JPH03183640A - Resistor paste and ceramic substrate - Google Patents

Resistor paste and ceramic substrate

Info

Publication number
JPH03183640A
JPH03183640A JP22796290A JP22796290A JPH03183640A JP H03183640 A JPH03183640 A JP H03183640A JP 22796290 A JP22796290 A JP 22796290A JP 22796290 A JP22796290 A JP 22796290A JP H03183640 A JPH03183640 A JP H03183640A
Authority
JP
Japan
Prior art keywords
powder
glass powder
resistor paste
resistance
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22796290A
Other languages
Japanese (ja)
Inventor
Ryuichi Tanabe
隆一 田辺
Yoshiyuki Nishihara
芳幸 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPH03183640A publication Critical patent/JPH03183640A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Inorganic Insulating Materials (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To enable firing in a nonoxidizing atmosphere of nitrogen, etc., and to obtain stable resistance and a stable temp. coefft. of resistance by blending glass powder having a specified compsn. with metal diboride powder as an electrically conductive substance in a specified ratio and impasting the blend. CONSTITUTION:This resistor paste is composed practically of 30-99.5wt.% glass powder and 0.5-70wt.% metal diboride powder as inorg. components and the compsn. of the glass powder contains at least one of Ta2O5 and Nb2O5. The glass powder is preferably SiO2-B2O3 glass powder having satisfactory flowability at such a low temp. as <=900 deg.C, coating and well wetting the metal diboride powder as an electrically conductive substance at the time of firing and performing sintering. The pref. average particle size of the glass powder is 1-5mum and that of the metal diboride powder is 0.05-3mum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミックス基板に適した抵抗体ペースト及び
それを用いたセラミックス基板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resistor paste suitable for ceramic substrates and a ceramic substrate using the same.

[従来の技術] 従来混成集積回路における抵抗はセラミックス基板上又
は内部に銀(Ag)又はAg−パラジウム(Pd)導体
を形成し、その間に抵抗体ペーストを印刷し、空気等の
酸化性雰囲気中で約850〜900℃で焼成し、形成さ
れていた。
[Prior Art] Conventionally, a resistor in a hybrid integrated circuit is made by forming a silver (Ag) or Ag-palladium (Pd) conductor on or inside a ceramic substrate, printing a resistor paste between them, and placing the conductor in an oxidizing atmosphere such as air. It was formed by firing at about 850 to 900°C.

その際に使用されていた抵抗体ペーストは主としてRu
O□とガラスからなっていた。
The resistor paste used at that time was mainly Ru.
It was made of O□ and glass.

しかし最近ではマイグレーション等の信頼性の面からA
g又はAlg−Pd導体に代わり、銅(Cu)導体が使
用されるようになってきている。
However, recently, due to reliability issues such as migration,
Copper (Cu) conductors are increasingly being used to replace g or Alg-Pd conductors.

しかしCu導体は窒素等の非酸化性雰囲気中で焼成しな
いと酸化されてしまうため、非酸化性雰囲気で還元され
抵抗を形成しないRLI02は使用できない。
However, since the Cu conductor is oxidized unless it is fired in a non-oxidizing atmosphere such as nitrogen, RLI02, which is reduced in a non-oxidizing atmosphere and does not form a resistance, cannot be used.

そこで最近、LaBa粉末とガラス粉末、 5n02ド
一プ品とガラス粉末、珪化物とガラス粉末等が提案され
ている。
Therefore, recently, LaBa powder and glass powder, 5n02 doped product and glass powder, silicide and glass powder, etc. have been proposed.

しかし上記組み合わせは抵抗値や抵抗値温度いという欠
点がある。
However, the above combination has the disadvantage that the resistance value and the resistance value temperature are low.

[発明の解決しようとする課題] 本発明は、窒素等の非酸化性雰囲気中で焼成が可能で、
抵抗値、抵抗値温度係数(TCR)が安定的に得られる
従来知られていなかった抵抗体ペースト及びセラミック
ス基板を新規に提供することを目的とするものである。
[Problems to be solved by the invention] The present invention can be fired in a non-oxidizing atmosphere such as nitrogen,
The object of the present invention is to provide a new resistor paste and ceramic substrate that are hitherto unknown and can stably obtain resistance values and temperature coefficients of resistance (TCR).

[課題を解決するための手段] 本発明は、前述の問題点を解決すべくなされたものであ
り、無機成分が重量%表示で実質的に、ガラス粉末30
〜99.5と金属二硼化物粉末0.5〜70かうなり、
該ガラス粉末の組成中にTaxes、 NbzOsのう
ち少なくとも一種以上を含有してなることを特徴とする
抵抗体ペースト等を提供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and the inorganic component is substantially 30% by weight of glass powder.
~99.5 and metal diboride powder 0.5 to 70,
The present invention provides a resistor paste or the like characterized in that the glass powder contains at least one of Taxes and NbzOs.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の抵抗体ペーストは単層又は多層セラミックス基
板に使用するのに適したものであり、焼成後の固化した
アルミナ基板等のセラミックス基板、あるいはセラミッ
クス基板用のグリーンシート上に印刷等の方法により形
成した後、窒素雰囲気中等の非酸化性雰囲気中で焼成さ
れるものである。尚%は特に記載しない限り、重量%を
意味する。
The resistor paste of the present invention is suitable for use in single-layer or multi-layer ceramic substrates, and can be applied to ceramic substrates such as solidified alumina substrates after firing, or by printing or other methods on green sheets for ceramic substrates. After forming, it is fired in a non-oxidizing atmosphere such as a nitrogen atmosphere. Note that % means weight % unless otherwise specified.

本発明の抵抗体ペーストは無機成分が実質的に ガラス粉末   30〜99.5% 導電物質粉末  0.5〜70% かうなり、以下順次これらについて説明する。The resistor paste of the present invention contains substantially no inorganic components. Glass powder 30-99.5% Conductive material powder 0.5-70% These will be explained in turn below.

ガラス粉末は、低温度(例えば900℃以下)で充分に
流動性を有し、焼成時に上記導電物質粉末を覆って充分
に濡らし、かつ焼結するSiO□−8203系ガラスの
ものが好ましい。
The glass powder is preferably SiO□-8203 glass, which has sufficient fluidity at low temperatures (for example, 900° C. or lower) and covers and sufficiently wets the conductive material powder during firing and sinters.

かかるガラス粉末の含有量が30%より少ないと導電物
質粉末を充分に濡らすことができないため、焼結層に空
孔が多くなり、本発明の抵抗体ペーストを焼成すること
によって得られる抵抗体の強度が弱くなり、又抵抗値の
安定性が低下するので好ましくなく、99.5%を越え
ると、導電物質粉末間の接着が少なくなり、上記抵抗値
が大きくなりすぎ適当でない。
If the content of such glass powder is less than 30%, it will not be possible to sufficiently wet the conductive material powder, and the sintered layer will have many pores, which will reduce the resistance of the resistor obtained by firing the resistor paste of the present invention. This is not preferable because the strength becomes weak and the stability of the resistance value decreases, and if it exceeds 99.5%, the adhesion between the conductive material powders decreases and the resistance value becomes too large, which is not suitable.

本発明にかかるガラス粉末は上記範囲中40〜98%の
範囲が望ましい。
The glass powder according to the present invention preferably has a content of 40 to 98% of the above range.

一方導電物質粉末としては、窒素雰囲気中の焼成で安定
でかつ良好な電気伝導性を有する必要がある。又、良好
な分散性を得るため均一な微粉末となり、しかも900
℃で自己焼結しないためには高融点である必要がある。
On the other hand, the conductive material powder must be stable and have good electrical conductivity when fired in a nitrogen atmosphere. In addition, in order to obtain good dispersibility, it becomes a uniform fine powder, and moreover, it has a 900%
It needs to have a high melting point to avoid self-sintering at ℃.

金属二硼化物はこのような特性に優れており導電性材料
として望ましい。中でも特に望ましいのはIV a族、
A1及びNbの二硼化物で、最も望ましくはZrBzで
ある。
Metal diborides have excellent properties such as these and are desirable as conductive materials. Among them, particularly desirable are group IV a,
A diboride of A1 and Nb, most preferably ZrBz.

本発明にかかるガラスの粒度は、小さすぎると上記抵抗
値が大きくなりすぎ好ましくなく、大きすぎると、ガラ
スを充分に濡らすことができず、焼結層に空孔が多くな
り好ましくない。
If the particle size of the glass according to the present invention is too small, the above-mentioned resistance value becomes too large, which is undesirable. If it is too large, the glass cannot be sufficiently wetted, and the sintered layer has many pores, which is not preferable.

平均粒径は0.5〜6μmが必要な範囲であり、望まし
い範囲は1〜5μmである。
The required average particle diameter is 0.5 to 6 μm, and the desirable range is 1 to 5 μm.

一方、本発明にかかる導電物質粉末の粒度は小さすぎる
と抵抗値が大きくなり過ぎ好ましくなく、大きすぎると
セラミックス基板上で不均一になり、抵抗値のバラツキ
が大きくなるので好ましくない。平均粒径は0.01〜
5μmの範囲が必要な範囲であり、望ましい範囲は0.
05〜3μmである。
On the other hand, if the particle size of the conductive material powder according to the present invention is too small, the resistance value will become too large, which is undesirable, and if it is too large, the particle size will become non-uniform on the ceramic substrate, resulting in large variations in the resistance value, which is not preferable. Average particle size is 0.01~
The necessary range is 5 μm, and the desirable range is 0.5 μm.
05-3 μm.

本発明にかかるガラスバインダーの役割として導電粉末
を良好に濡らしかつ基板(アルミナ等)との密着に優れ
ている必要がある。又窒素焼成による還元等の変化が起
こりにくい等の理由により、硼珪酸系のものが望ましく
、以下のものが特に望ましい。
The role of the glass binder according to the present invention is to wet the conductive powder well and to have excellent adhesion to the substrate (alumina etc.). In addition, borosilicate-based materials are preferred because changes such as reduction due to nitrogen firing are less likely to occur, and the following are particularly preferred.

本発明にかかるガラス粉末は、無機成分が実質的に Si0□        7〜60% A1□0,0〜30% MgO+CaO+SrO+BaO10〜60%(MgO
,0〜40. C:aOO〜40. Sr00〜60゜
Ba00〜60) LiJ+Na2O+に20+C5z0 0〜10%pb
o          o〜10%Zn0      
         0〜20%Zr0t+Ti0i  
          Q〜io%8203      
         5〜40%Tax(ls+Nt)2
0s        O,1〜60%Ta1ls   
            O〜60%NbzOs   
            0〜50%かうなり、順次こ
れらについて説明する。
In the glass powder according to the present invention, the inorganic components are substantially Si0□ 7-60%, A1□0.0-30%, MgO+CaO+SrO+BaO10-60% (MgO
,0~40. C:aOO~40. Sr00~60゜Ba00~60) LiJ+Na2O+ 20+C5z0 0~10%pb
o o~10%Zn0
0~20%Zr0t+Ti0i
Q~io%8203
5-40%Tax (ls+Nt)2
0s O, 1~60% Ta1ls
O~60%NbzOs
0 to 50%, and these will be explained in order.

かかる組成において、SiO□はガラスのネットワーク
フォーマ−であり、7%より少ないと、軟化点が低くな
りすぎ耐熱性が低下し、再焼成時に変形を生じ易くなる
ので好ましくない。
In such a composition, SiO□ is a glass network former, and if it is less than 7%, the softening point becomes too low, the heat resistance decreases, and deformation tends to occur during re-firing, which is not preferable.

一方、SiO□が60%より多いと、軟化点が高くなり
過ぎ、焼成時にガラスの流動が悪くなり、導電物質粉末
を覆って濡らすことができず、焼結層の空孔が多くなり
すぎ、抵抗の安定性が悪くなるので適当でない。望まし
くは、10〜45%の範囲である。
On the other hand, if SiO This is not appropriate because the stability of the resistance will deteriorate. Desirably, it is in the range of 10 to 45%.

A1.Osは必須ではないが、含有することにより、耐
湿性の向上に効果がある。30%を超えるとガラスの軟
化温度が高くなり、焼結性が悪くなり適当でない。望ま
しくは18%以下である。
A1. Although Os is not essential, its inclusion is effective in improving moisture resistance. If it exceeds 30%, the softening temperature of the glass will become high and the sinterability will deteriorate, making it unsuitable. It is preferably 18% or less.

MgO+CaO+SrO+BaOはガラス粉末製造時の
溶解性を向上さすため及び熱膨張係数を調整する働きが
ある。10%より少ないと上記の溶解性が充分に向上し
ないと共にガラス製造時に失透を生じやすく、60%を
超えると熱膨張係数が大きくなりすぎ、いずれも適当で
ない。望ましくは、15〜55%の範囲である。
MgO+CaO+SrO+BaO has the function of improving solubility during glass powder production and adjusting the coefficient of thermal expansion. If it is less than 10%, the above-mentioned solubility will not be sufficiently improved and devitrification will easily occur during glass production, and if it exceeds 60%, the coefficient of thermal expansion will become too large, and neither is suitable. Desirably, it is in the range of 15 to 55%.

また、上記MgO+CaO+SrO+BaOの内のMg
O。
Also, Mg in the above MgO+CaO+SrO+BaO
O.

CaOはそれぞれ40%以上であると、熱膨張係数が大
きくなりすぎ、不適当である。望ましい範囲は0〜35
%である。上記MgO+CaO+SrO+BaOの内の
SrOは60%以上であると熱膨張係数が大きくなりす
ぎ、不適当である。望ましい範囲は0〜55%である。
If the CaO content is 40% or more, the coefficient of thermal expansion becomes too large, which is inappropriate. Desirable range is 0-35
%. If SrO in the above MgO+CaO+SrO+BaO is 60% or more, the coefficient of thermal expansion becomes too large, which is inappropriate. A desirable range is 0-55%.

LizO+Na2O+KzO+C5tOは必須ではない
が、ガラスの溶解性の向上を図ることができ、又抵抗値
を高くする作用がある。10%を超えると、熱膨張係数
が大きくなりすぎ、基板とのマツチングが悪くなり、焼
成後厚膜にクラックが入る可能性が大となり、適当でな
い。望ましくは8%以下である。
Although LizO+Na2O+KzO+C5tO is not essential, it can improve the solubility of glass and has the effect of increasing the resistance value. If it exceeds 10%, the coefficient of thermal expansion becomes too large, the matching with the substrate becomes poor, and the possibility of cracking in the thick film after firing increases, which is not suitable. It is preferably 8% or less.

PbOは必須ではないが、ガラスのフラックス成分とし
ての効果があり、又抵抗値を高くする作用がある。10
%を超えると抵抗値が不安定になるため適当でない。望
ましくは5%以下である。
Although PbO is not essential, it is effective as a flux component of the glass and also has the effect of increasing the resistance value. 10
% is not suitable because the resistance value becomes unstable. It is preferably 5% or less.

ZnOは必須ではないが、ガラスの溶解性の改善のため
に20%まで含有させることが可能であり、15%以下
が望ましい範囲である。
Although ZnO is not essential, it can be contained up to 20% to improve the solubility of the glass, with a desirable range of 15% or less.

ZrO□+TiO□は必須ではないが、添加することに
より、抵抗体の耐湿信頼性を向上さすことができる。添
加量は10%が可能であるが、望ましくは7%以下であ
る。
Although ZrO□+TiO□ is not essential, adding it can improve the moisture resistance reliability of the resistor. The amount added can be 10%, but is preferably 7% or less.

B20.はフラックス成分として用いるが、5%より少
ないと軟化点が高くなり、焼結不足となり、焼結層に空
孔が多くなりすぎる。また40%を超えるとガラスの耐
水性が低下し適当でない。望ましくは7〜38%の範囲
である。
B20. is used as a flux component, but if it is less than 5%, the softening point will be high, resulting in insufficient sintering, and the sintered layer will have too many pores. Moreover, if it exceeds 40%, the water resistance of the glass decreases and is not suitable. It is preferably in the range of 7 to 38%.

Tag’s、 NbzOsは、抵抗値と抵抗値温度係数
(TCR)の調整のために使用する。T a z Os
 +NbzOsを導入することにより、より抵抗値の低
いものが可能となり、また高抵抗値でのTCRを正の方
向に動かし、さらに高抵抗値での抵抗値バラツキを小さ
くする効果がある。その量は、目標抵抗値に合致するよ
うに決める。
Tag's and NbzOs are used to adjust resistance and temperature coefficient of resistance (TCR). T az Os
By introducing +NbzOs, it becomes possible to have a lower resistance value, and it also has the effect of moving the TCR at high resistance values in the positive direction and further reducing the resistance value variation at high resistance values. The amount is determined to match the target resistance value.

但し、Tag’sは60%、NbzOsは50%、Ta
zOs+Nb、0.は60%を超えるとガラス化が困難
となり、T’a 20 s + N b t Osは0
.1%以下であると効果が少ない。Tag’sの望まし
い範囲は0〜50%、NbzOsの望ましい範囲は0〜
45%、TazOs+NbJsの望ましい範囲は1〜5
0%である。
However, Tag's is 60%, NbzOs is 50%, Ta
zOs+Nb, 0. If it exceeds 60%, vitrification becomes difficult, and T'a 20 s + N b t Os is 0.
.. If it is less than 1%, the effect will be small. The desirable range for Tag's is 0 to 50%, and the desirable range for NbzOs is 0 to 50%.
45%, the desirable range of TazOs+NbJs is 1-5
It is 0%.

以上記載したガラス粉末の組成の望ましい範囲について
まとめると以下の通りとなる。
The desirable range of the composition of the glass powder described above is summarized as follows.

SiO□        lO〜45%A1□030〜
18% MgO+CaO+SrO+BaOL5〜55%(MgO
,0〜35. CaOO〜35. Sr00〜55゜B
a00〜55) Li2O+Na2O+に20+C5zOO〜 8%pb
o                 o〜 5%Zn
O(1〜15% ZrO2+Ti0z           o〜 7%
8203             7〜38%Ta2
15+Nb2o5       1〜50%Ta205
               O〜50%Nb、05
             0〜45%本発明の抵抗体
ペーストの組成物は、各粉末が上記割合に混合されてい
るものであり、以下本発明の抵抗体ペーストの作製方法
とそれを使用した厚膜回路の製造の一例について説明す
る。
SiO□ 1O~45%A1□030~
18% MgO+CaO+SrO+BaOL5-55% (MgO
, 0-35. CaOO~35. Sr00~55゜B
a00~55) 20+C5zOO~ 8%pb for Li2O+Na2O+
o o ~ 5% Zn
O (1~15% ZrO2 + Ti0z o~ 7%
8203 7-38% Ta2
15+Nb2o5 1~50% Ta205
O~50%Nb, 05
0 to 45% The composition of the resistor paste of the present invention is one in which each powder is mixed in the above ratio.The method for producing the resistor paste of the present invention and the production of thick film circuits using the same are described below. An example will be explained.

上記本発明の抵抗体ペーストの組成物に有機バインダー
、溶剤からなる有機ビヒクルを添加し、混練し、ペース
ト状とする。この有機バインダーとしては、エチルセル
ロース、アクリル樹脂、エチレン−酢酸ビニル共重合樹
脂、ポリα−メチルスチレン樹脂、溶剤としては、α−
テルピネオール;ブチルカルピトールアセテート;ブチ
ルカルピトール、 2,2.4−)−リメチルベンクン
ジオール−1,3,−モノイソブチレート;ジエチレン
グリコールジ−n−ブチルエーテル等が通常使用できる
。さらに分散剤として界面活性剤を添加してもよい。
An organic vehicle consisting of an organic binder and a solvent is added to the composition of the resistor paste of the present invention and kneaded to form a paste. The organic binder includes ethyl cellulose, acrylic resin, ethylene-vinyl acetate copolymer resin, polyα-methylstyrene resin, and the solvent includes α-
Terpineol; butylcarpitol acetate; butylcarpitol, 2,2,4-)-limethylbencunediol-1,3,-monoisobutyrate; diethylene glycol di-n-butyl ether, and the like can usually be used. Furthermore, a surfactant may be added as a dispersant.

次いで焼成後の固化したアルミナ基板、又はガラスセラ
ミックス基板等のセラミックス基板上に導体を作成する
ために、Cuペーストを所定の回路に印刷、乾燥後、酸
素濃度20ppm以下の窒素雰囲気中で800〜100
0℃、5〜30分程度で焼成する。この焼成条件の望ま
しい範囲は880〜920°C,7〜15分である。次
いで抵抗を設けるべき所定の箇所に上記本発明の抵抗体
ペーストを印刷した後乾燥させ、上記窒素雰囲気中。
Next, in order to create a conductor on a solidified alumina substrate after firing or a ceramic substrate such as a glass-ceramic substrate, Cu paste is printed on a predetermined circuit, and after drying, it is heated at 800 to 100% in a nitrogen atmosphere with an oxygen concentration of 20 ppm or less.
Bake at 0°C for about 5 to 30 minutes. The preferred range of firing conditions is 880-920°C and 7-15 minutes. Next, the resistor paste of the present invention is printed on a predetermined location where a resistor is to be provided, and then dried in the nitrogen atmosphere.

800〜1000℃、5〜30分で焼成する。この焼成
条件の望ましい範囲は880〜920℃、7〜15分で
ある。
Bake at 800-1000°C for 5-30 minutes. The preferred range of firing conditions is 880 to 920°C and 7 to 15 minutes.

多層セラミックス基板−括焼成の場合は、上記Cuペー
ストと本発明の抵抗体ペーストを印刷したセラミックス
基板用等のセラミックスのグリーンシートを熱圧着後積
層し、上記窒素雰囲気中で800〜1000℃、数分〜
数時間で一括焼威し、多層基板を作成する。
In the case of bulk firing of multilayer ceramic substrates, green sheets of ceramics such as those for ceramic substrates printed with the above-mentioned Cu paste and the resistor paste of the present invention are laminated after thermocompression bonding, and then heated at 800 to 1000°C for several seconds in the above nitrogen atmosphere. Minutes~
It burns all at once in a few hours and creates a multilayer board.

尚本発明の抵抗体ペーストには、着色の°ために金属酸
化物、耐熱性無機顔料等の着色顔料を0〜5%添加する
ことができる。
Note that 0 to 5% of a coloring pigment such as a metal oxide or a heat-resistant inorganic pigment can be added to the resistor paste of the present invention for coloring.

また、ガラス製造時、清澄剤、溶融促進剤として硝酸塩
、亜ヒ酸、硫酸塩、フッ化物、塩化物等を0〜5%添加
することができる。
Further, during glass production, 0 to 5% of nitrates, arsenous acid, sulfates, fluorides, chlorides, etc. can be added as clarifying agents and melting accelerators.

[実施例] 本発明にかかるガラス粉末の各原料を酸化物換算で表−
1に示す割合で調合し、これを白金ルツボに入れ、13
50〜1500℃で2〜3時間撹拌しつつ加熱撹拌した
。次いでこれを水砕又はフレーク状とし、更に粉砕装置
により平均粒径0.5〜6μmになるように粉砕し、ガ
ラス粉末を製造した。次いで導電物質として表1に示す
ZrBz、TiB2.AlB2. NbB2を平均粒径
0. O1〜5 lLmになるように調整した。次いで
これらのガラスで混合し、本発明の抵抗体ペーストにか
かる組成物を得た。
[Example] Each raw material of the glass powder according to the present invention is shown in terms of oxides.
Mix the proportions shown in 1, put this in a platinum crucible, and 13
The mixture was heated and stirred at 50 to 1500°C for 2 to 3 hours. Next, this was pulverized into water or flakes, and further pulverized using a pulverizer to an average particle size of 0.5 to 6 μm to produce glass powder. Next, ZrBz, TiB2. shown in Table 1 were used as conductive materials. AlB2. NbB2 with an average particle size of 0. It was adjusted to 01-5 lLm. These glasses were then mixed to obtain a composition for the resistor paste of the present invention.

次いでこれらに有機バインダーとしてエチルセルロース
、溶剤としてα−テルピネオールからなる有機ビヒクル
を添加し、混練し、粘度が30X 10’ cpsのペ
ーストを作成した。次いで固化したアルミナ基板上に本
発明にかかる抵抗の電極としてCuペーストを所定の回
路にスクリーン印刷、乾燥し、酸素濃度20ppm以下
の窒素雰囲気中900℃、10分で焼成した。
Next, an organic vehicle consisting of ethyl cellulose as an organic binder and α-terpineol as a solvent was added and kneaded to prepare a paste having a viscosity of 30×10′ cps. Next, on the solidified alumina substrate, a Cu paste was screen printed as a resistor electrode according to the present invention in a predetermined circuit, dried, and fired at 900° C. for 10 minutes in a nitrogen atmosphere with an oxygen concentration of 20 ppm or less.

次いで抵抗所定箇所に上記抵抗体ペーストを200メツ
シユスクリーンでスクリーン印刷、乾燥し、酸素濃度2
0ppm以下の窒素雰囲気中で900℃10分で焼成し
た。焼成膜厚は約15μmであった。
Next, the above resistor paste was screen printed on a predetermined location of the resistor using a 200 mesh screen, dried, and the oxygen concentration was reduced to 2.
It was fired at 900° C. for 10 minutes in a nitrogen atmosphere of 0 ppm or less. The fired film thickness was about 15 μm.

このようにしてセラミック基板上に回路を作成した。こ
の回路について、抵抗値、抵抗温度係数(TCR)、高
温放置による抵抗値ドリフトを測定した。これらの結果
を表−1に記載しん  主  +  J、+ 7+叩r
+1.\ン島しスl−eφ閲叫)呼ぶ\講\又抵抗体ペ
ーストは抵抗特性に優れ、厚膜回路用抵抗体ペーストと
して十分使用できる特性を有することが詔められる。
In this way, a circuit was created on the ceramic substrate. Regarding this circuit, resistance value, temperature coefficient of resistance (TCR), and resistance value drift due to high temperature storage were measured. These results are listed in Table-1.
+1. It is also praised that the resistor paste has excellent resistance characteristics and can be used sufficiently as a resistor paste for thick film circuits.

比較例として本発明にかかる抵抗体ペースト以外のもの
についても同様の評価を行ったので表−1に記載した。
As a comparative example, similar evaluations were conducted on resistor pastes other than the resistor paste according to the present invention, which are listed in Table 1.

なお各特性の測定方法は次の通りである。The method for measuring each characteristic is as follows.

l)抵抗値 1mm口抵抗パターンにてデジタルマルチメーターで測
定 2)CV(抵抗値バラツキ) 抵抗値測定結果のσ/平均値 3)抵抗値温度係数(TCP) 25°C,−55°C,+125°Cの抵抗値(R25
R−,5,R,□5)を恒温槽中で抵抗計により測定し
、次の式により算出した。
l) Resistance value measured with a digital multimeter using a resistance pattern of 1 mm 2) CV (resistance value variation) Resistance value measurement result σ/average value 3) Resistance value temperature coefficient (TCP) 25°C, -55°C, +125°C resistance value (R25
R-, 5, R, □5) was measured using a resistance meter in a constant temperature bath, and calculated using the following formula.

4) 高温放置による抵抗値ド ノフ ト 50 ℃の恒温槽中で 100時間放置し、 次の 式により算出した。4) Resistance value due to high temperature storage Nof to 50 in a constant temperature bath at ℃ Leave it for 100 hours, next Calculated using the formula.

上式において R+ooゎ= 100時間後の抵抗値 R8 =抵抗の初期値 [発明の効果] 本発明の抵抗体ペーストは、窒素雰囲気等の非酸化性雰
囲気中で焼成が可能で、安定した信頼性の高い抵抗をセ
ラミックス基板上に形成可能であり、特に高温放置によ
る抵抗値ドリフト特性に優れているという効果も認めら
れる。
In the above formula, R + oo = resistance value after 100 hours R8 = initial value of resistance [Effects of the invention] The resistor paste of the present invention can be fired in a non-oxidizing atmosphere such as a nitrogen atmosphere, and has stable reliability. It is also possible to form a high resistance value on a ceramic substrate, and it is also recognized that it has excellent resistance value drift characteristics especially when left at high temperatures.

Claims (3)

【特許請求の範囲】[Claims] (1)無機成分が重量%表示で実質的に、ガラス粉末3
0〜99.5と金属二硼化物粉末0.5〜70かうなり
、該ガラス粉末の組成中にTa_2O_5,Nb_2O
_5のうち少なくとも一種以上を含有してなることを特
徴とする抵抗体ペースト。
(1) The inorganic component is substantially 3% by weight of glass powder.
0 to 99.5 and metal diboride powder 0.5 to 70, Ta_2O_5, Nb_2O in the composition of the glass powder.
A resistor paste characterized by containing at least one of _5.
(2)前記金属二硼化物はZrB_2である特許請求の
範囲第1項記載の抵抗体ペースト。
(2) The resistor paste according to claim 1, wherein the metal diboride is ZrB_2.
(3)第1項記載の抵抗体ペーストを使用して焼成され
たセラミックス基板。
(3) A ceramic substrate fired using the resistor paste described in item 1.
JP22796290A 1989-09-05 1990-08-31 Resistor paste and ceramic substrate Pending JPH03183640A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-228225 1989-09-05
JP22822589 1989-09-05

Publications (1)

Publication Number Publication Date
JPH03183640A true JPH03183640A (en) 1991-08-09

Family

ID=16873135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22796290A Pending JPH03183640A (en) 1989-09-05 1990-08-31 Resistor paste and ceramic substrate

Country Status (1)

Country Link
JP (1) JPH03183640A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626397A (en) * 2013-12-17 2014-03-12 佛山市中国科学院上海硅酸盐研究所陶瓷研发中心 Conductive glass and manufacturing method thereof
WO2014175013A1 (en) * 2013-04-25 2014-10-30 株式会社村田製作所 Conductive paste and multilayer ceramic electronic component
JP2017048061A (en) * 2015-08-31 2017-03-09 日本電気硝子株式会社 Glass paste composition and method for producing film formation glass member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175013A1 (en) * 2013-04-25 2014-10-30 株式会社村田製作所 Conductive paste and multilayer ceramic electronic component
JP5950033B2 (en) * 2013-04-25 2016-07-13 株式会社村田製作所 Conductive paste and multilayer ceramic electronic components
JPWO2014175013A1 (en) * 2013-04-25 2017-02-23 株式会社村田製作所 Conductive paste and multilayer ceramic electronic components
CN103626397A (en) * 2013-12-17 2014-03-12 佛山市中国科学院上海硅酸盐研究所陶瓷研发中心 Conductive glass and manufacturing method thereof
JP2017048061A (en) * 2015-08-31 2017-03-09 日本電気硝子株式会社 Glass paste composition and method for producing film formation glass member

Similar Documents

Publication Publication Date Title
US5051381A (en) Powdery coating glass material, coating glass paste using the same and coating glass composition prepared thereby
JPS60155544A (en) Borosilicate glass composition
JPH03150234A (en) Resistor paste and ceramic substrate
JP3843767B2 (en) Method for manufacturing resistor paste and method for manufacturing thick film resistor
KR101138246B1 (en) Manufacturing method of paste composition having low temperature coefficient resistance for resistor, thick film resistor and manufacturing method of the resistor
KR870001760B1 (en) Borosilicate glass composition
JPH03183640A (en) Resistor paste and ceramic substrate
JPH03131546A (en) Resistor paste and ceramic substrate
JPH0346705A (en) Copper paste
JPH06239646A (en) Coating glass composition and paste prepared by using the same
JPH03131545A (en) Resistor paste and ceramics substrate
JP2931450B2 (en) Conductor paste
JP7279551B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JPH0374005A (en) Resistor paste and ceramics substrate
JPH0349108A (en) Copper conductor composition material
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP7110780B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JPH02288106A (en) Resistor paste and ceramics substrate
JPH02212336A (en) Glass-ceramic composition and its use
JPH038302A (en) Resistor paste and ceramic substrate
JPH0380591A (en) Resistor paste and ceramic substrate
JPH04142001A (en) Resistance paste and ceramic substrate
JPH0660718A (en) Resistor paste and ceramics board
WO2021221172A1 (en) Thick film resistor paste, thick film resistor, and electronic component
TW202343483A (en) Lead-free thick-film resistor composition and lead-free thick-film resistor having a TCR between ±100 ppm/DEG C while providing a wide range of resistance values