JPH02288203A - Resistor paste and ceramic substrate - Google Patents

Resistor paste and ceramic substrate

Info

Publication number
JPH02288203A
JPH02288203A JP1107729A JP10772989A JPH02288203A JP H02288203 A JPH02288203 A JP H02288203A JP 1107729 A JP1107729 A JP 1107729A JP 10772989 A JP10772989 A JP 10772989A JP H02288203 A JPH02288203 A JP H02288203A
Authority
JP
Japan
Prior art keywords
resistor paste
glass powder
ceramic substrate
glass
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1107729A
Other languages
Japanese (ja)
Inventor
Ryuichi Tanabe
隆一 田辺
Yoshiyuki Nishihara
芳幸 西原
Jiro Chiba
次郎 千葉
Keiichi Kawakami
圭一 川上
Masuo Sugizaki
杉崎 満寿雄
Toshihiko Hiwatari
敏彦 樋渡
Eiji Ichikura
栄治 市倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1107729A priority Critical patent/JPH02288203A/en
Publication of JPH02288203A publication Critical patent/JPH02288203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

PURPOSE:To obtain resistor paste, a resistance value and a resistance-value temperature coefficient of which are acquired stably, and a ceramic substrate by composing the resistor paste of glass powder and In2O3, specifying the inorganic component of glass powder by weight% display and firing the whole in a non-oxidizing atmosphere. CONSTITUTION:An inorganic component consists of 20-70 glass powder and 30-80 In2O3 by weight% display, the inorganic component of glass powder is made up substantially of 15-16 SiO2, 0-30 Al2O3, 0-40 MgO, 0-40 CaO, 0-60 SrO, 0-60 BaO, 10-60 MgO+CaO+SrO+BaO, 0-10 Li2O+Na2O+K2O+Cs2O, 0-10 PbO, 0-40 ZnO, 0-10 ZrO2+TiO2, and 5-40 B2O3 by weight% display, and resistor paste for a ceramic substrate fired substantially in a non-oxidizing atmosphere is acquired. For prepare a conductor on the ceramic substrate such as an alumina substrate solidified after firing, a glass ceramic board or the like, Cu paste is printed onto the specified board, and dried, and fired for five or ten min at 850-950 deg.C in a nitrogen atmosphere of oxygen concentration of 20ppm or less.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミックス基板用の抵抗体ペーストに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resistor paste for ceramic substrates.

[従来の技術] 従来混成集積回肯における抵抗はセラミックス基板上又
は内部に! (Ag)又はAg−パラジウム(Pd)導
体を形成し、その間に抵抗体ペーストを印刷し、空気等
の酸化性雰囲気中で約850〜900℃で焼成し、形成
されていた。
[Prior art] Resistance in conventional hybrid integrated circuits is on or inside the ceramic substrate! (Ag) or Ag-palladium (Pd) conductors, printed with a resistor paste between them, and fired at about 850 to 900° C. in an oxidizing atmosphere such as air.

その際に使用されていた抵抗体ペーストは主としてRu
bsとガラスからなっていた。
The resistor paste used at that time was mainly Ru.
It was made of bs and glass.

しかし最近ではマイグレーション等の信頼性の面からA
g又はAg−Pd導体に代わり、m(Cu)導体が使用
されるようになってきている。
However, recently, due to reliability issues such as migration,
Instead of g or Ag--Pd conductors, m (Cu) conductors are increasingly being used.

しかしCu導体は窒素等の非酸化性雰囲気中で焼成しな
いと酸化されてしまうため、非酸化性雰囲気で還元され
抵抗を形成しないRubsは使用できない。
However, since Cu conductors are oxidized unless fired in a non-oxidizing atmosphere such as nitrogen, Rubs, which is reduced in a non-oxidizing atmosphere and does not form a resistance, cannot be used.

そこで最近、LaBa粉末とガラス粉末、 SnO。Recently, LaBa powder, glass powder, and SnO have been developed.

ドープ品とガラス粉末、珪化物とガラス粉末等が提案さ
れている。
Dope products and glass powder, silicide and glass powder, etc. have been proposed.

しかし上記組み合わせは抵抗値や抵抗値温度係数(TC
R)がまだ十分に安定して得られないという欠点がある
However, the above combinations are limited by resistance value and temperature coefficient of resistance (TC).
There is a drawback that R) cannot yet be obtained in a sufficiently stable manner.

[発明の解決しようとする課題] 本発明は、窒素等の非酸化性雰囲気中で焼成が可能で、
抵抗値、抵抗値温度係数(TCR)が安定的に得られる
従来知られていなかった抵抗体ペースト及びセラミック
ス基板を新規に提供することを目的とするものである。
[Problems to be solved by the invention] The present invention can be fired in a non-oxidizing atmosphere such as nitrogen,
The object of the present invention is to provide a new resistor paste and ceramic substrate that are hitherto unknown and can stably obtain resistance values and temperature coefficients of resistance (TCR).

[課題を解決するための手段] 本発明は、前述の問題点を解決すべくなされたものであ
り、無機成分が重量%表示でガラス粉末20〜70とI
nzOs 30〜80からなり、当該ガラス粉末は無機
成分が重量%表示で実質的に5iOi15〜60.A1
.0,0〜301Mg00〜40.Ca00〜40、 
Sr00〜60. Ba00〜60. MgO+CaO
+SrO+Ba010〜60. LizO+Na1O+
KiO+Cs1OO〜10. PbO0〜10. Zn
OO〜40. ZrO*+TiO* O〜10. Bt
us5〜40からなり、実質的に非酸化性雰囲気中で焼
成するセラミックス基板用抵抗体ペーストを提供するも
のである。
[Means for Solving the Problem] The present invention has been made to solve the above-mentioned problems.
nzOs 30 to 80, and the glass powder has an inorganic component of substantially 5iOi15 to 60. A1
.. 0,0~301Mg00~40. Ca00~40,
Sr00~60. Ba00~60. MgO+CaO
+SrO+Ba010-60. LizO+Na1O+
KiO+Cs1OO~10. PbO0~10. Zn
OO~40. ZrO*+TiO* O~10. Bt
The object of the present invention is to provide a resistor paste for ceramic substrates which is composed of US5 to US40 and is fired in a substantially non-oxidizing atmosphere.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の抵抗体ペーストは単層又は各店セラミックス基
板に使用されるものであり、焼成後の固化したアルミナ
等の基板等のセラミックス基板、あるいはセラミックス
基板用のグリーンシート上に印刷等の方法により形成し
た後、窒素雰囲気中等の非酸化性雰囲気中で焼成される
ものである。尚%は特に記載しない限り、重量%を意味
する。本発明の抵抗体ペーストは無機成分が実質的に ガラス粉末   20〜70% 導電物質粉末  30〜80% からなり、以下順次これらについて説明する。
The resistor paste of the present invention is used for single-layer or individual ceramic substrates, and is formed by printing or other methods on ceramic substrates such as alumina substrates that have been solidified after firing, or on green sheets for ceramic substrates. After that, it is fired in a non-oxidizing atmosphere such as a nitrogen atmosphere. Note that % means weight % unless otherwise specified. The inorganic components of the resistor paste of the present invention essentially consist of 20-70% glass powder and 30-80% conductive material powder, and these will be explained below in sequence.

ガラス粉末は、低温度(例えば900℃以下)で充分に
流動性を有し、焼成時に上記導電物質粉末を覆って充分
に濡らし、かつ焼結する5ift −Ba1m系ガラス
のものが好ましい。
The glass powder is preferably a 5ift-Ba1m type glass that has sufficient fluidity at low temperatures (for example, 900° C. or lower) and covers and sufficiently wets the conductive material powder during firing and sinters.

かかるガラス粉末の含有量が20%より少ないと導電物
質粉末を充分に濡らすことができないため、焼結層に空
孔が多くなり、本発明の抵抗体ペーストを焼成すること
によって得られる抵抗体の強度が弱くなり、又抵抗値の
安定性が低下するので好ましくなく、70%を越えると
、導電物質粉末間の接着が少なくなり、上記抵抗値が大
きくなりすぎ適当でない。
If the content of such glass powder is less than 20%, the conductive material powder cannot be sufficiently wetted, so that the sintered layer will have many pores, and the resistor obtained by firing the resistor paste of the present invention will suffer. This is not preferable because the strength becomes weak and the stability of the resistance value decreases, and if it exceeds 70%, the adhesion between the conductive material powders decreases and the resistance value becomes too large, which is not suitable.

本発明にかかるガラス粉末は上記範囲中25〜65%の
範囲が望ましい。
The glass powder according to the present invention preferably has a content of 25 to 65% of the above range.

一方導電物質粉末としては、通常市販されている酸化イ
ンジウム(InzOs)が使用できるが、その理由は、
かかる物質は、導電率が高い、すなわち抵抗率が低い特
性を有するため、導電物質とガラスとの複合体である本
発明にかかる抵抗体の抵抗値を目標に合致させることが
可能であるためである。
On the other hand, commercially available indium oxide (InzOs) can be used as the conductive material powder, but the reason is that
This is because such a material has a property of high electrical conductivity, that is, low resistivity, and therefore it is possible to match the resistance value of the resistor according to the present invention, which is a composite of a conductive material and glass, to the target. be.

本発明にかかるガラスの粒度は、小さすぎると上記抵抗
値が太き(なりすぎ好ましくなく、大きすぎると、ガラ
スを充分に濡らすことができず、焼結層に空孔が多くな
り好ましくない。
If the particle size of the glass according to the present invention is too small, the above-mentioned resistance value becomes too large (unpreferably), and if it is too large, the glass cannot be sufficiently wetted, and the sintered layer has many pores, which is not preferable.

平均粒径は0.5〜6μmが必要な範囲であり、望まし
い範囲は1〜5μmである。
The required average particle diameter is 0.5 to 6 μm, and the desirable range is 1 to 5 μm.

一方本発明にかかる導電物質粉末の粒度は小さすぎると
抵抗値が大きくなり過ぎ好ましくなく、大きすぎるとセ
ラミックス基板上で不均一になり、抵抗値のバラツキが
大きくなるので好ましくない。平均粒径は0.01〜5
μmの範囲が必要な範囲であり、望ましい範囲は0.0
5〜3μmである。
On the other hand, if the particle size of the conductive material powder according to the present invention is too small, the resistance value will become too large, which is undesirable, and if it is too large, the particle size will become non-uniform on the ceramic substrate, resulting in large variations in the resistance value, which is not preferable. Average particle size is 0.01-5
The required range is μm, and the desirable range is 0.0
It is 5 to 3 μm.

本発明にかかるガラス粉末は、無機成分が実質的に SiOx         15〜60%A1□0,0
〜30% MgOO〜40% Ca00〜40% 5r00〜60% BaO(1〜60% MgO+CaO+SrO÷Ba0  10〜60%Li
J+NaJ÷KxO+C5zOO〜10%pbo   
       o〜10%Zn00〜40% zrO□+Ti020〜10% BJs               5〜40%から
なり、順次これらについて説明する。
In the glass powder according to the present invention, the inorganic component is substantially SiOx 15 to 60% A1□0,0
~30% MgOO~40% Ca00~40% 5r00~60% BaO (1~60% MgO+CaO+SrO÷Ba0 10~60%Li
J+NaJ÷KxO+C5zOO~10%pbo
o~10% Zn00~40% zrO□+Ti020~10% BJs 5~40%, and these will be explained in order.

かかる組成において、Singはガラスのネットワーク
フォーマ−であり、15%より少ないと、軟化点が低く
なりすぎ耐熱性が低下し、再焼成時に変形を生じ易(な
るので好ましくない。
In this composition, Sing is a glass network former, and if it is less than 15%, the softening point becomes too low, the heat resistance decreases, and deformation is likely to occur during re-firing, which is not preferable.

方5insが60%より多いと、軟化点が高くなり過ぎ
、焼成時にガラスの流動が悪くなり、導電物質粉末を覆
って濡らすことができず、焼結層の空孔が多(なりすぎ
、抵抗の安定性が悪くなるので適当でない。望ましくは
、20〜55%の範囲である。
If 5ins is more than 60%, the softening point will be too high, the flow of the glass will be poor during firing, it will not be possible to cover and wet the conductive material powder, and the sintered layer will have many pores (too much, resistance This is not suitable because the stability of the compound deteriorates.The desirably range is from 20 to 55%.

A1□03は必須ではないが、添加することにより、耐
湿性の向上に効果がある。30%を越えるとガラスの軟
化温度が高くなり、焼結性が悪くなり適当でない。望ま
しくは28%以下である。
Although A1□03 is not essential, its addition is effective in improving moisture resistance. If it exceeds 30%, the softening temperature of the glass will become high and the sinterability will deteriorate, making it unsuitable. It is preferably 28% or less.

MgO+CaO+SrO÷BaOはガラス粉末製造時の
溶解性を向上さすため及び熱膨張係数を調整する目的で
添加する。10%より少ないと上記の溶解性が充分に向
上しないと共にガラス製造時に失透を生じやすく、60
%を越えると熱膨張係数が大きくなりすぎ、いずれも適
当でない、望ましくは、15〜55%の範囲、である。
MgO+CaO+SrO÷BaO is added for the purpose of improving solubility during glass powder production and adjusting the thermal expansion coefficient. If it is less than 10%, the above-mentioned solubility will not be improved sufficiently, and devitrification will easily occur during glass production.
If it exceeds %, the thermal expansion coefficient becomes too large, and neither is suitable; preferably, it is in the range of 15 to 55%.

また上記MgO+CaO÷SrO+BaOの内のMgO
、CaOはそれぞれ40%以上であると、熱膨張係数が
大きくなりすぎ、不適当である。望ましい範囲は0〜3
5%である。上記MgO+CaO+SrOの内のSrO
Also, MgO in the above MgO+CaO÷SrO+BaO
, CaO of 40% or more, the coefficient of thermal expansion becomes too large, which is inappropriate. Desirable range is 0-3
It is 5%. SrO in the above MgO+CaO+SrO
.

BaOはそれぞれ60%以上であると熱膨張係数が太き
(なりすぎ、不適当である。望ましい範囲はそれぞれ0
〜55%である。
If BaO has a coefficient of thermal expansion of 60% or more, the coefficient of thermal expansion is too large (too large, which is inappropriate).The desirable range is 0 for each.
~55%.

Li*O+Na*0+KsO÷C5xOは必須ではない
が、添加することによりガラスの溶解性の向上を図るこ
とができ、又抵抗値を高くする作用がある。 10%を
越えると、抵抗値が高くなりすぎ、適当でない、望まし
くは8%以下である。
Although Li*O+Na*0+KsO÷C5xO is not essential, adding it can improve the solubility of the glass and has the effect of increasing the resistance value. If it exceeds 10%, the resistance value becomes too high and is not appropriate, preferably 8% or less.

PbOは必須ではないが、ガラスのフラックス成分とし
ての効果がある。10%を越えると熱膨張係数が大きく
なりすぎクラックを発生させる要因ともなり適当でない
。望ましくは5%以下であるm ZnOは必須ではない
が、ガラスの溶解性の改善のために40%まで添加する
ことが可能であり、35%以下が望ましい範囲である。
Although PbO is not essential, it is effective as a flux component for glass. If it exceeds 10%, the thermal expansion coefficient becomes too large and may cause cracks to occur, which is not appropriate. Although ZnO is not essential, it can be added up to 40% to improve the solubility of the glass, and preferably 35% or less.

ZrO*+TiO*は必須ではないが、添加することに
より抵抗体の耐湿信頼性を向上さすことができる。添加
量は10%が可能であるが、望ましくは7%以下である
Although ZrO*+TiO* is not essential, adding it can improve the moisture resistance reliability of the resistor. The amount added can be 10%, but is preferably 7% or less.

B、Oaはフラックス成分として用いるが、 5%より
・少ないと軟化点が高くなり、焼結不足となり、焼結層
に空孔が多(なりすぎる、また40%を越えるとガラス
の耐水性が低下し適当でない。望ましくは7〜38%の
範囲である。
B, Oa is used as a flux component, but if it is less than 5%, the softening point will be high, resulting in insufficient sintering, and the sintered layer will have too many pores, and if it exceeds 40%, the water resistance of the glass will deteriorate. Desirably, it is in the range of 7 to 38%.

以上記載した望ましい範囲についてまとめると以下の通
りとなる。
The desirable ranges described above are summarized as follows.

5ins            20〜55%A11
as            O〜28%MgO+Ca
O+SrO+BaO15〜55%MgO,Ca0   
       0〜35%SrO,BaOO〜55% LixO+NagO÷KxO+C5aOO〜8%pbo
             o〜5%Zn0     
              0〜35%ZrO*+T
iO*                O〜 7%B
mOs7〜38% 本発明の抵抗体ペーストの組成物は、各粉末が上記割合
に混合されているものであり、以下本発明の抵抗体ペー
ストの作業方法とそれを使用した厚膜回路の製造の一例
について説明する。
5ins 20~55%A11
as O~28%MgO+Ca
O+SrO+BaO15~55%MgO,Ca0
0~35%SrO, BaOO~55% LixO+NagO÷KxO+C5aOO~8%pbo
o~5%Zn0
0-35% ZrO*+T
iO* O~ 7%B
mOs 7 to 38% The composition of the resistor paste of the present invention is one in which each powder is mixed in the above ratio.The method of working the resistor paste of the present invention and the production of thick film circuits using the same are described below. An example will be explained.

上記本発明の抵抗体ペーストの組成物に有機バインダー
、溶剤からなる有機ビヒクルを添加し、乾燥し、ペース
ト状とする。この有機バインダーとしては、エチルセル
ロース、アクリル樹脂、エチレン−酢酸ビニル共重合樹
脂、ポリα−メチルスチレン樹脂、溶剤としては、α−
テルピネオール、ブチルカルピトールアセテート、ブチ
ルカルピトール、 2,2.4−トリメチルペンタンジ
オ−ルー1.3.−モノイソブチレート、ジエチレング
リコールジ−n−ブチルエーテル、等が通常使用できる
。さらに分散剤として界面活性剤を添加してもよい。
An organic vehicle consisting of an organic binder and a solvent is added to the composition of the resistor paste of the present invention and dried to form a paste. The organic binder includes ethyl cellulose, acrylic resin, ethylene-vinyl acetate copolymer resin, polyα-methylstyrene resin, and the solvent includes α-
Terpineol, butyl carpitol acetate, butyl carpitol, 2,2,4-trimethylpentanedio-ru 1.3. -monoisobutyrate, diethylene glycol di-n-butyl ether, etc. are commonly used. Furthermore, a surfactant may be added as a dispersant.

次いで焼成後の固化したアルミナ基板、又はガラスセラ
ミックス基板等のセラミックス基板上に導体を作成する
ために、Cuペーストを所定の回路に印刷、乾燥後、酸
素濃度20 ppm以下の窒素雰囲気中で850〜95
0℃、5〜10分で焼成する。この焼成条件の望ましい
範囲は880〜920℃、7〜15分である。次いで抵
抗を設けるべき所定の箇所に上記本発明の抵抗体ペース
トを印刷等の方法で形成した後乾燥させ、上記窒素雰囲
気中、850〜950℃、5〜20で焼成する。この焼
成条件の望ましい範囲は880〜920℃、7〜15分
である。
Next, in order to create a conductor on a solidified alumina substrate after firing or a ceramic substrate such as a glass-ceramic substrate, Cu paste is printed on a predetermined circuit, and after drying, it is heated at 850 ~ 95
Bake at 0°C for 5 to 10 minutes. The preferred range of firing conditions is 880 to 920°C and 7 to 15 minutes. Next, the resistor paste of the present invention is formed at a predetermined location where a resistor is to be provided by a method such as printing, dried, and fired at 850-950° C. and 5-20° C. in the nitrogen atmosphere. The preferred range of firing conditions is 880 to 920°C and 7 to 15 minutes.

多Mセラミックス基板−括焼成の場合は、上記Cuペー
ストと本発明の抵抗体ペーストを印刷したセラミックス
基板用等のセラミックスのグリーンシートを熱圧着後積
層し、上記窒素雰囲気中で850〜950℃、数分〜数
時間で一括焼成し、多層基板を作成する。
In the case of bulk firing of multi-M ceramic substrates, green sheets of ceramics such as those for ceramic substrates printed with the above-mentioned Cu paste and the resistor paste of the present invention are laminated after thermocompression bonding, and then heated at 850 to 950°C in the above nitrogen atmosphere. Batch firing is performed in a few minutes to several hours to create a multilayer board.

尚本発明の抵抗体ペーストには、着色のために金属酸化
物、耐熱性無機顔料等の着色顔料を0〜5%添加するこ
とができる。
Note that 0 to 5% of a coloring pigment such as a metal oxide or a heat-resistant inorganic pigment can be added to the resistor paste of the present invention for coloring.

また、ガラス溶解時に清澄剤、溶融促進剤として硝駿塩
、亜ヒ酸、酸化アンチモン、硫酸塩、フッ化物、塩化物
等を0〜5%添加することができる。
In addition, 0 to 5% of nitrochloride, arsenous acid, antimony oxide, sulfate, fluoride, chloride, etc. can be added as a clarifying agent and melting accelerator during glass melting.

[実施例] 本発明にかかるガラス粉末の各原料を酸化物換算で表−
1に示す割合で調合し、これを白金ルツボに入れ、13
50〜1500’Cで2〜3時間撹拌しつつ加熱撹拌し
た。次いでこれを水砕又はフレーク状とし、更に粉砕装
置により平均粒径0.5〜6μmになるように粉砕し、
ガラス粉末を製造した。次いで導電物質としてIngo
tの粉末を平均粒径0.01〜5μmになるように調整
した。次いでこれらのガラス粉末と上記導電物質粉末を
表−1に記載の割合で混合し、本発明の抵抗体ペースト
にかかる組成物を得た。
[Example] Each raw material of the glass powder according to the present invention is shown in terms of oxides.
Mix the proportions shown in 1, put this in a platinum crucible, and 13
The mixture was heated and stirred at 50 to 1500'C for 2 to 3 hours with stirring. Next, this is crushed into water or flakes, and further crushed using a crushing device to an average particle size of 0.5 to 6 μm.
Glass powder was produced. Next, Ingo was used as a conductive material.
The powder of t was adjusted to have an average particle size of 0.01 to 5 μm. Next, these glass powders and the above-mentioned conductive material powder were mixed in the proportions shown in Table 1 to obtain a composition for the resistor paste of the present invention.

次いでこれらに有機バインダーとしてエチルセルロース
、溶剤としてα−テルピネオールからなる有機ビヒクル
を添加し、混練し、粘度が30X 10’ cpsのペ
ーストを作成した。次いで固化したアルミナ基板上に本
発明にかかる抵抗の電極としてCuペーストを所定の回
路にスクリーン印刷、乾燥し、酸素濃度20 ppm以
下の窒素雰囲気中900℃、10分で焼成した。
Next, an organic vehicle consisting of ethyl cellulose as an organic binder and α-terpineol as a solvent was added and kneaded to prepare a paste having a viscosity of 30×10′ cps. Next, on the solidified alumina substrate, a Cu paste was screen printed as a resistor electrode according to the present invention in a predetermined circuit, dried, and fired at 900° C. for 10 minutes in a nitrogen atmosphere with an oxygen concentration of 20 ppm or less.

次いで抵抗所定箇所に上記抵抗体ペーストを200メツ
シユスクリーンでスクリーン印刷、乾燥し、酸素濃度2
0 ppm以下の窒素雰囲気中で900℃、10分で焼
成した。焼成膜厚は約15μmであった。
Next, the above resistor paste was screen printed on a predetermined location of the resistor using a 200 mesh screen, dried, and the oxygen concentration was reduced to 2.
It was fired at 900° C. for 10 minutes in a nitrogen atmosphere of 0 ppm or less. The fired film thickness was about 15 μm.

このようにしてセラミック基板上に回路を作成した。こ
の回路について、抵抗値、抵抗値温度係数(TCR)、
高温放置による抵抗値ドリフトを測定した。これらの結
果を表−1に記載した。表−1から明らかなように本発
明にかかる抵抗体ペーストは抵抗特性に優れ、厚膜回路
用抵抗体ペーストとして十分使用できる特性を有するこ
とが認められる。
In this way, a circuit was created on the ceramic substrate. Regarding this circuit, the resistance value, temperature coefficient of resistance (TCR),
The resistance value drift due to high temperature storage was measured. These results are listed in Table-1. As is clear from Table 1, it is recognized that the resistor paste according to the present invention has excellent resistance characteristics and has characteristics that can be used sufficiently as a resistor paste for thick film circuits.

比較例として本発明にかかる抵抗体ペースト以外のもの
についても同様の評価を行ったので表−2に記載した。
As a comparative example, similar evaluations were conducted on resistor pastes other than the resistor paste according to the present invention, which are listed in Table 2.

なお各特性の測定方法は次の通りである。The method for measuring each characteristic is as follows.

i)抵抗値及び抵抗値温度係数(TCP)25℃、−5
5℃、 + 125℃の抵抗値(R,、。
i) Resistance value and temperature coefficient of resistance (TCP) 25°C, -5
5℃, +125℃ resistance value (R,,.

R−−s 、 Rl−s )を恒温槽中で抵抗計により
測定し、次の式により算出した。
R--s, Rl-s) were measured using a resistance meter in a constant temperature bath, and calculated using the following formula.

(ppm/”C) (ppm/”C) if)高温放置による抵抗値ドリフト 150℃の恒温槽中で100時間放置し、次の式により
算出した。
(ppm/"C) (ppm/"C) if) Resistance value drift due to high temperature storage The resistance value was left in a constant temperature bath at 150° C. for 100 hours, and calculated using the following formula.

上式において R1゜。、= 100時間後の抵抗値 Ro=抵抗の初期値 [発明の効果] 本発明の抵抗体ペーストは窒素雰囲気等の非酸化性雰囲
気中で焼成が可能で、安定した信頼性の高い抵抗をセラ
ミックス基板上に形成可能であり、特に高温放置による
抵抗値ドリフト特性に優れているという効果も認められ
る。
In the above formula, R1°. , = Resistance value after 100 hours Ro = Initial value of resistance [Effects of the invention] The resistor paste of the present invention can be fired in a non-oxidizing atmosphere such as a nitrogen atmosphere, and can produce a stable and highly reliable resistor using ceramics. It is also recognized that it can be formed on a substrate and has excellent resistance value drift characteristics, especially when left at high temperatures.

Claims (2)

【特許請求の範囲】[Claims] (1)無機成分が重量%表示でガラス粉末20〜70と
In_2O_230〜80からなり、当該ガラス粉末は
無機成分が重量%表示で実質的にSiO_215〜60
,Al_2O_30〜30,MgO0〜40,CaO0
〜40,SrO0〜60,BaO0〜60,MgO+C
aO+SrO+BaO10〜60,Li_2O+Na_
2O+K_2O+Cs_2O0〜10,PbO0〜10
,ZnO0〜40,ZrO_2+TiO_20〜10,
B_2O_25〜40からなり、実質的に非酸化性雰囲
気中で焼成するセラミックス基板用抵抗体ペースト。
(1) The inorganic component consists of glass powder 20-70 and In_2O_230-80 in weight%, and the inorganic component in the glass powder is substantially SiO_215-60 in weight%.
, Al_2O_30~30, MgO0~40, CaO0
~40, SrO0~60, BaO0~60, MgO+C
aO+SrO+BaO10~60, Li_2O+Na_
2O+K_2O+Cs_2O0~10, PbO0~10
, ZnO0~40, ZrO_2+TiO_20~10,
A resistor paste for ceramic substrates consisting of B_2O_25-40 and fired in a substantially non-oxidizing atmosphere.
(2)第1項記載の抵抗体ペーストを使用して焼成され
たセラミックス基板。
(2) A ceramic substrate fired using the resistor paste described in item 1.
JP1107729A 1989-04-28 1989-04-28 Resistor paste and ceramic substrate Pending JPH02288203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1107729A JPH02288203A (en) 1989-04-28 1989-04-28 Resistor paste and ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1107729A JPH02288203A (en) 1989-04-28 1989-04-28 Resistor paste and ceramic substrate

Publications (1)

Publication Number Publication Date
JPH02288203A true JPH02288203A (en) 1990-11-28

Family

ID=14466472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1107729A Pending JPH02288203A (en) 1989-04-28 1989-04-28 Resistor paste and ceramic substrate

Country Status (1)

Country Link
JP (1) JPH02288203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104464991A (en) * 2013-09-12 2015-03-25 中国振华集团云科电子有限公司 Method for preparing linear positive temperature coefficient thermistor slurry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104464991A (en) * 2013-09-12 2015-03-25 中国振华集团云科电子有限公司 Method for preparing linear positive temperature coefficient thermistor slurry

Similar Documents

Publication Publication Date Title
TWI230699B (en) Lead-free low-melting glass
JP4839539B2 (en) Lead-free glass, glass frit, glass paste, electronic circuit components and electronic circuits
JPH02289445A (en) Glass composition for coating
JP2005525287A (en) Electronic devices coated with lead and cadmium free electronics overglaze
JP2007176785A (en) Glass paste for over coat and thick film resistance element
JPH03116801A (en) Resistor paste
JPH11310458A (en) Glass ceramic composition, its baking and glass ceramic composite material
JP2011084447A (en) Non-lead glass and composite material
JPH03150234A (en) Resistor paste and ceramic substrate
JPWO2001090012A1 (en) Glass composition and glass-forming material containing the composition
JPH01179741A (en) Glass-ceramic composition
JPS62137897A (en) Insulating layer compound
JP2000203878A (en) Glass ceramic composition
JP2011079718A (en) Bismuth-based non-lead glass and composite material
JPH03131546A (en) Resistor paste and ceramic substrate
JPH06239646A (en) Coating glass composition and paste prepared by using the same
JPH02288203A (en) Resistor paste and ceramic substrate
JPS63307141A (en) Glass composition for insulating layer
JPH03126639A (en) Glass composition for coating
JPH06247742A (en) Electronic parts
JPH0725568B2 (en) Glass composition and insulator using the same
JPH0374005A (en) Resistor paste and ceramics substrate
JPS59207853A (en) Glass composition
JPH038302A (en) Resistor paste and ceramic substrate
JPH03131545A (en) Resistor paste and ceramics substrate