a calcium-supported product. The amount of calcium supported was 45% of the isoelectric amount.

第3A表 Na型結晶性アルミノシリケートゼオライトの分析1第
3B表 H+梨型結晶アルミノシリケートゼオライトの分析8*
 原子吸光法により分析を行った。
Table 3A Analysis of Na-type crystalline aluminosilicate zeolite 1 Table 3B Analysis of H+Pear-shaped crystalline aluminosilicate zeolite 8*
Analysis was performed by atomic absorption spectrometry.

実施例1〜12、比較例1〜3 参考例1〜9及び11〜13、比較参考例1.2及び4
で得たものを水素型にした結晶性アルミノシリケート粉
末を圧力400kg/cdで打錠し、次いでこれを粉砕
して10〜20メツシユにそろえたもの2mQを内径l
OIの反応管に充填した。液状メタノールを4+nQ/
hr(反応は気相反応であるが、原料供給量を液相で表
示すればLH5V=2hr″″1)の速度で気化器に送
り、ここで10mQ/winで送られてくるアルゴンガ
スと混合してほぼ常圧で反応管に送り、300〜600
℃で反応を行った0反応は300℃で開始し、2時間毎
に20℃づつ600℃迄昇温しでゆく方法により行った
Examples 1 to 12, Comparative Examples 1 to 3 Reference Examples 1 to 9 and 11 to 13, Comparative Reference Examples 1.2 and 4
The crystalline aluminosilicate powder obtained in the hydrogen form was compressed into tablets at a pressure of 400 kg/cd, and then crushed into 10 to 20 meshes.
The OI reaction tube was filled. Liquid methanol 4+nQ/
hr (The reaction is a gas phase reaction, but if the raw material supply amount is expressed in liquid phase, it is sent to the vaporizer at a rate of LH5V = 2hr''1), where it is mixed with argon gas sent at 10mQ/win. 300-600
The 0 reaction was carried out at 300°C, and the temperature was increased by 20°C every 2 hours up to 600°C.

又、生成物の分析はガスクロマトグラフを用い行った。Further, the product was analyzed using a gas chromatograph.

結果の要約を第4表に示す、更に実施例2゜4.7,1
1.比較例1,2及び3で得られた結果の詳細を第5表
ぼ流側2) 反応温度と添加メタノールについてのカーボンベース選
択率(%)第6表慣流例4) 反応温度と添加メタノールについてのカーボンベース選
択率(幻第7表は茂例7) 反応温度と添加メタノールについてのカーボンベース選
択率(%)第8表償旅例11) 反応温度と添加メタノールについてのカーボンベース選
択率(%)第9表(比較例1) 反応温度と添加メタノールについてのカーボンベース選
択率(幻第W表(比較例2) 反応温度と添加メタノールについてのカーボンベース選
択率(1第11表(比較例3) 反応温度と添加メタノールについてのカーボンベース選
択率C%)実施例2.比較例1及び3で得られたエチレ
ンとプロピレンの合計収率と反応温度との関係を第1図
に示す0本発明の触媒が高いエチレン令プロピレン収率
を与えること及び高温域でも劣化せず高い触媒活性を維
持することが理解される0図中。
A summary of the results is shown in Table 4, and further Example 2゜4.7,1
1. Details of the results obtained in Comparative Examples 1, 2 and 3 are shown in Table 5. Carbon base selectivity (%) for reaction temperature and added methanol (%) Table 6. Current flow example 4) Reaction temperature and added methanol Carbon base selectivity for reaction temperature and added methanol (%) Carbon base selectivity for reaction temperature and added methanol (%) Carbon base selectivity for reaction temperature and added methanol (Example 11) %) Table 9 (Comparative Example 1) Reaction temperature and carbon base selectivity for added methanol (phantom Table W (Comparative Example 2) Reaction temperature and carbon base selectivity for added methanol (1 Table 11 (Comparative example) 3) Reaction temperature and carbon base selectivity C% for added methanol) Example 2. The relationship between the total yield of ethylene and propylene obtained in Comparative Examples 1 and 3 and the reaction temperature is shown in Figure 1. In Figure 0, it is understood that the catalyst of the invention provides a high yield of ethylene/propylene and maintains high catalytic activity without deterioration even in a high temperature range.

線!は実施例2、線■は比較例1そして線mは比較例3
の結果を示している。
line! indicates Example 2, line ■ indicates Comparative Example 1, and line m indicates Comparative Example 3.
The results are shown below.

同様に実施例4,8.9及び比較例2で得られたエチレ
ン令プロピレン収率と反応温度との関係も第2図に示す
0図中、線■は実施例4.線Vは実施例8、線■は実施
例9そして線■は比較例2の結果を示している0図より
明らかなようにCaを含有して実施例4は優れた結果を
示し、Mgを含有した実施例8はでも活性を維持してい
るasr含有の実施例9では高温域での活性の発現が認
められる。
Similarly, the relationship between the ethylene dipropylene yield and the reaction temperature obtained in Examples 4, 8.9 and Comparative Example 2 is also shown in FIG. Line V shows the results of Example 8, line ■ shows the results of Example 9, and line ■ shows the results of Comparative Example 2.0 As is clear from the figure, Example 4 contains Ca and shows excellent results, and Mg Example 8 containing ASR maintains its activity, while Example 9 containing ASR exhibits activity in a high temperature range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は縦軸に収率(%)を、そして横軸に反応温度(
”C)をとって実施例2、比較例1及び3の結果を示し
たグラフであり、第2図は同じく縦軸に収率(%)そし
て横軸に反応温度(’C)をとって実施例4.8.9及
び比較例2の結果を示したグラフであり、そして第3図
は参考例4の製品のX!回折図である。 I・・・実施例1、■・・・比較例1.II[・・・比
較例3、■・・・実施例4、■・・・実施例8.VI・
・・実施例9、■・・・比較例2
Figure 1 shows the yield (%) on the vertical axis and the reaction temperature (%) on the horizontal axis.
Figure 2 is a graph showing the results of Example 2, Comparative Examples 1 and 3 by taking ``C'', and Figure 2 also shows the yield (%) on the vertical axis and the reaction temperature ('C) on the horizontal axis. This is a graph showing the results of Example 4.8.9 and Comparative Example 2, and FIG. 3 is an X! diffraction diagram of the product of Reference Example 4. I...Example 1, ■... Comparative Example 1.II [...Comparative Example 3, ■...Example 4, ■...Example 8.VI
...Example 9, ■...Comparative example 2

Claims (3)

【特許請求の範囲】[Claims] (1)メタノール及び/又はジメチルエーテルを気相で
、aM_2O・bM′O・Al_2O_3・cSiO_
2・nH_2O(式中Mはアルカリ金属及び/又は水素
原子、M′はアルカリ土類金属、aは0〜1.5、bは
0.2〜40、但しa+b>1、cは12〜3000そ
してnは0〜40である)の組成を有し、第1表に示さ
れるX線回折像を有し且つ結晶製造時の結晶製造原料中
にアルカリ土類金属塩を存在せしめて製造されたアルカ
リ土類金属含有結晶性アルミノシリケートゼオライト触
媒と、重量時間空間速度0.1〜20hr^−^1、3
00〜600℃の反応温度及び0.1〜100気圧の全
圧力で接触させることからなる低級オレフィンの製法。
(1) Methanol and/or dimethyl ether in the gas phase, aM_2O・bM′O・Al_2O_3・cSiO_
2.nH_2O (where M is an alkali metal and/or hydrogen atom, M' is an alkaline earth metal, a is 0 to 1.5, b is 0.2 to 40, where a+b>1, c is 12 to 3000 and n is 0 to 40), has the X-ray diffraction pattern shown in Table 1, and is manufactured by allowing an alkaline earth metal salt to be present in the crystal manufacturing raw material during crystal manufacturing. Alkaline earth metal-containing crystalline aluminosilicate zeolite catalyst and weight hourly space velocity of 0.1 to 20 hr^-^1,3
A method for producing lower olefins comprising contacting at a reaction temperature of 00 to 600°C and a total pressure of 0.1 to 100 atm.
(2)アルカリ土類金属がカルシウムである特許請求の
範囲第1項に記載の製法。
(2) The method according to claim 1, wherein the alkaline earth metal is calcium.
(3)cが50〜500であり、そしてbが1〜7であ
る特許請求の範囲第1項または第2項に記載の製法。
(3) The manufacturing method according to claim 1 or 2, wherein c is 50 to 500 and b is 1 to 7.
JP63008130A 1982-11-24 1988-01-18 Production of lower olefin Granted JPH0193545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63008130A JPH0193545A (en) 1982-11-24 1988-01-18 Production of lower olefin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP57205839A JPS5997523A (en) 1982-11-24 1982-11-24 Zeolite containing alkaline earth metal, its manufacture and manufacture of olefin
JP63008130A JPH0193545A (en) 1982-11-24 1988-01-18 Production of lower olefin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57205839A Division JPS5997523A (en) 1982-11-24 1982-11-24 Zeolite containing alkaline earth metal, its manufacture and manufacture of olefin

Publications (2)

Publication Number Publication Date
JPH0193545A true JPH0193545A (en) 1989-04-12
JPH0327541B2 JPH0327541B2 (en) 1991-04-16

Family

ID=26342578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63008130A Granted JPH0193545A (en) 1982-11-24 1988-01-18 Production of lower olefin

Country Status (1)

Country Link
JP (1) JPH0193545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167846A (en) * 2005-12-20 2007-07-05 Inst Fr Petrole Reactor comprising two fluidized reaction zones and integrated gas/solid separation system
JP2007277133A (en) * 2006-04-05 2007-10-25 Idemitsu Kosan Co Ltd Manufacturing method of olefins

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167846A (en) * 2005-12-20 2007-07-05 Inst Fr Petrole Reactor comprising two fluidized reaction zones and integrated gas/solid separation system
JP2007277133A (en) * 2006-04-05 2007-10-25 Idemitsu Kosan Co Ltd Manufacturing method of olefins

Also Published As

Publication number Publication date
JPH0327541B2 (en) 1991-04-16

Similar Documents

Publication Publication Date Title
CA1283648C (en) Zeolite ssz-25
RU2307117C2 (en) Catalyst for aromatization of alkanes, method of preparation thereof, and aromatization of hydrocarbons using the same
JPS6335570B2 (en)
WO2018004876A1 (en) ZEOLITE SSZ-52x
US20070032379A1 (en) Catalyst, process for preparing the catalyst and process for producing lower hydrocarbon with the catalyst
JP5668422B2 (en) Method for producing aluminosilicate
CN112537778B (en) Preparation method and application of mordenite with high silica-alumina ratio
JPS6241695B2 (en)
JPH043366B2 (en)
JPH0528278B2 (en)
JPS6197231A (en) Production of lower olefin
JPH0193545A (en) Production of lower olefin
US4926006A (en) Aluminoborosilicate containing alkaline earth metal, a method for the preparation thereof and a method for the catalytic preparation of a lower olefin therewith
EP0070657A1 (en) Transition element-containing crystalline aluminosilicate composition
JPH0674134B2 (en) Alkaline earth metal-containing aluminophosphosilicate, method for producing the same, and method for producing lower olefin using the same
KR900000895B1 (en) Dewaxing process of hydrocarbon remains (dregs)
JPS61200928A (en) Production of lower olefin
JPH064547B2 (en) Process for producing mono- and / or dialkyl-substituted naphthalene
JP2020536028A (en) Zeolite SSZ-52x
JPH04120191A (en) Production of liquid hydrocarbon from co2 and h2
JP3656763B2 (en) Method for polymerizing lower hydrocarbons
US4707500A (en) Synthetic crystalline ferroborosilicate compositions, the preparation thereof and their use in the conversion of synthesis gas to low molecular weight hydrocarbons
JPS6036425A (en) Production of lower olefin
JPH06157359A (en) Method for low polymerizing lower hydrocarbon
JPH04240113A (en) Metal containing zeolite and its production