JPS6241695B2 - - Google Patents

Info

Publication number
JPS6241695B2
JPS6241695B2 JP58234747A JP23474783A JPS6241695B2 JP S6241695 B2 JPS6241695 B2 JP S6241695B2 JP 58234747 A JP58234747 A JP 58234747A JP 23474783 A JP23474783 A JP 23474783A JP S6241695 B2 JPS6241695 B2 JP S6241695B2
Authority
JP
Japan
Prior art keywords
zsm
zeolite
catalyst
weight
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58234747A
Other languages
Japanese (ja)
Other versions
JPS60126233A (en
Inventor
Hiroshi Shoji
Hideo Okado
Yoshinari Kawamura
Yasuyoshi Yamazaki
Haruo Takatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58234747A priority Critical patent/JPS60126233A/en
Publication of JPS60126233A publication Critical patent/JPS60126233A/en
Publication of JPS6241695B2 publication Critical patent/JPS6241695B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、変性結晶性ゼオライト触媒を使用し
て、メタノール及び/又はジメチルエーテルから
低級オレフインを製造する方法に関するものであ
る。 本発明の低級オレフインの製造によれば、CO
及びCO2への分解が少なく低級オレフインが高選
択率で得られ、パラフイン、芳香族の副生が少な
く触媒上へのカーボン析出が抑制され高温でも触
媒活性の低下、触媒の劣化をもたらさない。 近年石油資源の供給に心配がもたれ、殊に我国
では海外に依存する率が99%を超える現状にあつ
ては、石炭、天然ガス等の有効利用が重要な課題
となつており、メタン、CO等から得られるメタ
ノールからオレフイン、パラフイン、芳香族等の
有機化合物の工業的合成法の確立が求められてい
る。本発明はこの要求に応えるものである。 従来、各種の結晶性アルミノシリケートが知ら
れているが、それらの中、結晶性アルミノシリケ
ートゼオライトは最も代表的なものである。結晶
性アルミノシリケートゼオライトは天然に数多く
存在すると共に、合成によつても得られ、一定の
結晶構造を有し、構造内に多数の空隙及びトンネ
ルがあり、これによりある大きさまでの分子は吸
着するが、それ以上のものは排斥するという機能
をもち、分子篩とも称される。空隙やトンネルに
よる細孔は結晶構造中でSiO2とAl2O3が酸素を共
有して結合する形態によつて決まる。アルミニウ
ムを含有する四面体の電気的陰性は通常アルカリ
金属イオン、特にナトリウム及び/又はカリウム
により電気的中性に保たれている。 通常、結晶性アルミノシリケートゼオライトを
製するには、SiO2、Al2O3、アルカリ金属イオン
の各供給源及び水を所望の割合に混合し、常圧又
は加圧下で水熱処理を行う方法が採られている。
また塩基として有機窒素化合物ないしは有機リン
化合物を用いる方法もあり、これによりさまざま
な吸着能や触媒作用を持つた各種のゼオライトが
合成され、近年この種のゼオライトの合成が非常
に盛んである。特にモービルオイル社による
ZSM系ゼオライトはテトラアルキルアンモニウ
ム化合物、テトラアルキルホスホニウム化合物、
ピロリジン、エチレンジアミン、コリン等を用い
て合成され、その特異な吸着能と触媒作用が注目
を集めている。そのうち、ZSM−5は5〜6Å
の中程度の大きさの細孔径を有するため、直鎖状
炭化水素及びわずかに枝分れした炭化水素は吸着
するが、高度に分岐した炭化水素は吸着しない特
性を有する。このZSM−5は通常SiO2、Al2O3
アルカリ金属の各供給源、水及びテトラ−n−プ
ロピルアンモニウム化合物とからなる混合物を水
熱処理することによつて合成される。 メタノール及び/又はジメチルエーテルを反応
させて炭化水素を得るための研究は近年非常に盛
んに行われている。この反応に用いる触媒は一般
に固体酸と呼ばれるものが使用され、各種のゼオ
ライト、ヘテロポリ酸等について多くの特許が出
願されている。特に前述のモービルオイル社によ
るZSM−5はメタノールを原料にして、炭素数
10までのガソリン留分を主体とする炭化水素を合
成するのに優れており、その触媒としての寿命も
比較的長く安定した活性を示す触媒であるが、エ
チレン、プロピレン等の低級オレフインを製造す
るのには不適である。また同じくZSM−34は、
同じ反応で、低級オレフインを製造するための触
媒として高いエチレン、プロピレンへの選択性を
有するとはいうものの活性の低下が極めて早く、
実用的でない。 本発明者らは、メタノール及び/又はジメチル
エーテルを原料として炭化水素、特にエチレン、
プロピレン等の低級オレフインを選択的に生成
し、かつ安定した活性を有する触媒の開発につい
て鋭意研究を重ねた結果、ZSM−5、ZSM−11
等の結晶性ゼオライトを、カルシウム、ストロン
チウム及びバリウムの中から選ばれる少なくとも
1種のアルカリ土類金属含有化合物の溶液と接触
させて変性した結晶性ゼオライトがその目的に適
合することを見い出した。 従来より、結晶性アルミノシリケートをアルカ
リ土類金属イオンで修飾することは広く知られて
おり、通常はプロトン(H+)型の結晶性アルミノ
シリケートにアルカリ土類金属イオンをイオン交
換により担持する方法が用いられる。 しかしながら、このイオン交換法では、アルカ
リ土類金属イオンを多量に担持せしめるのは困難
であり、また多大な労力を要し、経済的でない。
例えば理論量の80%程度迄を導入するのが限度で
あり、通常は50%程度迄しか導入できない。 ところが驚くべきことに、本発明者らは、
ZSM−5、ZSM−11等の結晶性ゼオライトを、
アルカリ土類金属で変性することにより、極めて
容易に所望の量を含有させることができ、又アル
ミニウムに対して等電的量以上にアルカリ土類金
属イオンを含有させうること、そして更にはメタ
ノール及び/又はジメチルエーテルの転化反応に
おいて本発明法によりアルカリ土類金属イオンを
含有させた触媒がエチレンやプロピレン等のC2
〜C4低級オレフインの選択的生成とカーボン生
成の抑制、従つて触媒活性の接続性に優れている
ことを見い出した。 本発明における変性ゼオライトを得るための処
理は、SiO2/Al2O3モル比で12以上である従来公
知のゼオライトを、カルシウム、バリウム又はス
トロンチウムを含有する化合物の水溶液と混合し
た後、蒸発乾固する。この場合、カルシウム、バ
リウム又はストロンチウム含有化合物は、種々の
無機、有機化合物が包含される。変性ゼオライト
中に含有させるアルカリ土類金属量は、金属換算
で少なくとも0.25重量%であり、カルシウム及び
ストロンチウムについては好ましくは1〜20重量
%、バリウムについては好ましくは1〜35重量%
である。 本発明の触媒はそのまま使用することも、ある
いは希望によつては適当な担体、例えば粘土、カ
オリン、アルミナ等と混合して用いることも出来
る。 次に本発明方法で得られた触媒を用いてメタノ
ール及び/又はジメチルエーテルから低級オレフ
インを製造する方法を述べる。 メタノール及び/又はジメチルエーテルの転化
反応は、これら原料をガスとして供給し、固体で
ある触媒と充分接触させ得るものであればどんな
反応形式でもよく、固定床反応方式、流動床反応
方式、移動床反応方式等があげられる。 反応は、広い範囲の条件で行うことができる。
例えば反応温度300〜600℃、重量時間空間速度
0.1〜20hr-1、好ましくは1〜10hr-1、全圧力0.1
〜100気圧、好ましくは0.5〜10気圧の条件下で行
うことができる。原料は水蒸気あるいは不活性ガ
ス、例えば窒素、アルゴン等で希釈して触媒上に
供給することも可能である。 本発明の方法において、生成物の流れは水蒸
気、炭化水素、未反応原料から成り、反応条件を
適当に設定することにより炭化水素中のエチレ
ン、プロピレン等の低級オレフインの割合を高め
ることが出来る。水蒸気及び炭化水素生成物は公
知の方法によつて互いに分離、精製される。 本発明の触媒が用いられるオレフイン製造反応
においては、メタノールもジメチルエーテルも共
に出発原料であるので選択率の計算にあたつては
メタノールから生じたジメチルエーテルは未反応
原料とみなして良い。 注目すべき点は、本発明方法で製造されたアル
カリ土類金属含有結晶性アルミノシリケートゼオ
ライト触媒はその他の比較例に較べて低級オレフ
インの選択率が高くパラフイン及びB.T.Xの生成
が少なく、高温での触媒活性の低下がみられない
点である。 次に本発明を実施例、比較例により具体的に説
明するが、本発明はその要旨を越えない限りこれ
に限定されるものではない。 参考例1〜2、実施例1〜7及び比較例1〜3
で得られた変性ゼオライト粉末を圧力400Kg/cm2
で打錠し、次いでこれを粉砕して10〜20メツシユ
にそろえたもの2mlを内径10mmの反応管に充填し
た。液状メタノールを4ml/hr(反応は気相反応
であるが、原料供給量を液相で表示すればLHSV
=2hr-1)の速度で気化器に送り、ここで10ml/
minで送られてくるアルゴンガスと混合してほぼ
常圧で反応管に送り、反応を行なつた。生成物の
分析はガスクロマトグラフを用いて行なつた。そ
の結果の要約を第1表に示す。第1表に示された
結果からわかるように、本発明方法で得られた触
媒が高いエチレン+プロピレン収率を与えること
及び高温域でも劣化せず高い触媒活性を維持する
ことが理解される。 参考例 1 硝酸アルミニウム9水和物1.14gを水90gに溶か
しA液とし、キヤタロイドSI−30水ガラス、(触
媒化成(株)、SiO2 30.5%、Na2O 0.42%)60gを水
40gに溶かし、これをB液とした。激しく撹拌し
ながらA液中にB液を加え、次に水20gに水酸化
ナトリウム1.26gを溶かしたものを加える。更に
水30gにテトラプロピルアルミニウムブロマイド
8.11gを溶かしたものを加え、約10分間撹拌を続
けて、水性ゲル混合物を得た。この仕込みモル比
はSiO2/Al2O3=200である。 この水性ゲル混合物を内容積300mlのオートク
レーブに仕込み、自己圧下160℃で18時間撹拌し
ながら(500r.p.m)水熱処理した。反応生成物
は遠心分離器を用いて固体成分と溶液部に分け、
固体成分は充分水洗をほどこし、更に120℃で5
時間乾燥した。次に空気中520℃で5〜10時間処
理した。次のこの焼成済結晶性アルミノシリケー
ト1gに対して0.6N塩化水素水溶液を15mlの割合
で混合し、室温で24時間撹拌処理をした。その後
室温で充分水洗の後、120℃で乾燥し、次いで520
℃で5時間空気中で焼成を行い、水素型に変換
し、H型ZSM−5を得た。 参考例 2 参考例1において、結晶化調整剤として、テト
ラブチルアルミニウムブロマイド9.82gを用いた
以外は参考例1と同様にしてH型ZSM−11を得
た。 実施例 1 参考例1で得られたH型ZSM−5(SiO2
Al2O3=200)5gを、水10mlにCa(CH3COO)2
H2O3.14gを入れた溶液と混合した。この混合物
を約80℃で20時間保つた後、混合物を乾燥器中
100〜110℃で蒸発乾固させる。しかる後、空気中
200℃で2時間、500℃で18時間焼成してCa型−
ZSM−5を得た。 実施例 2〜3 実施例1で記したと同様の方法を用いて、ただ
H型ZSM−5のSiO2/Al2O3比を変えてCa型ZSM
−5を得た。 実施例 4 H型ZSM−5(SiO2/Al2O3=70)6.0gを、水
10mlにCa(NO32・4H2O6.0gを入れた溶液と混
合し、約80℃で2時間保つた。この混合物から遠
心分離によりゼオライトを分離し、90℃で1晩乾
燥し、しかる後500℃で3時間焼成してCa型ZSM
−5を得た。 実施例 5〜6 実施例1で示したと同様の方法を用いて、ただ
Sr塩としてSr(CH3COO)2・1/2H2O2.07g、Ba
塩としてBa(CH3COO)21.67gに変えてそれぞれ
Sr型ZSM−5、Ba型ZSM−5を得た。 実施例 7 実施例1で記したと同様の方法を用いてZSM
−11(SiO2/Al2O3=200)をCaで変性しCa型
ZSM−11を得た。 比較例 1 仕込モル比(SiO2/Al2O3=300)のZSM−5
を水素型に変換した後、常法によりカルシウムイ
オンでイオン交換を行なつた。 即ち、試料5gに対し1NのCaCl2溶液を初回に40
ml加え、還流コンデンサーを装着して80℃に調節
したオイルバス中で撹拌を行なつた。 約3時間ごとにデカンテーシヨンにより交換液
を除き、新しい交換液を30ml加えた。この操作を
20回繰り返した後、Cl-イオンが認められなくな
るまでよく水洗濾過し、乾燥後500℃で3時間焼
成を行なつてカルシウム担持型とした。カルシウ
ムの担持量は等電的量の45%であつた。 比較例 2 H型ZSM−5(SiO2/Al2O3=300)を比較例
1に記したと同様にしてストロンチウムイオンで
イオン交換した。 比較例 3 H型ZSM−11(SiO2/Al2O3=200)を比較例
1に示したと同様にしてカルシウムイオンでイオ
ン交換した。
The present invention relates to a method for producing lower olefins from methanol and/or dimethyl ether using a modified crystalline zeolite catalyst. According to the production of lower olefins of the present invention, CO
It is possible to obtain lower olefins with high selectivity due to less decomposition into CO 2 and CO 2 , and there are few paraffin and aromatic by-products, and carbon deposition on the catalyst is suppressed, and even at high temperatures, there is no reduction in catalyst activity or deterioration of the catalyst. In recent years, there has been concern about the supply of petroleum resources, especially as Japan's dependence on foreign sources exceeds 99%, and the effective use of coal, natural gas, etc. has become an important issue. There is a need to establish an industrial synthesis method for organic compounds such as olefins, paraffins, and aromatic compounds from methanol obtained from olefins, paraffins, aromatics, etc. The present invention meets this need. Various types of crystalline aluminosilicate have been known so far, and among them, crystalline aluminosilicate zeolite is the most representative one. Crystalline aluminosilicate zeolites exist in large quantities in nature and can also be obtained by synthesis, and have a certain crystal structure, with many voids and tunnels within the structure, which allow molecules up to a certain size to be adsorbed. However, it has the function of excluding anything larger than that, and is also called a molecular sieve. Pores caused by voids and tunnels are determined by the form in which SiO 2 and Al 2 O 3 bond by sharing oxygen in the crystal structure. The electronegativity of the aluminum-containing tetrahedra is usually kept electroneutral by alkali metal ions, especially sodium and/or potassium. Normally, to produce crystalline aluminosilicate zeolite, a method is used in which SiO 2 , Al 2 O 3 , alkali metal ion sources, and water are mixed in desired proportions, and then hydrothermal treatment is performed under normal pressure or increased pressure. It is taken.
There is also a method of using an organic nitrogen compound or an organic phosphorus compound as a base, and various zeolites with various adsorption capacities and catalytic activities have been synthesized using this method, and the synthesis of this type of zeolite has become very popular in recent years. Especially by Mobil Oil Co.
ZSM zeolites are tetraalkylammonium compounds, tetraalkylphosphonium compounds,
It is synthesized using pyrrolidine, ethylenediamine, choline, etc., and its unique adsorption ability and catalytic action are attracting attention. Among them, ZSM-5 is 5-6 Å
Because of its medium pore size, it has the property of adsorbing linear hydrocarbons and slightly branched hydrocarbons, but not highly branched hydrocarbons. This ZSM-5 is usually made of SiO 2 , Al 2 O 3 ,
It is synthesized by hydrothermally treating a mixture consisting of each source of alkali metal, water, and a tetra-n-propylammonium compound. In recent years, much research has been conducted to obtain hydrocarbons by reacting methanol and/or dimethyl ether. The catalyst used in this reaction is generally what is called a solid acid, and many patents have been filed regarding various zeolites, heteropolyacids, etc. In particular, the aforementioned ZSM-5 by Mobil Oil uses methanol as a raw material and has a carbon number of
It is a catalyst that is excellent for synthesizing hydrocarbons mainly composed of gasoline fractions up to 10, and has a relatively long life as a catalyst and exhibits stable activity. It is unsuitable for Similarly, ZSM-34 is
In the same reaction, although it has high selectivity to ethylene and propylene as a catalyst for producing lower olefins, its activity decreases extremely quickly.
Not practical. The present inventors have developed a method for producing hydrocarbons, especially ethylene, using methanol and/or dimethyl ether as raw materials.
As a result of intensive research into the development of catalysts that selectively produce lower olefins such as propylene and have stable activity, ZSM-5, ZSM-11
It has been found that a crystalline zeolite modified by contacting it with a solution of at least one alkaline earth metal-containing compound selected from calcium, strontium, and barium is suitable for that purpose. It has been widely known to modify crystalline aluminosilicate with alkaline earth metal ions, and the usual method is to support alkaline earth metal ions on proton (H + ) type crystalline aluminosilicate by ion exchange. is used. However, with this ion exchange method, it is difficult to support a large amount of alkaline earth metal ions, and it requires a lot of labor and is not economical.
For example, the limit is to introduce up to about 80% of the theoretical amount, and normally only about 50% can be introduced. However, surprisingly, the present inventors
Crystalline zeolites such as ZSM-5 and ZSM-11,
By modifying with an alkaline earth metal, it is possible to very easily contain a desired amount of alkaline earth metal ions, and it is also possible to contain alkaline earth metal ions in an amount more than isoelectric with respect to aluminum, and furthermore, methanol and / Or in the conversion reaction of dimethyl ether, the catalyst containing alkaline earth metal ions according to the method of the present invention is used for C 2 such as ethylene or propylene.
It has been found that the selective production of ~ C4 lower olefins and the suppression of carbon production are excellent in the connectivity of catalytic activity. The treatment for obtaining modified zeolite in the present invention involves mixing a conventionally known zeolite with a SiO 2 /Al 2 O 3 molar ratio of 12 or more with an aqueous solution of a compound containing calcium, barium or strontium, and then evaporating and drying the mixture. harden In this case, the calcium-, barium-, or strontium-containing compound includes various inorganic and organic compounds. The amount of alkaline earth metal contained in the modified zeolite is at least 0.25% by weight in terms of metal, preferably 1 to 20% by weight for calcium and strontium, and preferably 1 to 35% by weight for barium.
It is. The catalyst of the present invention can be used as it is or, if desired, mixed with a suitable carrier such as clay, kaolin, alumina, etc. Next, a method for producing lower olefins from methanol and/or dimethyl ether using the catalyst obtained by the method of the present invention will be described. The conversion reaction of methanol and/or dimethyl ether may be carried out in any reaction format as long as these raw materials are supplied as a gas and can be brought into sufficient contact with a solid catalyst, such as a fixed bed reaction method, a fluidized bed reaction method, or a moving bed reaction method. Examples include methods. The reaction can be carried out under a wide range of conditions.
For example, reaction temperature 300-600℃, weight time space velocity
0.1-20hr -1 , preferably 1-10hr -1 , total pressure 0.1
It can be carried out under conditions of ~100 atmospheres, preferably 0.5~10 atmospheres. The raw material can also be diluted with water vapor or an inert gas such as nitrogen, argon, etc. and then fed onto the catalyst. In the process of the present invention, the product stream consists of steam, hydrocarbons, and unreacted raw materials, and by appropriately setting the reaction conditions, the proportion of lower olefins such as ethylene and propylene in the hydrocarbons can be increased. The steam and hydrocarbon products are separated and purified from each other by known methods. In the olefin production reaction in which the catalyst of the present invention is used, methanol and dimethyl ether are both starting materials, so when calculating selectivity, dimethyl ether produced from methanol may be regarded as an unreacted material. What should be noted is that the alkaline earth metal-containing crystalline aluminosilicate zeolite catalyst produced by the method of the present invention has a higher selectivity for lower olefins than other comparative examples, produces less paraffin and BTX, and can be used at high temperatures. The point is that there is no decrease in catalyst activity. Next, the present invention will be explained in detail using Examples and Comparative Examples, but the present invention is not limited thereto unless it exceeds the gist thereof. Reference Examples 1-2, Examples 1-7 and Comparative Examples 1-3
The modified zeolite powder obtained was heated to a pressure of 400Kg/ cm2.
This was then crushed into 10 to 20 meshes, and 2 ml of the mixture was filled into a reaction tube with an inner diameter of 10 mm. 4 ml/hr of liquid methanol (the reaction is a gas phase reaction, but if the raw material supply amount is expressed in the liquid phase, the LHSV
= 2hr -1 ) to the vaporizer, where 10ml/
The mixture was mixed with argon gas, which was sent at a rate of 100 min, and sent to the reaction tube at approximately normal pressure to carry out the reaction. Analysis of the product was performed using a gas chromatograph. A summary of the results is shown in Table 1. As can be seen from the results shown in Table 1, it is understood that the catalyst obtained by the method of the present invention provides a high yield of ethylene + propylene and maintains high catalytic activity without deterioration even in a high temperature range. Reference example 1 Dissolve 1.14 g of aluminum nitrate nonahydrate in 90 g of water to make solution A, and add 60 g of Cataloid SI-30 water glass (Catalyst Kasei Co., Ltd., SiO 2 30.5%, Na 2 O 0.42%) to water.
It was dissolved in 40g and used as liquid B. Add liquid B to liquid A while stirring vigorously, then add 1.26 g of sodium hydroxide dissolved in 20 g of water. Furthermore, add tetrapropyl aluminum bromide to 30g of water.
8.11 g of the solution was added and stirring was continued for about 10 minutes to obtain an aqueous gel mixture. This charging molar ratio is SiO 2 /Al 2 O 3 =200. This aqueous gel mixture was charged into an autoclave with an internal volume of 300 ml, and hydrothermally treated at 160°C under autogenous pressure for 18 hours with stirring (500 rpm). The reaction product is separated into a solid component and a solution part using a centrifuge.
Thoroughly wash the solid components with water and heat them at 120℃ for 5 minutes.
Dry for an hour. Next, it was treated in air at 520°C for 5 to 10 hours. Next, 15 ml of a 0.6N aqueous hydrogen chloride solution was mixed with 1 g of this calcined crystalline aluminosilicate, and the mixture was stirred at room temperature for 24 hours. After that, it was thoroughly washed with water at room temperature, dried at 120℃, and then dried at 520℃.
Calcination was performed in air at ℃ for 5 hours to convert it to hydrogen form and obtain H form ZSM-5. Reference Example 2 Form H ZSM-11 was obtained in the same manner as in Reference Example 1 except that 9.82 g of tetrabutylaluminum bromide was used as the crystallization regulator. Example 1 H-type ZSM-5 (SiO 2 /
Add 5 g of Al 2 O 3 = 200) to 10 ml of water and add Ca (CH 3 COO) 2 .
It was mixed with a solution containing 3.14 g of H 2 O. After keeping this mixture at approximately 80°C for 20 hours, the mixture was placed in a dryer.
Evaporate to dryness at 100-110℃. After that, in the air
Ca-type by firing at 200℃ for 2 hours and 500℃ for 18 hours.
ZSM-5 was obtained. Examples 2 to 3 Using the same method as described in Example 1, only the SiO 2 /Al 2 O 3 ratio of H-type ZSM-5 was changed to produce Ca-type ZSM.
-5 was obtained. Example 4 6.0 g of H-type ZSM-5 (SiO 2 /Al 2 O 3 = 70) was added to water.
It was mixed with a solution containing 6.0 g of Ca(NO 3 ) 2.4H 2 O in 10 ml and kept at about 80° C. for 2 hours. The zeolite was separated from this mixture by centrifugation, dried at 90°C overnight, and then calcined at 500°C for 3 hours to produce Ca-type ZSM.
-5 was obtained. Examples 5-6 Using the same method as shown in Example 1, just
Sr as Sr salt (CH 3 COO) 2 1/2H 2 O2.07g, Ba
Ba( CH3COO ) 2 as salt 1.67g each
Sr type ZSM-5 and Ba type ZSM-5 were obtained. Example 7 ZSM using a method similar to that described in Example 1
-11 (SiO 2 /Al 2 O 3 = 200) is modified with Ca to form Ca type.
ZSM-11 was obtained. Comparative Example 1 ZSM-5 with charging molar ratio (SiO 2 /Al 2 O 3 = 300)
After converting to the hydrogen form, ion exchange with calcium ions was performed using a conventional method. That is, 40 g of 1N CaCl 2 solution was added to 5 g of sample at first time.
ml was added and stirred in an oil bath equipped with a reflux condenser and adjusted to 80°C. Approximately every 3 hours, the exchange solution was removed by decantation and 30 ml of new exchange solution was added. This operation
After repeating this process 20 times, the mixture was thoroughly washed and filtered with water until no Cl - ions were observed, dried, and then calcined at 500°C for 3 hours to obtain a calcium-supported type. The amount of calcium supported was 45% of the isoelectric amount. Comparative Example 2 H-type ZSM-5 (SiO 2 /Al 2 O 3 =300) was ion-exchanged with strontium ions in the same manner as described in Comparative Example 1. Comparative Example 3 H-type ZSM-11 (SiO 2 /Al 2 O 3 =200) was ion-exchanged with calcium ions in the same manner as shown in Comparative Example 1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 メタノール及び/又はジメチルエーテルを、
反応温度250〜750℃、重量時間空間速度0.1〜
20hr-1、全圧力0.1〜100気圧の条件下、結晶性ゼ
オライト触媒と接触させることからなる低級オレ
フインの製造方法において、前記ゼオライト触媒
として、SiO2/Al2O3モル比が12以上であるゼオ
ライトを、カルシウム、ストロンチウム及びバリ
ウムの中から選ばれる少なくとも1種のアルカリ
土類金属含有化合物で処理し、ゼオライト中に少
なくとも0.25重量%の前記金属分を析出させた変
性ゼオライトを用いることを特徴とする低級オレ
フインの製造方法。 2 前記温度が300〜650℃である特許請求の範囲
第1項記載の方法。 3 前記カルシウムの量が前記変性ゼオライト触
媒の1〜20重量%である特許請求の範囲第1項又
は第2項記載の方法。 4 前記ストロンチウムの量が前記変性ゼオライ
ト触媒の1〜30重量%である特許請求の範囲第1
項又は第2項記載の方法。 5 前記バリウムの量が前記変性ゼオライト触媒
の1〜35重量%である特許請求の範囲第1項又は
第2項記載の方法。 6 前記ゼオライトが結合剤と混合したものであ
る前記特許請求の範囲第1項〜第5項のいずれか
に記載の方法。 7 前記ゼオライトがZSM−5、ZSM−11、
ZSM−12、ZSM−23、ZSM−35、ZSM−38、又
はZSM−48である前記特許請求の範囲第1項〜
第6項のいずれかに記載の方法。
[Claims] 1. methanol and/or dimethyl ether,
Reaction temperature 250~750℃, weight time space velocity 0.1~
A method for producing a lower olefin comprising contacting with a crystalline zeolite catalyst under conditions of 20 hr -1 and a total pressure of 0.1 to 100 atm, wherein the zeolite catalyst has a SiO 2 /Al 2 O 3 molar ratio of 12 or more. A modified zeolite is used in which zeolite is treated with at least one alkaline earth metal-containing compound selected from calcium, strontium, and barium to precipitate at least 0.25% by weight of the metal in the zeolite. A method for producing a lower olefin. 2. The method according to claim 1, wherein the temperature is 300 to 650°C. 3. The method according to claim 1 or 2, wherein the amount of calcium is 1 to 20% by weight of the modified zeolite catalyst. 4. Claim 1, wherein the amount of strontium is 1 to 30% by weight of the modified zeolite catalyst.
or the method described in paragraph 2. 5. The method according to claim 1 or 2, wherein the amount of barium is 1 to 35% by weight of the modified zeolite catalyst. 6. The method according to any one of claims 1 to 5, wherein the zeolite is mixed with a binder. 7 The zeolite is ZSM-5, ZSM-11,
Claims 1 to 3 are ZSM-12, ZSM-23, ZSM-35, ZSM-38, or ZSM-48.
The method according to any of paragraph 6.
JP58234747A 1983-12-13 1983-12-13 Production of lower olefin Granted JPS60126233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58234747A JPS60126233A (en) 1983-12-13 1983-12-13 Production of lower olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58234747A JPS60126233A (en) 1983-12-13 1983-12-13 Production of lower olefin

Publications (2)

Publication Number Publication Date
JPS60126233A JPS60126233A (en) 1985-07-05
JPS6241695B2 true JPS6241695B2 (en) 1987-09-04

Family

ID=16975720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58234747A Granted JPS60126233A (en) 1983-12-13 1983-12-13 Production of lower olefin

Country Status (1)

Country Link
JP (1) JPS60126233A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102460409B1 (en) 2021-05-06 2022-10-31 한국야금 주식회사 Cutting insert and Tool mounted withthere

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197231A (en) * 1984-10-17 1986-05-15 Agency Of Ind Science & Technol Production of lower olefin
JPS6251630A (en) * 1985-08-29 1987-03-06 Agency Of Ind Science & Technol Production of lower olefin
JPS6270324A (en) * 1985-09-20 1987-03-31 Agency Of Ind Science & Technol Production of lower olefin
JPS6270325A (en) * 1985-09-20 1987-03-31 Agency Of Ind Science & Technol Production of lower olefin
EP0568913A3 (en) * 1992-05-03 1995-03-22 Dalian Chemical Physics Inst Process for the conversion of methanol to light olefins and catalyst used for such process.
US6852897B2 (en) 2000-06-23 2005-02-08 Jgc Corporation Process for the preparation of lower olefins
JP2005138000A (en) * 2003-11-05 2005-06-02 Jgc Corp Catalyst, method for preparing catalyst and method for producing lower hydrocarbon using the same catalyst
TWI406707B (en) * 2006-08-30 2013-09-01 Jgc Corp Alkaline-earth metal compound-containing zeolite catalyst, method for preparing same, method for regenerating same, and method for producing lower hydrocarbons
WO2010100069A1 (en) * 2009-03-03 2010-09-10 Total Petrochemicals Research Feluy Process to make olefins from organics and paraffins
JP2012045505A (en) * 2010-08-27 2012-03-08 Idemitsu Kosan Co Ltd Catalyst for producing light olefin, method for producing the catalyst, and method for producing light olefin by using the catalyst
CN103157502B (en) 2011-12-19 2015-04-15 中国科学院大连化学物理研究所 Catalyst of preparing ethylene and propylene by carbinol and / or dimethyl ether, preparing method and application thereof
EP3153489B1 (en) 2014-06-04 2020-08-05 Dalian Institute Of Chemical Physics, Chinese Academy of Sciences Method for preparing paraxylene and propylene by methanol and/or dimethyl ether

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102460409B1 (en) 2021-05-06 2022-10-31 한국야금 주식회사 Cutting insert and Tool mounted withthere

Also Published As

Publication number Publication date
JPS60126233A (en) 1985-07-05

Similar Documents

Publication Publication Date Title
EP0050021B1 (en) Production of aromatics from ethane and/or ethylene
JPS6241695B2 (en)
JPS6335570B2 (en)
EP0015702A1 (en) Crystalline zeolite, synthesis and use thereof
EP0022640A1 (en) Improved zeolite catalysts, method for their preparation and their use in the conversion of ethanol into ethylene and of both into higher hydrocarbons
KR101985861B1 (en) Preparation of Metal Oxide Catalyst Supported on Mesoporous HZSM-11 for Direct Dehydroaromatization of Methane and Propane, and Production Method of BTX Using Said Catalyst
JPH043366B2 (en)
JPH06500544A (en) Alkyl aromatic isomerization method
JPH0459300B2 (en)
JP3435516B2 (en) Modified zeolite alkylation catalyst and method of using same
JPS6245209B2 (en)
JPS6197231A (en) Production of lower olefin
JPH0528278B2 (en)
JPS61289049A (en) Production of propylene
JPH0674134B2 (en) Alkaline earth metal-containing aluminophosphosilicate, method for producing the same, and method for producing lower olefin using the same
JPH0366293B2 (en)
JPH0327541B2 (en)
JP3171667B2 (en) Purification method of hydrocarbons in automobile exhaust gas
JPH064547B2 (en) Process for producing mono- and / or dialkyl-substituted naphthalene
JPS6251630A (en) Production of lower olefin
JPS58118521A (en) Light olefin catalytic manufacture and regeneration of catalyst
US4851451A (en) Catalyst compositions and a process for the preparation therewith of hydrocarbons from synthesis gas
JPH054926B2 (en)
JPS58210030A (en) Manufacture of ethyl benzene
JPS5940366B2 (en) Method for producing olefin