JPH0380591A - Resistor paste and ceramic substrate - Google Patents

Resistor paste and ceramic substrate

Info

Publication number
JPH0380591A
JPH0380591A JP1215038A JP21503889A JPH0380591A JP H0380591 A JPH0380591 A JP H0380591A JP 1215038 A JP1215038 A JP 1215038A JP 21503889 A JP21503889 A JP 21503889A JP H0380591 A JPH0380591 A JP H0380591A
Authority
JP
Japan
Prior art keywords
powder
resistor paste
resistance
ceramic substrate
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1215038A
Other languages
Japanese (ja)
Inventor
Ryuichi Tanabe
隆一 田辺
Yoshiyuki Nishihara
芳幸 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1215038A priority Critical patent/JPH0380591A/en
Publication of JPH0380591A publication Critical patent/JPH0380591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To enable a stable resistor with improved reliability to be formed on a ceramic substrate and to obtain improved sintering properties, resistance against water, and a resistance drifting property when the substrate is left and high temperature by constituting a resistor paste including a specific amount of a glass powder and a conductive substance power. CONSTITUTION:ITO (0-100%), In2O3 (0-99.99%), and SnO2 doped with Sb+SnO2 (0-20%) are mixed as glass powders 20-70 and a conductive substance powder and an organic binder is added to it, which is kneaded, thus producing a paste. Then, a resistor paste is screen-printed at a specified position of resistance formed on an alumina substrate, which is dried and is fired in a nitrogen atmosphere, thus creating a circuit on a ceramic substrate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミックス基板用に適した抵抗体ペーストに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a resistor paste suitable for ceramic substrates.

[従来の技術] 従来混成集積回路における抵抗はセラミックス基板上又
は内部に銀(Ag)又はAg−パラジウム(Pd)導体
を形成し、その間に抵抗体ペーストを印刷し、空気等の
酸化性雰囲気中で約850〜900℃で焼成し、形成さ
れていた。
[Prior Art] Conventionally, a resistor in a hybrid integrated circuit is made by forming a silver (Ag) or Ag-palladium (Pd) conductor on or inside a ceramic substrate, printing a resistor paste between them, and placing the conductor in an oxidizing atmosphere such as air. It was formed by firing at about 850 to 900°C.

その際に使用されていた抵抗体ペーストは主としてRu
O2とガラスからなっていた。
The resistor paste used at that time was mainly Ru.
It consisted of O2 and glass.

しかし最近ではマイグレーション等の信頼性の面からA
g又はAg−Pd導体に代わり、銅(Cu)導体が使用
されるようになってきている。
However, recently, due to reliability issues such as migration,
Copper (Cu) conductors are increasingly being used to replace g or Ag--Pd conductors.

しかしCu導体は窒素等の非酸化性雰囲気中で焼成しな
いと酸化されてしまうため、非酸化性雰囲気で還元され
抵抗を形成しないRu0−は使用できない。
However, since Cu conductors are oxidized unless fired in a non-oxidizing atmosphere such as nitrogen, Ru0-, which is reduced in a non-oxidizing atmosphere and does not form a resistance, cannot be used.

そこで最近、LaB5粉末とガラス粉末、 SnO□ド
ープ品とガラス粉末、珪化物とガラス粉末等が提案され
ている。
Therefore, recently, LaB5 powder and glass powder, SnO□ doped product and glass powder, silicide and glass powder, etc. have been proposed.

しかし上記組み合わせは抵抗値や抵抗値温度係数(TC
R)がまだ十分に安定して得られないという欠点がある
However, the above combinations are limited by resistance value and temperature coefficient of resistance (TC).
There is a drawback that R) cannot yet be obtained in a sufficiently stable manner.

[発明の解決しようとする課題] 本発明は、窒素等の非酸化性雰囲気中で焼成が可能で、
抵抗値、抵抗値温度係数(TCP)が安定的に得られる
従来知られていなかった抵抗体ペースト及びセラミック
ス基板を新規に提供することを目的とするものである。
[Problems to be solved by the invention] The present invention can be fired in a non-oxidizing atmosphere such as nitrogen,
The object of the present invention is to provide a new resistor paste and ceramic substrate that are hitherto unknown and can stably obtain resistance values and temperature coefficients of resistance (TCP).

[課題を解決するための手段] 本発明は、前述の問題点を解決すべくなされたものであ
り、無機成分が重量%表示でガラス粉末20〜70とI
TOO〜100 、In、030〜99.99、sbを
ドープしたSnO*+SnO□O〜20からなる導電物
質粉末30〜80からなり、当該ガラス粉末は重量%表
示で実質的に5L0215〜60. Alao、 0〜
30、  MgO+CaO+SrO+Ba0 10〜6
0.  MgOO〜40゜CaOO〜40. SrOO
〜60. BaOO〜60. LL、0+NaaO+K
zO+C5zOo〜to、 pbo O〜10. Zn
OO〜40、 Zr0z+Ti0z O”10. Bz
Oi 5〜40からなる抵抗体ペースト等を提供するも
のである。
[Means for Solving the Problem] The present invention has been made to solve the above-mentioned problems.
TOO~100, In, 030~99.99, sb-doped SnO*+SnO□O~20 conductive material powder 30~80, and the glass powder is substantially 5L0215~60. Alao, 0~
30, MgO+CaO+SrO+Ba0 10~6
0. MgOO~40°CaOO~40. SrOO
~60. BaOO~60. LL, 0+NaaO+K
zO+C5zOo~to, pbo O~10. Zn
OO~40, Zr0z+Ti0z O”10. Bz
The present invention provides a resistor paste having an Oi of 5 to 40.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の抵抗体ペーストは単層又は多層焼成後の固化し
たアルミナ基板等のセラミックス基板、あるいはセラミ
ックス基板用のグリーンシート上に印刷等の方法により
形成した後、窒素雰囲気中等の非酸化性雰囲気中で焼成
されるものに適したものである。尚%は特に記載しない
限り、重量%を意味する。
The resistor paste of the present invention is formed by a method such as printing on a solidified ceramic substrate such as an alumina substrate after single-layer or multilayer firing, or a green sheet for a ceramic substrate, and then placed in a non-oxidizing atmosphere such as a nitrogen atmosphere. It is suitable for things that are fired in Note that % means weight % unless otherwise specified.

本発明の抵抗体ペーストは無機成分が実質的に ガラス粉末   20〜70% 導電物質粉末  30〜80% からなり、以下順次これらについて説明する。The resistor paste of the present invention contains substantially no inorganic components. Glass powder 20-70% Conductive material powder 30-80% These are explained below in sequence.

ガラス粉末は、低温度(例えば900℃以下)で充分に
流動性を有し、焼成時に上記導電物質粉末を覆って充分
に濡らし、かつ焼結するSiO□−B、03系ガラスの
ものが好ましい。
The glass powder is preferably SiO□-B, 03-based glass that has sufficient fluidity at low temperatures (e.g., 900° C. or lower) and covers and sufficiently wets the conductive material powder during firing and sinters. .

かかるガラス粉末の含有量が20%より少ないと導電物
質粉末を充分に濡らすことができないため、焼結層に空
孔が多くなり、本発明の抵抗体ペーストを焼成すること
によって得られる抵抗体の強度が弱くなり、又抵抗値の
安定性が低下するので好ましくなく、70%を越えると
、導電物質粉末間の接着が少なくなり、上記抵抗値が大
きくなりすぎ適当でない。
If the content of such glass powder is less than 20%, the conductive material powder cannot be sufficiently wetted, so that the sintered layer will have many pores, and the resistor obtained by firing the resistor paste of the present invention will suffer. This is not preferable because the strength becomes weak and the stability of the resistance value decreases, and if it exceeds 70%, the adhesion between the conductive material powders decreases and the resistance value becomes too large, which is not suitable.

本発明にかかるガラス粉末は上記範囲中25〜65%の
範囲が望ましい。
The glass powder according to the present invention preferably has a content of 25 to 65% of the above range.

一方、導電物質粉末としては、 SnをInzO3にドープしたもの(以下ITOという
)       0〜100% IntL        O〜99.99%sbをドー
プした5no2+ Sno□(]〜20%(Sbをドー
プしたSnO□0〜20%、SnO□0〜20%)から
なるものが好ましい。
On the other hand, the conductive material powders include InzO3 doped with Sn (hereinafter referred to as ITO), 0~100% IntLO~99.99%sb-doped 5no2+ Sno□(]~20% (Sb-doped SnO□) 0 to 20% and SnO□0 to 20%) is preferable.

該In20g粉末は99.99%を超えると、抵抗値調
整の効果が少なく好ましくなく、sbをドープしたSn
O□+SnO□粉末は20%を超えると抵抗値が大きく
なり好ましくない。望ましくは。
If the In 20g powder exceeds 99.99%, the effect of adjusting the resistance value will be small and undesirable, and the sb-doped Sn
If the content of O□+SnO□ powder exceeds 20%, the resistance value increases, which is not preferable. Preferably.

ITO粉末    0〜100% InJ−粉末   0〜99.9% sbをドープした5nOz + Sno□粉末0〜15
%特に望ましくは、 ITO粉末    0〜100% InzOs粉末   0〜99% sbをドープしたSnO□+SnO□粉末0〜10%で
ある。
ITO powder 0-100% InJ-powder 0-99.9% sb doped 5nOz + Sno□ powder 0-15
Particularly preferred are: ITO powder 0-100% InzOs powder 0-99% sb-doped SnO□+SnO□ powder 0-10%.

上記導電物質粉末を使用する理由は、かかる物質は導電
率が高い、すなわち抵抗率が低い特性を有するため、導
電物質とガラスとの複合体である本発明にかかる抵抗体
の抵抗値を目標に合致させることが可能であるためであ
る。
The reason for using the above-mentioned conductive material powder is that such a material has a property of high conductivity, that is, low resistivity. This is because it is possible to make them match.

ITOはドープしないIn20iに比較して抵抗値が低
くなり、ドープ量が多くなり過ぎると抵抗値が高くなる
ITO has a lower resistance value than undoped In20i, and when the amount of doping is too large, the resistance value increases.

上記ドープ量は5no2の酸化物重量換算でIn20a
 80〜99.99%に対して5nOz 0.01〜2
0%が適正な範囲であり、望ましい範囲は0.1〜15
%、特に望ましい範囲は1〜lO%である。
The above doping amount is In20a in terms of 5no2 oxide weight.
5nOz 0.01-2 for 80-99.99%
0% is an appropriate range, and a desirable range is 0.1 to 15
%, a particularly desirable range is 1 to 10%.

sbをSnO□にドープしたものは、ドープしないSn
O□に比較して、抵抗値が低くなり、ドープ量が多くな
り過ぎると抵抗値が高くなる。上記ドープ量はSb20
gの酸化物換算で0〜20%が適正な範囲であり、望ま
しい範囲は0.1−15%、特に望ましい範囲は1〜l
O%である。
sb doped into SnO□, undoped Sn
Compared to O□, the resistance value is lower, and if the amount of doping is too large, the resistance value becomes high. The above doping amount is Sb20
An appropriate range is 0 to 20% in terms of g of oxide, a desirable range is 0.1 to 15%, and a particularly desirable range is 1 to 1
It is 0%.

本発明にかかるガラスの粒度は、小さすぎると上記抵抗
値が大きくなりすぎ好ましくなく、大きすぎると、ガラ
スを充分に濡らすことができず、焼結層に空孔が多くな
り好ましくない。
If the particle size of the glass according to the present invention is too small, the above-mentioned resistance value becomes too large, which is undesirable. If it is too large, the glass cannot be sufficiently wetted, and the sintered layer has many pores, which is not preferable.

平均粒径は0.5〜6μmが必要な範囲であり、望まし
い範囲は1〜5μmである。
The required average particle diameter is 0.5 to 6 μm, and the desirable range is 1 to 5 μm.

一方本発明にかかる導電物質粉末の粒度は小さすぎると
抵抗値が大きくなり過ぎ好ましくなく、大きすぎるとセ
ラミックス基板上で不均一になり、抵抗値のバラツキが
大きくなるので好ましくない。平均粒径は0.01〜5
μmの範囲が必要な範囲であり、望ましい範囲は0.0
5〜3μmである。
On the other hand, if the particle size of the conductive material powder according to the present invention is too small, the resistance value will become too large, which is undesirable, and if it is too large, the particle size will become non-uniform on the ceramic substrate, resulting in large variations in the resistance value, which is not preferable. Average particle size is 0.01-5
The required range is μm, and the desirable range is 0.0
It is 5 to 3 μm.

本発明にかかるガラス粉末は、実質的にSiO□   
     15〜60%A1□030〜30% MgO+CaO+SrO+Ba0  10〜60%(M
gO(]〜40.CaOO〜40.SrOO〜60゜B
aOO〜60) Li20+NaaO+に20+Cs2Oo〜i0%pb
o                 o〜10%Zn
OO〜40% Zr0z+Ti0z           O〜10%
Bias               5〜40%か
らなり、順次これらについて説明する。
The glass powder according to the present invention is substantially SiO□
15~60%A1□030~30% MgO+CaO+SrO+Ba0 10~60% (M
gO(]~40.CaOO~40.SrOO~60°B
aOO~60) 20+Cs2Oo~i0%pb for Li20+NaaO+
o o~10%Zn
OO~40% Zr0z+Ti0z O~10%
It consists of 5 to 40% bias, and these will be explained in order.

かかる組成において、SiO□はガラスのネットワーク
フォーマ−であり、15%より少ないと、軟化点が低く
なりすぎ耐熱性が低下し、再焼成時に変形を生じ易くな
るので好ましくない。−方5iOaが60%より多いと
、軟化点が高くなり過ぎ、焼成時にガラスの流動が悪く
なり、導電物質粉末を覆って濡らすことができず、焼結
層の空孔が多くなりすぎ、抵抗の安定性が悪くなるので
適当でない。望ましくは、20〜55%の範囲である。
In such a composition, SiO□ is a glass network former, and if it is less than 15%, the softening point becomes too low, the heat resistance decreases, and deformation is likely to occur during re-firing, which is not preferable. - If 5iOa is more than 60%, the softening point will be too high, the flow of the glass will be poor during firing, it will not be possible to cover and wet the conductive material powder, the sintered layer will have too many pores, and the resistance will increase. This is not appropriate as it will result in poor stability. Desirably, it is in the range of 20 to 55%.

All0.は必須ではないが、添加することにより、耐
湿性の向上に効果がある。30%を越えるとガラスの軟
化温度が高くなり、焼結性が悪くなり適当でない。望ま
しくは25%以下である。
All0. Although not essential, its addition is effective in improving moisture resistance. If it exceeds 30%, the softening temperature of the glass will become high and the sinterability will deteriorate, making it unsuitable. It is preferably 25% or less.

MgO+CaO+SrO+BaOはガラス粉末製造時の
溶解性を向上さすため及び熱膨張係数を調整する目的で
添加する。10%より少ないと上記の溶解性が充分に向
上しないと共にガラス製造時に失透を生じやすく、60
%を越えると熱膨張係数が大きくなりすぎ、いずれも適
当でない。望ましくは、15〜55%の範囲である。
MgO+CaO+SrO+BaO is added for the purpose of improving solubility during glass powder production and adjusting the thermal expansion coefficient. If it is less than 10%, the above-mentioned solubility will not be improved sufficiently, and devitrification will easily occur during glass production.
%, the coefficient of thermal expansion becomes too large, and neither is suitable. Desirably, it is in the range of 15 to 55%.

また上記MgO+CaO+SrO+BaOの内のMgO
、CaOはそれぞれ40%以上であると、熱膨張係数が
大きくなりすぎ、不適当である。望ましい範囲は0〜3
5%である。上記MgO+CaO+SrO+BaOの内
のSrO,BaOはそれぞれ60%以上であると熱膨張
係数が大きくなりすぎ、不適当である。望ましい範囲は
それぞれ0〜55%である。
Also, MgO in the above MgO + CaO + SrO + BaO
, CaO of 40% or more, the coefficient of thermal expansion becomes too large, which is inappropriate. Desirable range is 0-3
It is 5%. If SrO and BaO in the MgO+CaO+SrO+BaO are each 60% or more, the coefficient of thermal expansion becomes too large, which is inappropriate. The desirable range is 0-55% for each.

LizO+NazO+KzO+C5zOは必須ではない
が、添加することによりガラスの溶解性の向上を図るこ
とができる。10%を越えると、熱膨張係数が大きくな
りすぎ、基板とのマツチングが悪くなり、焼成後厚膜に
クラックが入る可能性が大となり、適当でない。望まし
くは8%以下である。
Although LizO+NazO+KzO+C5zO is not essential, the solubility of the glass can be improved by adding it. If it exceeds 10%, the coefficient of thermal expansion becomes too large, the matching with the substrate becomes poor, and the possibility of cracking in the thick film after firing increases, which is not suitable. It is preferably 8% or less.

PbOは必須ではないが、ガラスのフラックス成分とし
ての効果がある、10%を越えると抵抗値が不安定にな
り適当でない。望ましくは5%以下である。
Although PbO is not essential, it has an effect as a flux component of the glass, and if it exceeds 10%, the resistance value becomes unstable and is not suitable. It is preferably 5% or less.

ZnOは必須ではないが、ガラスの溶解性の改善のため
に40%まで添加することが可能であり、35%以下が
望ましい範囲である。
Although ZnO is not essential, it can be added up to 40% to improve the solubility of the glass, with a desirable range of 35% or less.

ZrO□+TiO□は必須ではないが、添加することに
より抵抗体の耐湿信頼性を向上さすことができる。添加
量は10%までが可能であるが、望ましくは7%以下で
ある。
Although ZrO□+TiO□ is not essential, adding it can improve the moisture resistance reliability of the resistor. The amount added can be up to 10%, but is preferably 7% or less.

BzOsはフラックス成分として用いるが、5%より少
ないと軟化点が高くなり、焼結不足となり、焼結層に空
孔が多くなりすぎる。また40%を越えるとガラスの耐
水性が低下し適当でない。望ましくは7〜35%の範囲
である。
BzOs is used as a flux component, but if it is less than 5%, the softening point will be high, resulting in insufficient sintering, and the sintered layer will have too many pores. Moreover, if it exceeds 40%, the water resistance of the glass decreases and is not suitable. It is preferably in the range of 7 to 35%.

以上記載した望ましい範囲についてまとめると以下の通
りとなる。
The desirable ranges described above are summarized as follows.

SiO□ A1□O3 MgO+CaO+SrO+BaO (Mg0 0〜35. CaO BaO(1〜55) LizO+NazO+KgO+Cs2O(1〜8%pb
o             o〜5%Zn(10〜3
5% ZrO2+Ti0z          (1〜7%B
、Oa             7〜35%本発明の
抵抗体ペーストの組成物は、各粉末が前記割合に混合さ
れているものであり、以下本発明の抵抗体ペーストの作
製方法とそれを使用した厚膜回路の製造の一例について
説明する。
SiO□ A1□O3 MgO+CaO+SrO+BaO (Mg0 0~35. CaO BaO (1~55) LizO+NazO+KgO+Cs2O (1~8%pb
o o~5%Zn(10~3
5% ZrO2+Ti0z (1~7%B
, Oa 7 to 35% The composition of the resistor paste of the present invention is one in which each powder is mixed in the above ratio.The method for producing the resistor paste of the present invention and the thick film circuit using the same are described below. An example of manufacturing will be described.

上記本発明の抵抗体ペーストの組成物に有機バインダー
、溶剤からなる有機ビヒクルを添加し、乾燥し、ペース
ト状とする。この有機バインダーとしては、エチルセル
ロース、アクリル樹脂、エチレン−酢酸ビニル共重合樹
脂、ポリ20〜55% 0〜25% 15〜55% SrOO〜55゜ 0〜35゜ α−メチルスチレン樹脂、溶剤としては、α−テルピネ
オール、ブチルカルピトールアセテート、ブチルカルピ
トール、 2,2.4−トリメチルペンタンジオ−ルー
1,3.−モノイソブチレート、ジエチレングリコール
ジ−n−ブチルエーテル、等が通常使用できる。さらに
分散剤として界面活性剤を添加してもよい。
An organic vehicle consisting of an organic binder and a solvent is added to the composition of the resistor paste of the present invention and dried to form a paste. The organic binder includes ethyl cellulose, acrylic resin, ethylene-vinyl acetate copolymer resin, poly 20-55% 0-25% 15-55% SrOO-55° 0-35° α-methylstyrene resin, and the solvent includes: α-terpineol, butyl carpitol acetate, butyl carpitol, 2,2,4-trimethylpentanedio-ru 1,3. -monoisobutyrate, diethylene glycol di-n-butyl ether, etc. are commonly used. Furthermore, a surfactant may be added as a dispersant.

次いで焼成後の固化したアルミナ基板、又はガラスセラ
ミックス基板等のセラミックス基板上に導体を作成する
ために、 Cuペーストを所定の回路に印刷、乾燥後、
酸素濃度20 ppm以下の窒素雰囲気中で850〜9
50℃、5〜20分で焼成する。この焼成条件の望まし
い範囲は880〜920℃、7〜15分である。次いで
抵抗を設けるべき所定の箇所に上記本発明の抵抗体ペー
ストを印刷した後乾燥させ、上記窒素雰囲気中。
Next, in order to create a conductor on a solidified alumina substrate after firing or a ceramic substrate such as a glass-ceramic substrate, Cu paste is printed on a predetermined circuit, and after drying,
850-9 in a nitrogen atmosphere with an oxygen concentration of 20 ppm or less
Bake at 50°C for 5 to 20 minutes. The preferred range of firing conditions is 880 to 920°C and 7 to 15 minutes. Next, the resistor paste of the present invention is printed on a predetermined location where a resistor is to be provided, and then dried in the nitrogen atmosphere.

850〜950℃、5〜20分で焼成する。この焼成条
件の望ましい範囲は880で〜920℃ 7〜15分で
ある。
Bake at 850-950°C for 5-20 minutes. The preferred range of firing conditions is 880° C. to 920° C. for 7 to 15 minutes.

多層セラミックス基板−括焼成の場合は、上記Cuペー
ストと本発明の抵抗体ペーストを印刷したセラミックス
基板用等のセラミックスのグリーンシートを熱圧着後積
層し、上記窒素雰囲気中で850〜950℃、数分〜数
時間で一括焼成し、多層セラミックス基板を作成する。
In the case of bulk firing of multilayer ceramic substrates, green sheets of ceramics such as those for ceramic substrates printed with the Cu paste and the resistor paste of the present invention are laminated after thermocompression bonding, and heated at 850 to 950°C for several seconds in the nitrogen atmosphere. A multilayer ceramic substrate is created by batch firing in minutes to several hours.

尚本発明の抵抗体ペーストには、着色のために金属酸化
物、耐熱性無機顔料等の着色顔料を0〜5%添加するこ
とができる。
Note that 0 to 5% of a coloring pigment such as a metal oxide or a heat-resistant inorganic pigment can be added to the resistor paste of the present invention for coloring.

また、ガラス溶解時に清澄剤、溶融促進剤として硝酸塩
、亜ヒ酸、酸化アンチモン、硫酸塩、フッ化物、塩化物
等を0〜5%添加することができる。
Further, during glass melting, 0 to 5% of nitrates, arsenous acid, antimony oxide, sulfates, fluorides, chlorides, etc. can be added as clarifying agents and melting accelerators.

[実施例] 本発明にかかるガラス粉末の各原料を酸化物換算で表−
lに示す割合で調合し、これを白金ルツボに入れ、13
50〜1500℃で2〜3時間撹拌しつつ加熱撹拌した
。次いでこれを水砕又はフレーク状とし、更に粉砕装置
により平均粒径0.5〜6μmになるように粉砕し、ガ
ラス粉末を製造した。次いで導電物質として表−1に示
す目標組成のSnドープInzOi (ITO)粉末と
目標組成比のInzOs粉末とsbドープ5no2粉末
とSnO□粉末の混合粉末を平均粒径0.01〜5μm
になるように調整した。SnドープInzO8(ITO
)粉末は次の様にして製造した。
[Example] Each raw material of the glass powder according to the present invention is shown in terms of oxides.
Blend in the proportion shown in l, place this in a platinum crucible,
The mixture was heated and stirred at 50 to 1500°C for 2 to 3 hours. Next, this was pulverized into water or flakes, and further pulverized using a pulverizer to an average particle size of 0.5 to 6 μm to produce glass powder. Next, as a conductive material, a mixed powder of Sn-doped InzOi (ITO) powder with the target composition shown in Table 1, InzOs powder with the target composition ratio, sb-doped 5no2 powder, and SnO□ powder was mixed with an average particle size of 0.01 to 5 μm.
I adjusted it so that Sn-doped InzO8 (ITO
) The powder was produced as follows.

InJa粉末80〜99.99%と5nC1z 0.0
1〜20%を500〜1500℃で焼成し、焼成物を粉
砕して粉末を製造した。
InJa powder 80-99.99% and 5nC1z 0.0
1 to 20% was calcined at 500 to 1500°C, and the calcined product was pulverized to produce powder.

次いでこれらのガラス粉末と上記導電物質粉末を表−1
に記載の割合で混合し、本発明の抵抗体ペーストにかか
る組成物を得た。
Next, these glass powders and the above-mentioned conductive material powders are shown in Table-1.
were mixed in the proportions described in , to obtain a composition for the resistor paste of the present invention.

次いでこれらに有機バインダーとしてエチルセルロース
、溶剤としてα−テルピネオールからなる有機ビヒクル
を添加し、混練し、粘度が30X 10’ cpsのペ
ーストを作成した。次いで固化したアルミナ基板上に本
発明にかかる抵抗の電極としてCuペーストを所定の回
路にスクリーン印刷、乾燥し、酸素濃度20 ppm以
下の窒素雰囲気中900℃、10分で焼成した。
Next, an organic vehicle consisting of ethyl cellulose as an organic binder and α-terpineol as a solvent was added and kneaded to prepare a paste having a viscosity of 30×10′ cps. Next, on the solidified alumina substrate, a Cu paste was screen printed as a resistor electrode according to the present invention in a predetermined circuit, dried, and fired at 900° C. for 10 minutes in a nitrogen atmosphere with an oxygen concentration of 20 ppm or less.

次いで抵抗所定箇所に上記抵抗体ペーストな200メツ
シユスクリーンでスクリーン印刷、乾燥し、酸素濃度2
0 ppm以下の窒素雰囲気中で900℃、10分で焼
成した。焼成膜厚は約15μmであった。
Next, the above resistor paste was screen printed on a predetermined location of the resistor using a 200 mesh screen, dried, and the oxygen concentration was 2.
It was fired at 900° C. for 10 minutes in a nitrogen atmosphere of 0 ppm or less. The fired film thickness was about 15 μm.

このようにしてセラミック基板上に回路を作成した。こ
の回路について、抵抗値、抵抗値温度係数(TCR)、
高温放置による抵抗値ドリフトを測定した。これらの結
果を表−1に記載した。表−1から明らかなように本発
明にかかる抵抗体ペーストは抵抗特性に優れ、厚膜回路
用抵抗体ペーストとして十分使用できる特性を有するこ
とが認められる。
In this way, a circuit was created on the ceramic substrate. Regarding this circuit, the resistance value, temperature coefficient of resistance (TCR),
The resistance value drift due to high temperature storage was measured. These results are listed in Table-1. As is clear from Table 1, it is recognized that the resistor paste according to the present invention has excellent resistance characteristics and has characteristics that can be used sufficiently as a resistor paste for thick film circuits.

比較例として本発明にかかる抵抗体ペースト以外のもの
についても同様の評価を行ったので同時に表−1に記載
した。
As a comparative example, similar evaluations were conducted on materials other than the resistor paste according to the present invention, which are also listed in Table 1.

なお各特性の測定方法は次の通りである。The method for measuring each characteristic is as follows.

i)抵抗値及び抵抗値温度係数(TCR)25℃ −5
5℃、 + 125℃の抵抗値(Rzs。
i) Resistance value and temperature coefficient of resistance (TCR) 25℃ -5
Resistance value at 5℃, +125℃ (Rzs.

R−ss、R+□、)を恒温槽中で抵抗計により測定し
、次の式により算出した。
R-ss, R+□,) was measured with a resistance meter in a constant temperature bath, and calculated using the following formula.

ii)高温放置による抵抗値ドリフト 150℃の恒温槽中で100時間放置し、次の式により
算出した。
ii) Resistance value drift due to high temperature storage The resistance value was calculated by the following formula after being left in a constant temperature bath at 150° C. for 100 hours.

上式において R1゜。、= 100時間後の抵抗値 Ro=抵抗の初期値 [発明の効果] 本発明の抵抗体ペーストは窒素雰囲気等の非酸化性雰囲
気中で焼成が可能で安定した信頼性の高い抵抗をセラミ
ックス基板上に形成可能であるとともに焼結性、耐水性
がよく、特に高温放置による抵抗値ドリフト特性に優れ
ているという効果も認められる。
In the above formula, R1°. , = Resistance value after 100 hours Ro = Initial value of resistance [Effects of the invention] The resistor paste of the present invention can be fired in a non-oxidizing atmosphere such as a nitrogen atmosphere, and provides a stable and reliable resistor to a ceramic substrate. It is also recognized that it can be formed on top of the substrate, has good sinterability and water resistance, and is particularly excellent in resistance value drift characteristics when left at high temperatures.

Claims (2)

【特許請求の範囲】[Claims] (1)無機成分が重量%表示でガラス粉末20〜70と
ITO 0〜100、In_2O_3 0〜99.99
、SbをドープしたSnO_2+SnO_2 0〜20
からなる導電物質粉末30〜80からなり、当該ガラス
粉末は重量%表示で実質的にSiO_2 15〜60,
Al_2O_30〜30,MgO+CaO+SrO+B
aO 10〜60,MgO 0〜40,CaO 0〜4
0,SrO 0〜60,BaO 0〜60,Li_2O
+Na_2O+K_2O+Cs_2O 0〜10,Pb
O 0〜10,ZnO 0〜40,ZrO_2+TiO
_2 0〜10,B_2O_2 5〜40からなる抵抗
体ペースト。
(1) Inorganic components expressed in weight%: glass powder 20-70, ITO 0-100, In_2O_3 0-99.99
, Sb-doped SnO_2+SnO_2 0-20
The glass powder consists of 30 to 80% conductive material powder consisting of SiO_2 of 15 to 60% by weight.
Al_2O_30~30, MgO+CaO+SrO+B
aO 10-60, MgO 0-40, CaO 0-4
0, SrO 0-60, BaO 0-60, Li_2O
+Na_2O+K_2O+Cs_2O 0-10, Pb
O 0~10, ZnO 0~40, ZrO_2+TiO
Resistor paste consisting of _2 0-10, B_2O_2 5-40.
(2)第1項記載の抵抗体ペーストを使用して焼成され
たセラミックス基板。
(2) A ceramic substrate fired using the resistor paste described in item 1.
JP1215038A 1989-08-23 1989-08-23 Resistor paste and ceramic substrate Pending JPH0380591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1215038A JPH0380591A (en) 1989-08-23 1989-08-23 Resistor paste and ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1215038A JPH0380591A (en) 1989-08-23 1989-08-23 Resistor paste and ceramic substrate

Publications (1)

Publication Number Publication Date
JPH0380591A true JPH0380591A (en) 1991-04-05

Family

ID=16665728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1215038A Pending JPH0380591A (en) 1989-08-23 1989-08-23 Resistor paste and ceramic substrate

Country Status (1)

Country Link
JP (1) JPH0380591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103372A (en) * 2006-10-17 2008-05-01 Murata Mfg Co Ltd Method of adjusting specific resistance of thick-film resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103372A (en) * 2006-10-17 2008-05-01 Murata Mfg Co Ltd Method of adjusting specific resistance of thick-film resistor

Similar Documents

Publication Publication Date Title
JPH03116801A (en) Resistor paste
KR20060050917A (en) Thick-film resistor paste and thick-film resistor
JP2001222912A (en) Conductive paste and ceramic electronic part
JPH03150234A (en) Resistor paste and ceramic substrate
JP2011084447A (en) Non-lead glass and composite material
JP5674235B2 (en) Bismuth-based lead-free glass and composite materials
JP2011079718A (en) Bismuth-based non-lead glass and composite material
JPH03131546A (en) Resistor paste and ceramic substrate
JP2006108611A (en) Glass composition for resistor paste, resistor paste employing it, resistor, and electronic component
JP4221417B2 (en) Thick film resistor paste, thick film resistor and electronic component
JPH0380591A (en) Resistor paste and ceramic substrate
JP2005244115A (en) Resistor paste, resistor and electronic part
JPH0374005A (en) Resistor paste and ceramics substrate
JPH06239646A (en) Coating glass composition and paste prepared by using the same
JPH0725568B2 (en) Glass composition and insulator using the same
JPH03131545A (en) Resistor paste and ceramics substrate
JPH038302A (en) Resistor paste and ceramic substrate
JP3800614B1 (en) Thick film resistor paste and thick film resistor
JPH03183640A (en) Resistor paste and ceramic substrate
JPH0416419B2 (en)
JPH02288106A (en) Resistor paste and ceramics substrate
JPH02288203A (en) Resistor paste and ceramic substrate
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JPH04142001A (en) Resistance paste and ceramic substrate
WO2021221174A1 (en) Thick film resistor paste, thick film resistor, and electronic component