JPH0659406B2 - Method for producing platinum group metal-supported zeolite catalyst - Google Patents

Method for producing platinum group metal-supported zeolite catalyst

Info

Publication number
JPH0659406B2
JPH0659406B2 JP60210327A JP21032785A JPH0659406B2 JP H0659406 B2 JPH0659406 B2 JP H0659406B2 JP 60210327 A JP60210327 A JP 60210327A JP 21032785 A JP21032785 A JP 21032785A JP H0659406 B2 JPH0659406 B2 JP H0659406B2
Authority
JP
Japan
Prior art keywords
catalyst
xylene
group metal
platinum group
zsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60210327A
Other languages
Japanese (ja)
Other versions
JPS6271546A (en
Inventor
静夫 吉田
雅博 小久保
俊裕 細川
節夫 神山
武夫 小山
Original Assignee
東燃株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東燃株式会社 filed Critical 東燃株式会社
Priority to JP60210327A priority Critical patent/JPH0659406B2/en
Publication of JPS6271546A publication Critical patent/JPS6271546A/en
Publication of JPH0659406B2 publication Critical patent/JPH0659406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 発明の技術的分野 本発明は芳香族炭化水素の異性化に有用な白金族金属担
持ゼオライト触媒の製造方法に関する。更に詳しくはエ
チルベンゼンとキシレンを含有する炭素数8の芳香族炭
化水素類の異性化用白金族金属担持ゼオライト触媒の製
造方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing a platinum group metal-supported zeolite catalyst useful for isomerizing aromatic hydrocarbons. More specifically, it relates to a method for producing a platinum group metal-supported zeolite catalyst for isomerizing aromatic hydrocarbons containing 8 carbon atoms and containing ethylbenzene.

従来の技術 キシレン異性化における触媒性能は、いかに副反応によ
るキシレン損失を抑制しながら、p−キシレン濃度を平
衡状態まで近づけるかという能力に加え、エチルベンゼ
ンに対する機能が重要である。従来からのシリカ−アル
ミナ触媒ではエチルベンゼンに対する反応生が乏しいた
め、異性化系内での濃縮を防止する目的でエチルベンゼ
ン除去塔が設置されていたが、その際相当量のキシレン
を系外へ損失していた。こうしたキシレン損失を解消
し、異性化工程全体の効率化を図るためZSM−5ゼオラ
イトに代表される特異な固体酸触媒が提案され、キシレ
ン間の異性化反応はもとより、共存するエチルベンゼン
を不均化して分離容易なベンゼンとジエチルベンゼンに
変換し、エチルベンゼン除去塔を必要としない効率的な
異性化循環系を組立てることができるようになつた。副
反応であるキシレン不均化反応は形状選択的に抑制さ
れ、キシレン損失は減少したが、反応はすべて同じ酸機
能で発現するため選択性の制御には限界があつた。モー
ビル高温異性化法は、貴金属活性点におけるエチルベン
ゼンの水素化脱アルキル機能と低酸性ZSM−5ゼオライ
トの高温異性化能を組合せた二元系触媒によつて、より
選択的に異性化反応を実施しようとするものであり、キ
シレン損失が一層低減できるとともに、工業的に利用価
値の高いベンゼン収率を高めることができる。
2. Description of the Related Art Catalytic performance in xylene isomerization is important not only for the ability to bring the p-xylene concentration close to an equilibrium state while suppressing xylene loss due to side reactions, but also for ethylbenzene. Since conventional silica-alumina catalysts have a poor reaction product with respect to ethylbenzene, an ethylbenzene removal tower was installed for the purpose of preventing concentration in the isomerization system, but at that time, a considerable amount of xylene was lost to the outside of the system. Was there. In order to eliminate such xylene loss and improve the efficiency of the entire isomerization process, a unique solid acid catalyst represented by ZSM-5 zeolite has been proposed, which disproportionates the coexisting ethylbenzene as well as the isomerization reaction between xylenes. It is now possible to construct an efficient isomerization circulation system that does not require an ethylbenzene removal column by converting into easily separable benzene and diethylbenzene. The xylene disproportionation reaction, which is a side reaction, was suppressed shape-selectively and the xylene loss was reduced, but there was a limit to the control of the selectivity because the reactions all exhibited the same acid function. Mobil high-temperature isomerization method enables more selective isomerization reaction with a binary catalyst that combines the hydrodealkylation function of ethylbenzene at the noble metal active site and the high-temperature isomerization ability of low-acid ZSM-5 zeolite. Therefore, the xylene loss can be further reduced and the industrially useful benzene yield can be increased.

ZSM−5ゼオライトの低酸性化は、1)水熱合成時にSiO
2/A>500(モル比)として結晶化(特開
昭54−24834号公報)する方法や、2)SiO2/A
>12(モル比)のZSM−5をベースにPtを担
持后、水蒸気処理すること(特開昭56−158150
号公報、同56−43219号公報、同57−1453
9号公報、同57−150624号公報)が提案されて
いる。
Low acidification of ZSM-5 zeolite is 1) SiO during hydrothermal synthesis
2 / A 2 O 3 > 500 (molar ratio) for crystallization (JP-A-54-24834), 2) SiO 2 / A
After carrying Pt on the basis of ZSM-5 of 2 O 3 > 12 (molar ratio), steam treatment (JP-A-56-158150).
No. 56-43219, No. 57-1453.
9 and 57-150624).

例えば特開昭56−158150号公報には以下の様に
Pt・ZSM−5/A複合触媒の好ましい製造手順が
記されている。
For example, in JP-A-56-158150,
Preferred manufacturing procedure of Pt · ZSM-5 / A 2 O 3 composite catalyst is noted.

〈従来法〉 〈特開昭56−158150号公報による方法〉 発明が解決しようとする問題点 前記ZSM−5ゼオライト等はキシレン異性化触媒として
有用ではあるが、エチルベンゼン脱アルキル活性(貴
金属活性点)とキシレン異性化活性(酸性点)に加え
て、両活性点で副反応(キシレン脱アルカリ、ベンゼン
環水素化、キシレン不均化)の制御は未だ不充分であ
り、キシレン損失とともに、水素の消費量を抑制するこ
とは工業的に重大な問題である。
<Conventional method> <Method according to JP-A-56-158150> Problems to be Solved by the Invention The ZSM-5 zeolite and the like are useful as xylene isomerization catalysts, but in addition to the ethylbenzene dealkylation activity (precious metal active site) and xylene isomerization activity (acidic site), both active sites Therefore, the control of side reactions (xylene dealkalization, benzene ring hydrogenation, xylene disproportionation) is still insufficient, and suppressing xylene loss and hydrogen consumption are industrially serious problems.

問題を解決する為の手段 発明の要旨 前記、技術的問題点に鑑み、エチルベンゼンとキシレン
から成るC8芳香族混合物に関して白金族金属含有ゼオ
ライト触媒による異性化方法を鋭意検討した結果、白金
族金属成分をイオン交換担持後、空気中焼成する前に水
蒸気処理を実施して調整される触媒を使用し、水素の存
在下、気相300〜450℃の温度条件下で処理するこ
とにより、エチルベンゼンの水素化脱アルキル機能とキ
シレン異性化能が選択的に発現し、キシレン損失ととも
に水素の消費量も抑制できることを見いだし、本発明を
完成した。
Means for Solving the Problems In view of the above-mentioned technical problems, as a result of intensive studies on a isomerization method using a platinum group metal-containing zeolite catalyst for a C 8 aromatic mixture composed of ethylbenzene and xylene, a platinum group metal component was obtained. Is carried out in the presence of hydrogen under a temperature condition of 300 to 450 ° C. in the gas phase, by using a catalyst prepared by carrying out a steam treatment before carrying out calcination in the air after carrying out ion exchange. The inventors have found that the chemical dealkylation function and the xylene isomerization ability are selectively expressed, and the hydrogen consumption can be suppressed together with the loss of xylene, and the present invention has been completed.

即ち本発明は、白金族金属成分を担持したゼオライト触
媒の調整に際し、白金族金属成分をイオン交換により担
持する工程の後、空気中で焼成する工程の前に水蒸気処
理を行うことを特徴とする炭素数8の芳香族炭化水素類
の異性化用白金族金属担持ゼオライト触媒の製造方法を
提供するものである。
That is, the present invention is characterized in that, when preparing a zeolite catalyst carrying a platinum group metal component, after the step of carrying the platinum group metal component by ion exchange, a steam treatment is carried out before the step of firing in air. The present invention provides a method for producing a platinum group metal-supported zeolite catalyst for isomerizing aromatic hydrocarbons having 8 carbon atoms.

水蒸気処理によるゼオライトの低酸性化は、従来からの
公知技術であり、例えば、「ジヤーナル・オブ・キヤタ
リシス」第6巻278頁〜287頁(1966年)や
「アプライド・キヤタリシス」第13巻27頁〜38頁
(1984年)にも述べられている。
Low acidification of zeolite by steam treatment is a conventionally known technique, for example, "Journal of Katalysis", vol. 6, pages 278 to 287 (1966) and "Applied catalysis", vol. 13, p. 27. ~ Page 38 (1984).

白金族金属含有キシレン異性化用ゼオライト触媒(主に
ZSM−5)にあつては、調整触媒の最終工程において水
蒸気処理して低酸性化することが、特許上、一般的に実
施されている。
Zeolite catalyst for platinum group metal-containing xylene isomerization (mainly
With respect to ZSM-5), it is generally practiced from a patent that steam treatment is performed to reduce the acidity in the final step of the prepared catalyst.

先きに提案した、バインダレス型TSZ触媒(特開昭61
−69738号、特開昭61−74647号)も含め
て、最終工程で水蒸気処理を実施してきたが、触媒調製
工程を詳細に検討した結果、白金族金属成分をイオン交
換担持後、空気中焼成する前に、水蒸気処理することか
ら成る触媒ではエチルベンゼンの水素化脱アルキル機能
とキシレン異性化能が選択的に発現し、キシレン損失と
ともに水素の消費量も抑制できることが明らかとなつ
た。
The binderless type TSZ catalyst proposed earlier (Japanese Patent Application Laid-Open No. 61-61160)
-69738 and JP-A-61-74647), steam treatment has been carried out in the final step. As a result of detailed examination of the catalyst preparation step, after carrying out ion exchange loading of the platinum group metal component, calcination in air was carried out. Prior to this, it was revealed that the catalyst consisting of steam treatment selectively exhibits the hydrodealkylation function and the xylene isomerization ability of ethylbenzene and can suppress the hydrogen consumption as well as the loss of xylene.

「ジヤーナル・オブ・キヤタリシス」第89巻520頁
〜526頁(1984年)では、ZSM−5ゼオライトへ
のPt(NH3)4 2+イオン交換後、空気中焼成することによ
り、Ptが高分散化されることを述べているが、本発明に
おける空気中焼成する前の水蒸気処理は、単にゼオライ
トの低酸性化を果たすのみならず、Ptの高分散化を逆に
抑制して、適当なPt粒径を維持し、エチルベンゼン脱ア
ルキル活性とキシレン異性化活性をバランス良く保持す
る上において、極めて効果的であることを示しており、
これまではPtの高分散化を目的に調製されていた調製手
法では達成されないものである。
In the "journal OF Kiyatarishisu" Vol. 89 520, pages ~526 (1984), after Pt (NH 3) 4 2+ ion exchange into ZSM-5 zeolite, by firing in the air, Pt is highly dispersed However, the steam treatment before calcination in the air in the present invention not only serves to lower the acidity of the zeolite, but also suppresses the high dispersion of Pt to the contrary, so that a suitable Pt is obtained. It has been shown to be extremely effective in maintaining the particle size and maintaining the ethylbenzene dealkylation activity and the xylene isomerization activity in good balance,
It cannot be achieved by the preparation method that has been prepared so far for the purpose of making Pt highly dispersed.

本発明者らはこれらの機作を詳細に検討する中で、水蒸
気処理の工程の効果を白金族金属成分を担持後単に焼
成したもの、白金族金属成分担持後、焼成し水蒸気処
理したもの、白金族金属成分担持後水蒸気処理し、次
いで焼成したもの酸量及びCO吸着量(担持金属当り)に
ついて調べてみた。即ち、本発明の効果をこれだけで十
分に理論づけることはできないが、酸量は水蒸気処理す
ると大きく減少し、その効果はとではほぼ同等であ
りキシレンの不均化反応が抑制され、キシレン損失は少
なくなる反応結果と対応してしていると考えられる。一
方担持金属当りのCO吸着量はの順序で減少するが
特に本発明の方法によるは極端に減少することが分つ
た。CO吸着能は担持金属の分散度に対応すると考えら
れ、芳香核の核水添、核分解能に関連するものと考えら
れ、CO吸着能の低下により、エチルベンゼンの脱アルキ
ルは十分に行いながら芳香族炭化水素、特にキシレンの
損失を低く抑え、水素消費量も少く異性化反応を行える
と考えられる。
The inventors of the present invention have studied these mechanisms in detail, and the effect of the step of steam treatment is simply carried out after carrying the platinum group metal component, after carrying the platinum group metal component, and then baked and steamed, The amount of acid and the amount of CO adsorbed (per supported metal) were measured by steaming after supporting a platinum group metal component and then calcining. That is, the effect of the present invention cannot be fully theoreticalized by this alone, but the amount of acid is greatly reduced by steam treatment, the effect is almost the same and the disproportionation reaction of xylene is suppressed, and xylene loss is It is considered that this corresponds to the decrease in reaction results. On the other hand, it has been found that the amount of CO adsorbed per supported metal decreases in the order of, but particularly by the method of the present invention. The CO adsorption capacity is considered to correspond to the dispersity of the supported metal, and is thought to be related to the nuclear hydrogenation and nuclear decomposition of aromatic nuclei. It is considered that the loss of hydrocarbons, especially xylene can be suppressed to a low level, and the isomerization reaction can be performed with a small hydrogen consumption amount.

本発明に使用することのできるゼオライト、即ち親ゼオ
ライトは、モービルオイル社が開発した主空洞の入口が
10員酸素環であるZSM−5,ZSM−11,ZSM−12,Z
SM−23,ZSM−35、及び主空洞の入口が12員酸系
環であるZSM−4,ZSM−10,ZSM−20等及び、TSZ結
晶性アルミノ珪酸塩、及びバインダレス型TSZゼオライ
トであり、特に好ましくはバインダレス型TSZゼオライ
トである。これらの親ゼオライトの調製法は、下記の米
国特許(US)明細書、英国特許(GB)明細書又は特許公開公
報に詳細に記載されている。
Zeolites that can be used in the present invention, that is, parent zeolites, are ZSM-5, ZSM-11, ZSM-12, Z whose main cavity inlet is a 10-membered oxygen ring developed by Mobile Oil Company.
SM-23, ZSM-35, ZSM-4, ZSM-10, ZSM-20, etc. in which the main cavity inlet is a 12-membered acid ring, TSZ crystalline aluminosilicate, and binderless TSZ zeolite Binderless type TSZ zeolite is particularly preferable. The method for preparing these parent zeolites is described in detail in the following US Patent (US) Specification, British Patent (GB) Specification or Patent Publication.

ZSM−5(米国特許3,702,886号)、 ZSM−11(米国特許3,709,979号)、 ZSM−12(米国特許3,832,449号)、 ZSM−23(米国特許4,076,842号)、 ZSM−35(米国特許4,016,245号)、 ZSM−4(英国特許1,297,256号)、ZSM−10
(米国特許3,692,470号)、ZSM−20(米国
特許3,972,982号)、TSZ結晶性アルミノ珪酸
塩(特開昭58−45111号公報)、バインダレス型
TSZゼオライト(特開昭59−162952号公報) また該親ゼオライトに白金族金属を担持させ、本発明に
有用な触媒を調製する方法としては例えば前記「従来の
技術」の項で述べた方法、即ちポスト含浸法の1〜8の
工程、あるいは共結晶化法の1〜7の工程、あるいは複
合体の含浸法の1〜8の工程、あるいはゼオライトの含
浸法の1〜8の工程を採用することができる。こゝで、
白金族金属担持の為に用いられる溶液は、白金アンミン
錯イオン溶液(Pt(NH3)4 2+など)、パラジウム錯イオン
溶液(Pd(NH3)2+など)Ni(NO3)2水溶液などである。
ZSM-5 (US Pat. No. 3,702,886), ZSM-11 (US Pat. No. 3,709,979), ZSM-12 (US Pat. No. 3,832,449), ZSM-23 (US Pat. 076,842), ZSM-35 (US Pat. No. 4,016,245), ZSM-4 (UK Patent 1,297,256), ZSM-10.
(US Pat. No. 3,692,470), ZSM-20 (US Pat. No. 3,972,982), TSZ crystalline aluminosilicate (JP-A-58-45111), binderless type.
TSZ zeolite (Japanese Patent Laid-Open No. 59-162952) Further, as a method for preparing a catalyst useful in the present invention by supporting a platinum group metal on the parent zeolite, for example, the method described in the section of "Prior Art", That is, the steps 1 to 8 of the post impregnation method, the steps 1 to 7 of the co-crystallization method, the steps 1 to 8 of the complex impregnation method, or the steps 1 to 8 of the zeolite impregnation method are adopted. be able to. Here,
The solution used for supporting the platinum group metal is a platinum ammine complex ion solution (Pt (NH 3 ) 4 2+, etc.), palladium complex ion solution (Pd (NH 3 ) 2+, etc.) Ni (NO 3 ) 2 aqueous solution. And so on.

上記処理液、水蒸気処理し、最後に空気中で焼成するこ
とにより、本発明に有用な触媒が得られる。水蒸気処理
の条件は、400℃〜700℃で1〜24時間、好まし
くは500℃〜600℃で10〜20時間行う。この
際、水蒸気は窒素ガス等の不活性ガスで希釈してもよ
い。
The catalyst useful in the present invention can be obtained by subjecting the above-mentioned treatment liquid to steam treatment and finally calcining in air. The conditions of steam treatment are 400 ° C. to 700 ° C. for 1 to 24 hours, preferably 500 ° C. to 600 ° C. for 10 to 20 hours. At this time, the water vapor may be diluted with an inert gas such as nitrogen gas.

転化条件 転化条件は250℃〜500℃、好ましくは300℃〜
450℃、大気圧〜60kg/cm2G、好ましくは5〜30k
g/cm2G、液空間速度(LHSV)は0.5〜50(時間−1)、
好ましくは2〜20(時間−1)、そして水素/原料炭
化水素モル比は0.1〜10、好ましくは0.5〜5である。
Conversion Conditions The conversion conditions are 250 ° C. to 500 ° C., preferably 300 ° C.
450 ° C, atmospheric pressure to 60 kg / cm 2 G, preferably 5 to 30 k
g / cm 2 G, liquid hourly space velocity (LHSV) 0.5 to 50 (hour -1 ),
Preferably, it is 2 to 20 (hour -1 ), and the hydrogen / feedstock hydrocarbon molar ratio is 0.1 to 10, preferably 0.5 to 5.

発明の効果 本発明の方法により製造した触媒を使用することによ
り、C8芳香族炭化水素の異性化を効率よく行なえる。
即ち、キシレン損失を低レベルに保持しながらエチルベ
ンゼンの高転化率を達成し、かつ水素消費量の少いキシ
レン異性化反応により、パラキシレンを有利に得ること
ができる。
EFFECTS OF THE INVENTION By using the catalyst produced by the method of the present invention, the isomerization of C 8 aromatic hydrocarbons can be carried out efficiently.
That is, para-xylene can be advantageously obtained by a xylene isomerization reaction that achieves a high conversion rate of ethylbenzene while keeping xylene loss at a low level and consumes less hydrogen.

実施例 以下実施例により、本発明を更に詳しく説明する。EXAMPLES The present invention will be described in more detail with reference to the following examples.

触媒調製 調製例1:結晶性アルミノ珪酸塩(TSZ)粉末の調製 162.3gの水に25.0gの硫酸アルミニウム18水塩を溶
解し、更に16.5gの濃硫酸(95重量%)を加えて硫酸
アルミニウム溶液を調製した(A溶液)。これとは別に
118.3gの水と234.0gの日本工業規格第3号の水ガラス
(Na2O 9.32重量%、SiO2 28.9重量%:以下3号水ガラ
スと略す)の混合液を調製した(B溶液)。更に71.8g
の塩化ナトリウムを463.4gの水に溶解した溶液を調製
した(C溶液)。A溶液及びB溶液をC溶液に攪拌しな
がら同時に添加混合して水性反応混合物を調製した。こ
の反応混合物の組成は酸化物のモル比で表して2.1 Na2O
・A・30.0 SiO2・133.4 H2Oであつた。
Preparation of catalyst Preparation example 1: Preparation of crystalline aluminosilicate (TSZ) powder 25.0 g of aluminum sulfate 18-hydrate was dissolved in 162.3 g of water, and 16.5 g of concentrated sulfuric acid (95% by weight) was added to the solution to form aluminum sulfate. A solution was prepared (solution A). Aside from this
A mixed solution of 118.3 g of water and 234.0 g of Japanese Industrial Standard No. 3 water glass (9.32% by weight of Na 2 O, 28.9% by weight of SiO 2 : hereinafter abbreviated as No. 3 water glass) was prepared (solution B). 71.8g
A solution was prepared by dissolving sodium chloride in (4) in water (463.4 g) (C solution). An aqueous reaction mixture was prepared by simultaneously adding and mixing solution A and solution B to solution C while stirring. The composition of this reaction mixture is expressed as the molar ratio of oxides to 2.1 Na 2 O.
· A Atsuta with 2 O 3 · 30.0 SiO 2 · 133.4 H 2 O.

得られた水性反応混合物をSUS製オートクレーブに張り
込み昇温し、自己圧において180℃で40時間加熱維
持した。結晶化した固体生成物を濾過分離し、水で洗浄
後110℃で乾燥した。固体生成物の試料を化学分析に
供したところ、Na2O;3.13重量%、A;5.03重
量% 、SiO2;83.6重量%、H2O;8.2重量%の化学組成
が得られた。これを酸化物のモル比で表示すると次の通
りであつた。
The obtained aqueous reaction mixture was poured into a SUS autoclave, the temperature was raised, and the autoclave was heated and maintained at 180 ° C. for 40 hours. The crystallized solid product was filtered off, washed with water and dried at 110 ° C. When a sample of the solid product was subjected to chemical analysis, a chemical composition of Na 2 O; 3.13% by weight, A 2 O 3 ; 5.03% by weight, SiO 2 ; 83.6% by weight, H 2 O; 8.2% by weight was obtained. It was This was expressed in terms of oxide molar ratio as follows.

1.02 Na2O・A・28.2SiO2・12.5 H2O この生成物はX線分析により、TSZ結晶性アルミノ珪酸
塩であることが確認された。
1.02 Na 2 O · A 2 O 3 · 28.2SiO 2 · 12.5 H 2 O This product was confirmed by X-ray analysis to be a TSZ crystalline aluminosilicate.

調製例2:バインダーレス結晶性アルミノ珪酸塩(TSZ)
の調製 調製例1の方法で製造したTSZ粉末50gとシリカアル
ミナウエツトゲル380g(含水率86.8重量%)をニー
ダーで、乾燥しながら成形可能な水分量になるまで混練
し、押出成形機にて外径約1.5mmペレツトに成形した。
Preparation Example 2: Binderless crystalline aluminosilicate (TSZ)
Preparation of TSZ powder (50 g) produced by the method of Preparation Example 1 and 380 g of silica-alumina wet gel (water content 86.8% by weight) were kneaded with a kneader until the water content became moldable, and the mixture was extruded with an extruder. Molded into an outer diameter of approximately 1.5 mm pellet.

ここで使用したシリカアルミナウエツトゲルは硫酸アル
ミニウム25.0g、95重量%硫酸13.0g、純水162.3g
の硫酸アルミニウム水溶液と3号水ガラス234.0g、純
水118.3gの水ガラス水溶液を、純水463.4g中に添加し
調製したものを濾過したものである。
The silica-alumina wet gel used here is aluminum sulfate 25.0 g, 95% by weight sulfuric acid 13.0 g, pure water 162.3 g.
The aluminum sulfate aqueous solution of No. 3, 234.0 g of No. 3 water glass, and 118.3 g of pure water were added to 463.4 g of pure water to prepare a solution, which was then filtered.

ペレツトを約110℃で5時間乾燥した後、一部を分取
し化学分析したところ、 SiO2が85.3重量%、A
が4.98重量%、Na2Oが7.05重量%、900℃におけ
る灼熱減量が2.65重量%であつた。
After drying the pellets at about 110 ° C. for 5 hours, a part of the pellets was collected and subjected to chemical analysis to find that SiO 2 was 85.3% by weight and A 2
O 3 was 4.98 wt%, Na 2 O was 7.05 wt%, and the ignition loss at 900 ° C. was 2.65 wt%.

これを更に600℃で約3時間焼成した後70gを分取
し、塩化ナトリウム60.5g及び純水867gと共に、SU
S製オートクレーブに張り込み、180℃で4時間結晶
化を行つた。降温後、ペレツトをオートクレーブから抜
き出し、洗浄後、乾燥し、粉末X線回折分析を行ない、
TSZ結晶性アルミノ珪酸塩であることを確認した。
This is further baked at 600 ° C. for about 3 hours and 70 g of it is collected and combined with 60.5 g of sodium chloride and 867 g of pure water to obtain SU.
It was put into an S autoclave and crystallized at 180 ° C. for 4 hours. After cooling, the pellets were taken out from the autoclave, washed, dried and subjected to powder X-ray diffraction analysis.
It was confirmed to be TSZ crystalline aluminosilicate.

又、電子顕微鏡写真からも、結晶性物質が殆どであり、
シリカアルミナウエツトゲルがTSZ結晶性アルミノ珪酸
塩になつたことが明らかになつた。
Also, from the electron micrograph, most of the crystalline material,
It was revealed that the silica-alumina wet gel became TSZ crystalline aluminosilicate.

調製例3:ZSM−5ゼオライトの調製 390gの純水中に14.3gの硫酸アルミニウムを溶解
し、更に8.7gの濃硫酸(95重量%)、51.4gのテト
ラプロピルアンモニウムブロマイド(TPABr)及び39.0g
の塩化ナトリウムを添加し、硫酸アルミニウム溶液を調
製した。この硫酸アルミニウム溶液を77.0gの水と156.
0gの3号水ガラスの混合溶液に攪拌しながら混合し、
酸化物のモル比で表示して 4.5(TPA)2O・4.0Na2O・A・35.0SiO2・1477H2O の組成を有する水性反応混合物を得た。水性反応混合物
をSUS製オートクレーブに張り込み昇温し、自己圧にお
いて160℃で20時間加熱維持した。結晶化した固体
生成物を濾過分離し、水で洗浄後110℃で乾燥した。
この固体生成物の試料を化学分析に供したところ、(TP
A)2O;11.8重量%、Na2O;1.80重量%、A;4.
62重量%、SiO2;75.4重量%、H2O;6.36重量%の化学
組成が得られた。これを酸化物のモル比で表示すると次
の通りであつた。
Preparation Example 3: Preparation of ZSM-5 zeolite 14.3 g of aluminum sulfate was dissolved in 390 g of pure water, and further 8.7 g of concentrated sulfuric acid (95% by weight), 51.4 g of tetrapropylammonium bromide (TPABr) and 39.0 g.
Sodium chloride was added to prepare an aluminum sulfate solution. This aluminum sulfate solution was added with 77.0 g of water and 156.
Mix with 0 g of No. 3 water glass mixed solution with stirring,
An aqueous reaction mixture was obtained having a composition of 4.5 (TPA) 2 O.4.0Na 2 O.A 2 O 3 / 35.0SiO 2 .1477H 2 O expressed in terms of oxide molar ratio. The aqueous reaction mixture was poured into a SUS autoclave to raise the temperature, and was heated and maintained at 160 ° C. for 20 hours under self-pressure. The crystallized solid product was filtered off, washed with water and dried at 110 ° C.
When a sample of this solid product was subjected to chemical analysis, (TP
A) 2 O; 11.8% by weight, Na 2 O; 1.80% by weight, A 2 O 3 ; 4.
A chemical composition of 62% by weight, SiO 2 ; 75.4% by weight, H 2 O; 6.36% by weight was obtained. This was expressed in terms of oxide molar ratio as follows.

0.67(TPA)2O・0.64Na2O・A・27.7SiO2・7.8H2O この生成物を約3時間、540℃で焼成後、X線分析に
供し、ZSM−5ゼオライトであることを確認した。
0.67 (TPA) 2 O ・ 0.64Na 2 O ・ A 2 O 3・ 27.7SiO 2・ 7.8H 2 O This product was calcined at 540 ° C. for about 3 hours and then subjected to X-ray analysis, using ZSM-5 zeolite. I confirmed that there is.

調製例4:触媒A,B及びCの調製 調製例1で得られたTSZ結晶性アルミノ珪酸塩のナトリ
ウムイオンを、イオン交換するために5%塩化アンモニ
ウム(NHC)溶液を用い、80℃において1.5時
間イオン交換操作を行つた。この操作を4回行い、アン
モニウム(NH4)型TSZ結晶性アルミノ珪酸塩粉末を調製し
た。
Preparation Example 4: Preparation of Catalysts A, B and C Using a 5% ammonium chloride (NH 4 C) solution to ion-exchange the sodium ions of the TSZ crystalline aluminosilicate obtained in Preparation Example 1 at 80 ° C. The ion exchange operation was performed for 1.5 hours. This operation was repeated 4 times to prepare ammonium (NH 4 ) type TSZ crystalline aluminosilicate powder.

上記のNH4型TSZ結晶性アルミノ珪酸塩粉末を分取し、そ
れを白金アンミン錯イオン(例えばPt(NH3)4 2+)を含む
水溶液に室温で浸漬し、次いで固体を濾過分離し、水で
洗浄して白金(Pt)−アンモニウム(NH4)型のTSZ結晶性ア
ルミノ珪酸塩粉末を調製した。このPt-NH4型TSZを別途
調製したアルミナバインダーと7:3の割合(焼成後の
重量比)で混合し、水を加えて混練した後押出成形機に
て外径約1.5mmのペレツトに成形した。これを乾燥した
後600℃において3時間焼成し、白金(Pt)−水素(H)
型のTSZ結晶性アルミノ珪酸塩を含む触媒を調製した
(以下、これを触媒Aと呼ぶ)。触媒Aの白金の含有量
を分析したところ、0.81重量%であつた。
The above NH 4 type TSZ crystalline aluminosilicate powder was collected, immersed in an aqueous solution containing platinum ammine complex ion (for example, Pt (NH 3 ) 4 2+ ) at room temperature, and then the solid was separated by filtration, A platinum (Pt) -ammonium (NH 4 ) type TSZ crystalline aluminosilicate powder was prepared by washing with water. This Pt-NH 4 type TSZ was mixed with a separately prepared alumina binder at a ratio of 7: 3 (weight ratio after firing), water was added and kneaded, and then an extruder was used to form a pellet with an outer diameter of about 1.5 mm. Molded. This was dried and then baked at 600 ° C for 3 hours to obtain platinum (Pt) -hydrogen (H).
A catalyst containing a type of TSZ crystalline aluminosilicate was prepared (hereinafter referred to as catalyst A). When the platinum content of the catalyst A was analyzed, it was 0.81% by weight.

触媒Aを更に、大気圧下、100%水蒸気を用い550
℃で16時間の処理をすることにより、触媒Bを調製し
た。
The catalyst A was further subjected to 550 at atmospheric pressure using 100% steam.
Catalyst B was prepared by treating at 16 ° C. for 16 hours.

触媒A調製における600℃において3時間焼成する以
前にあらかじめ大気圧下、100%水蒸気を用い550
℃で16時間の処理をすることにより、触媒Cを調製し
た。
Prior to calcination at 600 ° C. for 3 hours in the preparation of catalyst A, 100% water vapor was preliminarily used under atmospheric pressure at 550.
Catalyst C was prepared by treating at C for 16 hours.

調製例5:触媒D,E及び触媒Fの調製 調製例2で得られたナトリウム型バインダーレスTSZ結
晶性アルミノ珪酸塩ペレツト60gを、5重量%の塩化
アンモニウム溶液をTSZペレツト1g当たり15mず
つ使用し、80℃で合計4回イオン交換処理をした(各
処理時間は1.5時間であつた)。次にイオン交換生成物
を水洗し110℃で乾燥することにより、アンモニウム
(NH4)型のバインダーレスTSZ結晶性アルミノ珪酸塩のペ
レツトを調製した。これは化学分析の結果0.01重量%以
下のNa2Oを含有していた。又、SiO2/Aのモル
比は28.9であつた。
Preparation Example 5: Preparation of Catalysts D, E and Catalyst F 60 g of the sodium type binderless TSZ crystalline aluminosilicate pellet obtained in Preparation Example 2 was used in an amount of 15% by weight of ammonium chloride solution of 5% by weight per 1 g of TSZ pellet. A total of 4 times of ion exchange treatment was carried out at 80 ° C. (each treatment time was 1.5 hours). Next, the ion exchange product was washed with water and dried at 110 ° C.
Binderless TSZ crystalline aluminosilicate pellets of the (NH 4 ) type were prepared. As a result of chemical analysis, it contained 0.01% by weight or less of Na 2 O. The SiO 2 / A 2 O 3 molar ratio was 28.9.

更に、上記のNH4型バインダーレスTSZを10g分取して
白金アンミン錯イオン(例えばPt(NH3)4 2+)を含む水溶
液に約70℃で約20時間浸漬し、次いで固体(ペレツ
ト)を分離して水で洗浄し、110℃で乾燥後600℃
において3時間焼成して白金を含有するバインダーレス
TSZ結晶性アルミノ珪酸塩粉末を調製した(以下、これ
を触媒Dと呼ぶ) 触媒Dを更に、大気圧下、100%水蒸気を用い、55
0℃で16時間の処理をすることにより、触媒Eを調製
した。
Further, 10 g of the above NH 4 type binderless TSZ was sampled and immersed in an aqueous solution containing a platinum ammine complex ion (eg Pt (NH 3 ) 4 2+ ) at about 70 ° C. for about 20 hours, and then solid (pellet). Separated, washed with water, dried at 110 ° C and then 600 ° C
Binderless containing platinum after firing for 3 hours
TSZ crystalline aluminosilicate powder was prepared (hereinafter referred to as catalyst D). Catalyst D was further prepared by using 100% steam under atmospheric pressure,
Catalyst E was prepared by treating at 0 ° C. for 16 hours.

触媒D調製における600℃において,3時間焼成する
以前にあらかじめ、大気圧下100%水蒸気を用い55
0℃で16時間の処理をすることにより、触媒Fを調製
した。
Before calcination for 3 hours at 600 ° C. in the preparation of catalyst D, 100% steam was used under atmospheric pressure beforehand.
Catalyst F was prepared by treating at 0 ° C. for 16 hours.

調製例6:触媒G,H及び触媒Iの調製 調製例3で得られたZSM−5ゼオライト粉末を調製例4
に記載した触媒Aの調製と同様にしてアンモニウムイオ
ン交換を行つた後、白金アンミン錯イオン(例えばPt(N
H3)4 2+)で処理し、白金(Pt)−アンモニウム(NH4)型のZ
SM−5粉末を調製した。アルミナバインダーを使用して
成形後、乾燥及び焼成を行い、白金(Pt)−水素(H)ZSM−
5を含む触媒を調製した。(以下、これを触媒Gと呼
ぶ) 触媒Gを更に、大気圧下、100%水蒸気を用い550
℃で16時間の処理をすることにより触媒Hを調製し
た。
Preparation Example 6: Preparation of Catalysts G, H and Catalyst I The ZSM-5 zeolite powder obtained in Preparation Example 3 was prepared as Preparation Example 4
After performing ammonium ion exchange in the same manner as in the preparation of the catalyst A described in 1., platinum ammine complex ions (for example, Pt (N
H 3 ) 4 2+ ) and treated with platinum (Pt) -ammonium (NH 4 ) type Z
SM-5 powder was prepared. After molding using an alumina binder, drying and firing are performed to obtain platinum (Pt) -hydrogen (H) ZSM-
A catalyst containing 5 was prepared. (Hereinafter, this is referred to as catalyst G.) Catalyst G is further subjected to 550 by using 100% steam under atmospheric pressure.
Catalyst H was prepared by treatment at 16 ° C. for 16 hours.

触媒G調製における、600℃において3時間焼成する
以前に、あらかじめ、大気圧下、100%水蒸気を用い
550℃で16時間の処理をすることにより触媒Iを調
製した。
Before calcination at 600 ° C. for 3 hours in the preparation of catalyst G, catalyst I was prepared in advance by treating with 100% steam at 550 ° C. for 16 hours under atmospheric pressure.

調製例7:触媒J及びKの調製 調製例2で得られたバインダーレスTSZ結晶性アルミノ
珪酸塩ペレツトを触媒Dの調製と同様にしてアンモニウ
ムイオン交換を行つた後、1規定Ni(NO3)2溶液を用いて
80℃において1時間処理を行い水洗し、乾燥した。6
00℃において3時間焼成する以前にあらかじめ、大気
圧下、100%水蒸気を用い、550℃で16時間の処
理をすることにより、0.85重量%のNiを含有するバイン
ダーレスTSZ結晶性アルミノ珪酸塩触媒を得た(以下、
これを触媒Jと呼ぶ)。
Preparation Example 7: Preparation of Catalysts J and K The binderless TSZ crystalline aluminosilicate pellet obtained in Preparation Example 2 was subjected to ammonium ion exchange in the same manner as in Preparation of Catalyst D, and then 1N Ni (NO 3 ). The two solutions were treated at 80 ° C. for 1 hour, washed with water and dried. 6
Binderless TSZ crystalline aluminosilicate catalyst containing 0.85% by weight of Ni was obtained by treating with 100% steam under atmospheric pressure for 16 hours at 550 ° C. before firing at 00 ° C. for 3 hours. Was obtained (below,
This is called catalyst J).

又、パラジウム(Pd)錯イオン(例えばPd(NH3)2+)を含
む水溶液を使用したこと以外は、触媒Jの調製方法と同
様にして、パラジウムを含有するバインダーレスTSZ結
晶性アルミノ珪酸塩触媒を得た(以下、これを触媒Kと
呼ぶ)。
Further, a binderless TSZ crystalline aluminosilicate containing palladium was prepared in the same manner as the catalyst J except that an aqueous solution containing a palladium (Pd) complex ion (for example, Pd (NH 3 ) 2+ ) was used. A catalyst was obtained (hereinafter referred to as catalyst K).

異性化反応試験(実施例1〜6、比較例1〜6) 前記した触媒A,B,C,D,E,F,G,H,I,
J,Kについて固定床流通式反応装置を用い、異性化反
応テストを行つた。実施例1〜3及び比較例1〜6に関
しては、トルエン0.7重量%、エチルベンゼン16.5重量
%、p−キシレン9.3重量%、m−キシレン59.8重量
%、o−キシレン13.7重量%のフイードを使用した。
又、実施例4〜6については、トルエン0.7重量%、エ
チルベンゼン13.4重量%、p−キシレン10.9重量%、m
−キシレン61.7重量%、o−キシレン13.3重量%のフイ
ードを使用した。
Isomerization reaction test (Examples 1 to 6, Comparative Examples 1 to 6) The catalysts A, B, C, D, E, F, G, H, I, and
For J and K, an isomerization reaction test was conducted using a fixed bed flow reactor. For Examples 1 to 3 and Comparative Examples 1 to 6, the feeds were 0.7 wt% toluene, 16.5 wt% ethylbenzene, 9.3 wt% p-xylene, 59.8 wt% m-xylene, and 13.7 wt% o-xylene.
Further, in Examples 4 to 6, toluene 0.7% by weight, ethylbenzene 13.4% by weight, p-xylene 10.9% by weight, m
A feed of 61.7% by weight of xylene and 13.3% by weight of o-xylene was used.

試験反応条件は温度300〜400℃、圧力17kg/cm2
G,WHSV 10W/H/W,原料液に対する水素の比(H2/C8)1.8
モル/モルであつた。各試験の条件及び反応結果を第1
表に示した。尚、WHSVは、ゼオライト含有量を基準に算
出した。
The test reaction conditions are a temperature of 300 to 400 ° C. and a pressure of 17 kg / cm 2.
G, WHSV 10W / H / W, ratio of hydrogen to raw material liquid (H 2 / C 8 ) 1.8
It was mol / mol. The conditions and reaction results of each test are first
Shown in the table. The WHSV was calculated based on the zeolite content.

又、触媒性能は次式により、算出し評価し結果を表−1
及び表−2にまとめた。
Moreover, the catalyst performance is calculated and evaluated by the following formula, and the results are shown in Table-1.
And Table-2.

2消費量(SCF/B)は、原料油及び生成油(液及びガス)
の組成分析における水素収支より算出された。
H 2 consumption (SCF / B) is the amount of feedstock and produced oil (liquid and gas)
It was calculated from the hydrogen balance in the composition analysis of.

X〕,〔X〕及び〔X〕は原料油、生成
油及び平衡時におけるキシレン3異性体中のp−キシレ
ン濃度。
[ P X] F , [ P X] P and [ P X] E are p-xylene concentrations in the feed oil, the produced oil and the xylene 3 isomer at equilibrium.

〔X〕及び〔X〕は原料油及び生成油中のキシレン
濃度。
[X] F and [X] P are xylene concentrations in the feedstock oil and the produced oil.

〔EB〕及び〔EB〕は原料油及び生成油中のエチ
ルベンゼン濃度。
[EB] F and [EB] P are ethylbenzene concentrations in the feed oil and the produced oil.

酸量,CO吸着量の比較 触媒D,E及びFについて、酸量及びCO吸着量を測定し
た。結果を以下に示す。
Comparison of acid amount and CO adsorption amount For catalysts D, E and F, the acid amount and CO adsorption amount were measured. The results are shown below.

酸量及びCO吸着量の測定は次の方法に依つた。 The following methods were used to measure the acid amount and CO adsorption amount.

(1)酸量の測定法 ピリジンの昇温脱離法(TPD法)により測定した。TPD法
に関しては、雑誌「触媒」Vol.21,79(1979)
に詳しく述べられている。ゼオライトにピリジンを吸着
後排気し、一定速度で昇温した際に脱離するピリジン量
をガスクロマトグラフで検知し、脱離した全体のピリジ
ン量より酸量をもとめた。
(1) Method for measuring acid amount It was measured by the temperature programmed desorption method (TPD method) of pyridine. Regarding the TPD method, magazine "Catalyst" Vol. 21, 79 (1979)
In detail. The amount of pyridine desorbed when the temperature was raised at a constant rate was detected by gas chromatography, and the amount of acid was determined from the amount of desorbed pyridine as a whole.

(2)CO吸着量 パルス法により測定した。Ptを担持したゼオライトサン
プルを水素で還元した後、室温で一定量のCOを注入し、
未吸着のCOをGCで検知し、注入したCO量との差からCO吸
着量を測定した。
(2) CO adsorption amount Measured by the pulse method. After reducing the Pt-supported zeolite sample with hydrogen, inject a fixed amount of CO at room temperature,
The unadsorbed CO was detected by GC, and the CO adsorption amount was measured from the difference with the injected CO amount.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−158150(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-56-158150 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】白金族金属成分を担持したゼオライト触媒
の製造の際白金族金属成分をイオン交換により担持する
工程の後、空気中で焼成する工程の前に水蒸気処理を行
うことを特徴とする炭素数8の芳香族炭化水素類の異性
化用白金族金属担持ゼオライト触媒の製造方法。
1. A method for producing a zeolite catalyst carrying a platinum group metal component, which comprises performing steam treatment after the step of carrying the platinum group metal component by ion exchange and before the step of firing in air. A method for producing a platinum group metal-supported zeolite catalyst for isomerization of aromatic hydrocarbons having 8 carbon atoms.
JP60210327A 1985-09-25 1985-09-25 Method for producing platinum group metal-supported zeolite catalyst Expired - Lifetime JPH0659406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60210327A JPH0659406B2 (en) 1985-09-25 1985-09-25 Method for producing platinum group metal-supported zeolite catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60210327A JPH0659406B2 (en) 1985-09-25 1985-09-25 Method for producing platinum group metal-supported zeolite catalyst

Publications (2)

Publication Number Publication Date
JPS6271546A JPS6271546A (en) 1987-04-02
JPH0659406B2 true JPH0659406B2 (en) 1994-08-10

Family

ID=16587583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60210327A Expired - Lifetime JPH0659406B2 (en) 1985-09-25 1985-09-25 Method for producing platinum group metal-supported zeolite catalyst

Country Status (1)

Country Link
JP (1) JPH0659406B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984606B2 (en) * 2004-02-19 2006-01-10 Lyondell Chemical Technology, L.P. Epoxidation catalyst
US8653315B2 (en) 2008-07-30 2014-02-18 King Fahd University Of Petroleum And Minerals Multiple zeolite catalyst and method of using the same for toluene disproportionation
US20100029467A1 (en) 2008-07-30 2010-02-04 Tomoyuki Inui Multiple zeolite catalyst

Also Published As

Publication number Publication date
JPS6271546A (en) 1987-04-02

Similar Documents

Publication Publication Date Title
EP1531931B1 (en) Catalyst for aromatization of alkanes, process of making and using thereof
EP0038141B1 (en) Preparation of aromatics processing catalyst, catalyst so prepared, and xylene isomerisation therewith
JPS607603B2 (en) Method for carrying out alkylation in the presence of heat-treated modified crystalline aluminosilicate catalysts
JPH0214286B2 (en)
CA1274853A (en) Production of aromatics from ethane and/or ethylene
EA010397B1 (en) Alkylation catalyst, its preparation and use
CN100473461C (en) Catalyst for C4 liquefied petroleum gas aromatization and preparing method thereof
JP2909591B2 (en) Mordenite-based catalysts containing at least one metal of group VIII and its use in isomerizing aromatic C lower 8 fractions
JPH0576453B2 (en)
US5789641A (en) Process for dismutation and/or transalkylation of alyklaromatic hydrocarbons in the presence of two zeolitic catalysts
JPH0659406B2 (en) Method for producing platinum group metal-supported zeolite catalyst
JPH0929101A (en) Catalyst based on modified zeolite mordenite containing cerium and use of said catalyst in isomerization of 8 c aromatic fraction
JP3302553B2 (en) Catalyst for converting heavy aromatics to light aromatics and method for converting the same
Bhaumik et al. Synthesis of MTW-type microporous material and its vanadium-silicate analogue using a new diquaternary ammonium cation as a template
EP2692438A1 (en) Catalyst composition for the production of aromatic hydrocarbons
JP3741455B2 (en) Hydrocarbon conversion catalyst and method for producing lower olefin and monocyclic aromatic hydrocarbon using the same
CA1262364A (en) Method and catalyst for converting propane to propylene
US5583081A (en) Copper-containing zeolite catalysts
JP3770564B2 (en) Aromatic hydrocarbon conversion catalyst and method for converting aromatic hydrocarbons using the conversion catalyst
JPH0656710A (en) Method for isomerizing xylene
JPH0627078B2 (en) Paraxylene production method
WO2002102747A1 (en) Process for producing adamantane or analogue
WO1993015835A1 (en) Catalyst and process for hydrocarbon dehydrogenation
US6037512A (en) Dismutation and/or transalkylation of alkylaromatic hydrocarbons using a mazzite type zeolite
Jana et al. Selective aromatization of C3 and C4 paraffins over modified encilite catalysts. 1. Qualitative study