JP2008103372A - Method of adjusting specific resistance of thick-film resistor - Google Patents

Method of adjusting specific resistance of thick-film resistor Download PDF

Info

Publication number
JP2008103372A
JP2008103372A JP2006282125A JP2006282125A JP2008103372A JP 2008103372 A JP2008103372 A JP 2008103372A JP 2006282125 A JP2006282125 A JP 2006282125A JP 2006282125 A JP2006282125 A JP 2006282125A JP 2008103372 A JP2008103372 A JP 2008103372A
Authority
JP
Japan
Prior art keywords
glass
specific resistance
film resistor
thick film
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006282125A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kusano
満洋 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2006282125A priority Critical patent/JP2008103372A/en
Publication of JP2008103372A publication Critical patent/JP2008103372A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Adjustable Resistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of adjusting a specific resistance of a thick-film resistor obtained by firing a resistor paste containing ITO and glass as inorganic components. <P>SOLUTION: The content of SiO<SB>2</SB>in glass contained in a resistor paste is changed to change the content of In dissolved in the glass after firing, thereby adjusting the specific resistance of the thick-film resistor. The content of In dissolved in the glass is set to be changed in a range of ≤30.3 atom%, and to preferably to be changed in a range of ≤17.2 atom%. The content of SiO<SB>2</SB>in the glass contained in the resistor paste is set to preferably to be changed within a range of 9.9 wt.%. Further, the thick-film resistor after firing preferably contains the glass having a volume ratio of 30-70 vol%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、厚膜抵抗体の比抵抗調整方法に関するもので、特に、無機成分としてITOとガラスとを含む抵抗ペーストを焼成して得られた厚膜抵抗体の比抵抗調整方法に関するものである。   The present invention relates to a method for adjusting the specific resistance of a thick film resistor, and more particularly to a method for adjusting the specific resistance of a thick film resistor obtained by firing a resistor paste containing ITO and glass as inorganic components. .

この発明にとって興味ある厚膜抵抗ペーストとして、特開平3−74005号公報(特許文献1)には、無機成分が重量%表示で実質的にガラス粉末 20〜70とITO 0〜100、In 0〜99.99、SbをドープしたSnO+SnO 0〜20からなる導電物質粉末 30〜80からなり、当該ガラス粉末は重量%表示でSiO 12〜60、Al 0〜30、MgO+CaO+SrO+BaO 8〜60、MgO 0〜40、CaO 0〜40、SrO 0〜60、BaO 0〜60、LiO+NaO+KO+CsO 0〜10、PbO 0〜10、ZnO 0〜40、ZrO+TiO 0〜10、B 4〜40、MnO+Fe+CuO+NiO+MoO+WO+Bi+CeO+CoO+Cr+V+Sb+In+Sn 0.1〜20からなる抵抗ペーストが記載されている。 As a thick film resistance paste that is of interest to the present invention, Japanese Patent Laid-Open No. 3-74005 (Patent Document 1) discloses that the inorganic component is substantially expressed in terms of% by weight of glass powder 20 to 70, ITO 0 to 100, In 2 O. 30 to 99.99, composed of conductive material powder 30 to 80 made of SnO 2 + SnO 2 0 to 20 doped with Sb, and the glass powder is SiO 2 12 to 60 and Al 2 O 3 0 to 30 in terms of% by weight. MgO + CaO + SrO + BaO 8-60, MgO 0-40, CaO 0-40, SrO 0-60, BaO 0-60, Li 2 O + Na 2 O + K 2 O + Cs 2 O 0-10, PbO 0-10, ZnO 0-40, ZrO 2 + TiO 2 0~10, B 2 O 3 4~40, MnO + Fe 2 O 3 + CuO + NiO + MoO 2 + WO 2 + Bi 2 O 3 A resistance paste consisting of + CeO 2 + CoO + Cr 2 O 3 + V 2 O 5 + Sb 2 O 3 + In 2 O 3 + Sn 2 0.1-20 is described.

次に、特開平3−80591号公報(特許文献2)には、無機成分が重量%表示でガラス粉末 20〜70とITO 0〜100、In 0〜99.99、SbをドープしたSnO+SnO 0〜20からなる導電物質粉末 30〜80からなり、当該ガラス粉末は重量%表示で実質的にSiO 15〜60、Al 0〜30、MgO+CaO+SrO+BaO 10〜60、MgO 0〜40、CaO 0〜40、SrO 0〜60、BaO 0〜60、LiO+NaO+KO+CsO 0〜10、PbO 0〜10、ZnO 0〜40、ZrO+TiO 0〜10、B 5〜40からなる抵抗ペーストが記載されている。 Next, in Japanese Patent Application Laid-Open No. 3-80591 (Patent Document 2), an inorganic component is doped with glass powder 20 to 70, ITO 0 to 100, In 2 O 3 0 to 99.99, and Sb in terms of% by weight. It consists of conductive material powder 30-80 composed of SnO 2 + SnO 2 0-20, and the glass powder is substantially SiO 2 15-60, Al 2 O 3 0-30, MgO + CaO + SrO + BaO 10-60, MgO 0 in terms of weight%. ~40, CaO 0~40, SrO 0~60, BaO 0~60, Li 2 O + Na 2 O + K 2 O + Cs 2 O 0~10, PbO 0~10, ZnO 0~40, ZrO 2 + TiO 2 0~10, B A resistance paste consisting of 2 O 3 5-40 is described.

次に、特開2002−343602号公報(特許文献3)には、非導電性ガラス粉末(A)と導電性粉末(B)と有機ビヒクル(C)とを含有し、(A)成分が、酸化物換算で、2〜72重量%のPbO、5〜30重量%のBおよび3〜35重量%のSiOを含有し、(B)成分が、酸化インジウム−酸化錫粉末からなり、さらに、(A)成分と(B)成分とが、前者が95〜65重量%に対して後者が5〜35重量%の割合で配合されている抵抗ペーストが記載されている。 Next, JP-A-2002-343602 (Patent Document 3) contains a non-conductive glass powder (A), a conductive powder (B) and an organic vehicle (C), and the component (A) is: It contains 2 to 72% by weight of PbO, 5 to 30% by weight of B 2 O 3 and 3 to 35% by weight of SiO 2 in terms of oxide, and the component (B) is composed of indium oxide-tin oxide powder. Furthermore, a resistance paste is described in which the component (A) and the component (B) are blended in a proportion of 95 to 65% by weight of the former and 5 to 35% by weight of the latter.

次に、特開2004−172250号公報(特許文献4)には、非導電性がラス粉末(A)と導電性粉末(B)と有機ビヒクル(C)とを含有し、(A)成分が酸化物換算で2〜72重量%のPbO、5〜30重量%のBおよび3〜35重量%のSiOを含有し、(B)成分が、酸化インジウム−酸化錫粉末およびルテニウム化合物粉末からなり、さらに、(A)成分と(B)成分とが、前者が80〜95重量%に対して後者が5〜20重量%の割合で配合されている抵抗ペーストが記載されている。 Next, in Japanese Patent Application Laid-Open No. 2004-172250 (Patent Document 4), the non-conductive material contains lath powder (A), conductive powder (B), and organic vehicle (C). 2 to 72% by weight of PbO in terms of oxide, 5 to 30% by weight of B 2 O 3 and 3 to 35% by weight of SiO 2, and the component (B) is an indium oxide-tin oxide powder and a ruthenium compound. A resistance paste is described which is made of powder and further contains (A) component and (B) component in a proportion of 80 to 95% by weight of the former and 5 to 20% by weight of the latter.

以上のような特許文献1〜4の各々に記載される抵抗ペーストは、厚膜抵抗体を形成するために用いられ、厚膜抵抗体を形成するため、抵抗ペーストは塗布され、焼成される。厚膜抵抗体の比抵抗は、一般に、抵抗ペーストに含まれる導電性粉末と非導電性粉末との配合率を変えることによって調整される。また、比抵抗の調整をより容易にし、かつ調整された比抵抗のばらつきを小さくするため、適当な無機添加物を添加したり、導電性粉末として既に比抵抗の高いものを用いたりすることが、上記特許文献1〜4に記載されている。   The resistor paste described in each of Patent Documents 1 to 4 as described above is used to form a thick film resistor, and the resistor paste is applied and fired to form the thick film resistor. The specific resistance of the thick film resistor is generally adjusted by changing the blending ratio of the conductive powder and the non-conductive powder contained in the resistance paste. In addition, in order to make the adjustment of the specific resistance easier and reduce the variation in the adjusted specific resistance, an appropriate inorganic additive may be added, or a conductive powder having a high specific resistance may be used. The above-mentioned patent documents 1 to 4.

しかしながら、上記のような方法によらず、かつより簡易な方法によって、抵抗ペーストを焼成して得られた厚膜抵抗体の比抵抗を調整できる方法が提案されれば、当該技術分野にとって有益であることは言うまでもない。   However, if a method capable of adjusting the specific resistance of the thick film resistor obtained by firing the resistance paste is proposed by a simpler method without using the above method, it is beneficial for the technical field. Needless to say.

また、上記特許文献1および2に記載の抵抗ペーストについて言えば、SiOを比較的多く含むため、ガラス軟化点が高くなり、そのため、厚膜抵抗体を得るための焼成において高温が必要となる。その結果、抵抗ペーストの用途が制限されてしまう。たとえば、積層型セラミックコンデンサの外部電極の少なくとも一部を厚膜抵抗体によって形成し、それによって、抵抗素子をコンデンサ素子に直列に接続したCR複合部品を提供しようとする場合、外部電極の少なくとも一部を構成する厚膜抵抗体を形成するための焼成工程において、それほど高い温度を付与することができない。なぜなら、積層型セラミックコンデンサの内部電極材料として、銀または銅のような融点の比較的低い金属が用いられることが多く、厚膜抵抗体を得るための焼成工程では、このような金属の融点以上の温度を付与することができないからである。
特開平3−74005号公報 特開平3−80591号公報 特開2002−343602号公報 特開2004−172250号公報
Further, regarding the resistance pastes described in Patent Documents 1 and 2, the glass softening point is increased because of containing a relatively large amount of SiO 2, and thus a high temperature is required for firing to obtain a thick film resistor. . As a result, the use of the resistance paste is limited. For example, when it is intended to provide a CR composite component in which at least a part of the external electrode of the multilayer ceramic capacitor is formed of a thick film resistor, and thereby the resistance element is connected in series to the capacitor element, at least one of the external electrodes In the firing step for forming the thick film resistor constituting the part, a very high temperature cannot be applied. This is because a metal having a relatively low melting point, such as silver or copper, is often used as the internal electrode material of the multilayer ceramic capacitor, and in the firing process for obtaining a thick film resistor, the melting point of such a metal is exceeded. It is because the temperature of this cannot be provided.
Japanese Patent Laid-Open No. 3-74005 JP-A-3-80591 JP 2002-343602 A JP 2004-172250 A

そこで、この発明の目的は、抵抗ペーストを焼成して得られた厚膜抵抗体の比抵抗を容易に調整できる方法を提供しようとすることである。   Accordingly, an object of the present invention is to provide a method capable of easily adjusting the specific resistance of a thick film resistor obtained by firing a resistance paste.

この発明の他の目的は、上述のように比抵抗が調整される厚膜抵抗体を得るため、比較的低温での焼成が可能な抵抗ペーストを提供しようとすることである。   Another object of the present invention is to provide a resistance paste that can be fired at a relatively low temperature in order to obtain a thick film resistor whose specific resistance is adjusted as described above.

この発明は、無機成分としてITOとガラスとを含む抵抗ペーストを焼成して得られた厚膜抵抗体の比抵抗調整方法に向けられるものであって、焼成後のガラス中へのIn溶解量を30.3原子%以下の範囲内で変えることによって、厚膜抵抗体の比抵抗を調整する工程を備えることを特徴としている。   The present invention is directed to a method for adjusting the specific resistance of a thick film resistor obtained by firing a resistor paste containing ITO and glass as inorganic components, and the amount of dissolved In in the glass after firing. It is characterized by comprising a step of adjusting the specific resistance of the thick film resistor by changing it within a range of 30.3 atomic% or less.

上述した厚膜抵抗体の比抵抗を調整する工程において、焼成後のガラス中へのIn溶解量は、より限定的に、17.2原子%以下の範囲内で変えられることが好ましい。   In the step of adjusting the specific resistance of the thick film resistor described above, the amount of dissolved In in the glass after firing is more preferably changed within a range of 17.2 atomic% or less.

焼成後のガラス中へのIn溶解量を変えるため、ガラス中のSiO量を変えることが好ましい。この場合において、ガラス中のSiO量は、9.9重量%以下の範囲内で変えられることが好ましい。 In order to change the amount of dissolved In in the glass after firing, it is preferable to change the amount of SiO 2 in the glass. In this case, the amount of SiO 2 in the glass is preferably changed within a range of 9.9% by weight or less.

この発明に従って比抵抗が調整される焼成後の厚膜抵抗体において、ガラスの体積比は30〜70体積%であることが好ましい。   In the thick film resistor after firing whose specific resistance is adjusted according to the present invention, the volume ratio of the glass is preferably 30 to 70% by volume.

この発明によれば、焼成後のガラス中へのIn溶解量を変えることによって、厚膜抵抗体の比抵抗を容易に調整することができる。この場合、ガラス中へのIn溶解量を30.3原子%以下とすることにより、厚膜抵抗体が実質的に絶縁体となることを防止することができる。   According to this invention, the specific resistance of the thick film resistor can be easily adjusted by changing the amount of In dissolved in the glass after firing. In this case, it is possible to prevent the thick film resistor from being substantially an insulator by setting the amount of dissolved In to 30.3 atomic% or less in the glass.

上述した焼成後のガラス中へのIn溶解量を17.2原子%以下とすることにより、比抵抗のばらつきを小さくすることができる。   The variation in specific resistance can be reduced by setting the amount of In dissolved in the glass after firing described above to 17.2 atomic% or less.

ガラス中へのIn溶解量は、ガラス中のSiO量と比較的良好な相関関係を有しているので、抵抗ペーストに含まれるガラスのSiO量を変えることにより、ガラス中へのIn溶解量を変え、それによって、厚膜抵抗体の比抵抗を容易かつ確実に調整することができる。 In dissolution amount into the glass, because it has a relatively good correlation between the amount of SiO 2 in the glass, by changing the amount of SiO 2 of glass contained in the resistive paste, In dissolution in glass By changing the amount, the specific resistance of the thick film resistor can be adjusted easily and reliably.

上述したガラス中のSiO量に関して、9.9重量%以下の範囲内で変えるようにすれば、厚膜抵抗体を得るための抵抗ペーストの焼成を比較的低温で行なうことができるようになる。 If the amount of SiO 2 in the glass is changed within the range of 9.9% by weight or less, the resistance paste for obtaining the thick film resistor can be fired at a relatively low temperature. .

焼成後の厚膜抵抗体において、ガラスの体積比が30〜70体積%となるようにされると、厚膜抵抗体の耐熱衝撃性を高めることができる。   In the thick film resistor after firing, the thermal shock resistance of the thick film resistor can be increased when the volume ratio of the glass is 30 to 70% by volume.

図1は、この発明に係る比抵抗調整方法が適用される厚膜抵抗体を備える電子部品の一例としての抵抗部品を示す平面図である。   FIG. 1 is a plan view showing a resistance component as an example of an electronic component including a thick film resistor to which a specific resistance adjusting method according to the present invention is applied.

図1に示すように、抵抗部品1は、たとえばアルミナからなるセラミック基板2を備えている。セラミック基板2上には、所定の間隔を隔てて2個の電極3および4が形成される。電極3および4は、たとえばAg−Pt合金から構成される。セラミック基板2上には、また、電極3および4間を跨ぐように、厚膜抵抗体5が所定の幅をもって形成される。   As shown in FIG. 1, the resistance component 1 includes a ceramic substrate 2 made of alumina, for example. Two electrodes 3 and 4 are formed on the ceramic substrate 2 at a predetermined interval. The electrodes 3 and 4 are made of, for example, an Ag—Pt alloy. A thick film resistor 5 is formed on the ceramic substrate 2 with a predetermined width so as to straddle the electrodes 3 and 4.

このような抵抗部品1において、電極3および4間には、厚膜抵抗体5によって与えられる所定の抵抗値を有する抵抗素子が実現される。   In such a resistance component 1, a resistance element having a predetermined resistance value provided by the thick film resistor 5 is realized between the electrodes 3 and 4.

上述した厚膜抵抗体5は、無機成分としてITOとガラスとを含む抵抗ペーストを、セラミック基板2上にスクリーン印刷等により付与し、中性ないしは還元性雰囲気中で焼成することによって形成される。抵抗ペーストは、より詳細には、ITO粉末とガラスフリットと有機バインダを含む有機ビヒクルとを混練して得られたものである。   The thick film resistor 5 described above is formed by applying a resistance paste containing ITO and glass as inorganic components to the ceramic substrate 2 by screen printing or the like and firing in a neutral or reducing atmosphere. More specifically, the resistance paste is obtained by kneading ITO powder, glass frit, and an organic vehicle containing an organic binder.

ITOは、通常、Inに対し、SnOを1〜20重量%程度固溶させて合成されたものである。ここで、SnOの比率が上記範囲を下回ると、ITOの導電性が低下し、他方、上記範囲を上回ると、SnOを固溶させるために必要な熱処理が高温・長時間となるため、粒成長が進み、粉末として用いるには長時間の粉砕加工を必要とする。なお、上述のように予め合成されたITO粉末に代えて、In粉末およびSnOを個々に含むペーストを用いると、抵抗ペーストの焼成温度(通常、600〜1200℃)程度の焼成では、両者の固溶はほとんど進まず、十分な導電性を得ることができない。そのため、ITOとしては、予め高温で熱処理して十分に固溶したものが用いられる。 ITO is usually synthesized by dissolving about 1 to 20% by weight of SnO 2 in In 2 O 3 . Here, if the ratio of SnO 2 is below the above range, the conductivity of ITO is reduced. On the other hand, if it exceeds the above range, the heat treatment necessary for dissolving SnO 2 becomes high temperature and long time, Grain growth progresses and long pulverization is required for use as a powder. When a paste containing In 2 O 3 powder and SnO 2 is used instead of the ITO powder synthesized in advance as described above, the firing temperature of the resistance paste (usually 600 to 1200 ° C.) The solid solution of both hardly progresses and sufficient conductivity cannot be obtained. Therefore, as ITO, a material that has been heat-treated at a high temperature in advance and sufficiently dissolved is used.

抵抗ペーストに含まれるITO粉末の粒径としては、平均粒径で0.3〜10μm程度であることが望ましい。ITO粉末の粒径が上記範囲を下回ると、ペースト化が困難となり、他方、上記範囲を上回ると、厚膜抵抗体5中に配列するITO粒子数が少なくなり、抵抗値のばらつきが大きくなるためである。   The particle size of the ITO powder contained in the resistance paste is desirably about 0.3 to 10 μm in average particle size. If the particle size of the ITO powder is less than the above range, pasting becomes difficult. On the other hand, if the particle size exceeds the above range, the number of ITO particles arranged in the thick film resistor 5 decreases, and the variation in resistance value increases. It is.

抵抗ペーストに含まれるガラスフリットの粒径は、平均粒径で0.3〜10μm程度であることが望ましい。ガラスフリットの粒径が上記範囲を下回ると、ペースト化が困難となり、他方、上記範囲を上回ると、焼成後の厚膜抵抗体5の緻密化が不十分となるためである。なお、ガラスフリットとしては、環境に対する負荷を考慮したとき、鉛を含まないものであることが好ましい。   The particle size of the glass frit contained in the resistance paste is desirably about 0.3 to 10 μm as an average particle size. This is because if the particle size of the glass frit is less than the above range, it becomes difficult to make a paste, while if it exceeds the above range, the thick film resistor 5 after firing becomes insufficiently densified. Note that the glass frit preferably does not contain lead in consideration of environmental load.

厚膜抵抗体5の比抵抗は、焼成後のガラス中へのIn溶解量を変えることによって調整される。これは、厚膜抵抗体5の比抵抗は、ガラス中へのIn溶解量と良好な相関関係を有していることが見出されたためである。このことについて、以下に詳述する。   The specific resistance of the thick film resistor 5 is adjusted by changing the amount of In dissolved in the glass after firing. This is because it has been found that the specific resistance of the thick film resistor 5 has a good correlation with the amount of dissolved In in glass. This will be described in detail below.

無機成分としてITOとガラスとを含む抵抗ペーストは、そこに含まれるガラスの粘度(logη)が2〜4となる焼成温度域において厚膜抵抗体5の比抵抗が極小となる。また、このように比抵抗が極小となるとき、比抵抗のばらつきが最も小さくなるため、上記の温度域において最適焼成温度が存在する。一方、比抵抗の極小値は、図2に示すように、ガラスの種類を変えることにより大きく変化する。   In a resistance paste containing ITO and glass as inorganic components, the specific resistance of the thick film resistor 5 is minimized in a firing temperature range where the viscosity (log η) of the glass contained therein is 2 to 4. Further, when the specific resistance is minimized as described above, the variation in specific resistance is minimized, and therefore an optimum firing temperature exists in the above temperature range. On the other hand, as shown in FIG. 2, the minimum value of the specific resistance changes greatly by changing the type of glass.

図2には、ガラス軟化点が互いに異なる3種類のガラスA、BおよびCについての焼成温度と比抵抗との関係が示されている。比抵抗はガラス軟化点に応じた焼成温度で極小となるが、極小値はガラスA、BおよびC間で大きく異なる。   FIG. 2 shows the relationship between the firing temperature and the specific resistance for three types of glasses A, B and C having different glass softening points. The specific resistance is minimized at the firing temperature according to the glass softening point, but the minimal value varies greatly between the glasses A, B and C.

そこで、ガラスの種類によって、比抵抗の極小値が変化する原因を調査した結果、比抵抗の極小値は、図3に示すように、ガラス中のIn溶解量と相関があることを見出した。図3には、後述する実験例において見出された、ガラス中のIn溶解量と比抵抗との関係が示されている。   Therefore, as a result of investigating the cause of the change in the minimum value of the specific resistance depending on the type of glass, it was found that the minimum value of the specific resistance has a correlation with the amount of dissolved In in the glass as shown in FIG. FIG. 3 shows the relationship between the amount of dissolved In in glass and the specific resistance, found in an experimental example to be described later.

なお、ガラス中に30.3原子%を上回るような過度の溶解量をもってInが溶解した場合、後述する実験例によって裏付けられるように、比抵抗が極端に上昇し、実用に供し得ないものとなることがわかっている。また、後述する実験例から、In溶解量が17.2原子%を超えると、比抵抗のばらつきが大きくなることもわかっている。   In addition, when In is dissolved with an excessive amount of dissolution exceeding 30.3 atomic% in the glass, the specific resistance is extremely increased and cannot be put into practical use, as supported by an experimental example described later. I know that In addition, it is known from the experimental examples described later that the variation in specific resistance increases when the amount of dissolved In exceeds 17.2 atomic%.

したがって、ガラス中へのIn溶解量を変えることによって、厚膜抵抗体5の比抵抗を調整するに当たっては、In溶解量を30.3原子%以下の範囲内で変えるようにすることが必要であり、好ましくは、17.2原子%以下の範囲内で変えるようにされる。   Therefore, in adjusting the specific resistance of the thick film resistor 5 by changing the amount of In dissolved in the glass, it is necessary to change the amount of dissolved In within a range of 30.3 atomic% or less. Yes, preferably within a range of 17.2 atomic percent or less.

また、上記のIn溶解量は、図4に示すように、ガラス中のSiO量と比較的良好な相関を示し、SiO比率を変えることにより、In溶解量を変えることができ、結果として、比抵抗の調整が可能であることを見出した。図4には、後述する実験例において見出された、ガラス中のSiO比率とIn溶解量との関係が示されている。 In addition, as shown in FIG. 4, the amount of dissolved In shows a relatively good correlation with the amount of SiO 2 in the glass. By changing the SiO 2 ratio, the amount of dissolved In can be changed. It was found that the resistivity can be adjusted. FIG. 4 shows the relationship between the SiO 2 ratio in glass and the amount of dissolved In, which was found in an experimental example to be described later.

また、同一組成系のガラスでは、SiO量の増大に伴い、図5に示すように、ガラス軟化点が高くなり、かつ最適焼成温度が高くなる傾向が見られた。図5には、後述する実験例において見出された、ガラス中のSiO比率と最適焼成温度との関係が示されている。上述のことから、SiO量の制御により、低温焼成可能な抵抗ペーストを実現できることがわかる。より具体的には、後述する実験例によって裏付けられるように、ガラス中のSiO量を9.9重量%以下とすることにより、800℃未満の温度で焼成することが可能となる。 Moreover, in the glass of the same composition system, as shown in FIG. 5, there was a tendency that the glass softening point was increased and the optimum firing temperature was increased as the amount of SiO 2 increased. FIG. 5 shows the relationship between the SiO 2 ratio in the glass and the optimum firing temperature found in an experimental example described later. From the above, it can be seen that a resistance paste that can be fired at a low temperature can be realized by controlling the amount of SiO 2 . More specifically, as supported by an experimental example described later, by setting the amount of SiO 2 in the glass to 9.9% by weight or less, it becomes possible to perform firing at a temperature of less than 800 ° C.

また、焼成後の厚膜抵抗体5において、ガラスの体積比が30〜70体積%となるように、抵抗ペーストの組成を選ぶことが好ましい。これによって、厚膜抵抗体5の耐熱衝撃性を高めることができ、熱衝撃試験による抵抗変化率の絶対値を1%未満とすることができる。   In addition, in the thick film resistor 5 after firing, it is preferable to select the composition of the resistance paste so that the glass volume ratio is 30 to 70% by volume. Thereby, the thermal shock resistance of the thick film resistor 5 can be improved, and the absolute value of the resistance change rate by the thermal shock test can be made less than 1%.

以上、この発明に係る比抵抗調整方法が適用される厚膜抵抗体を備える電子部品として、図1に示すような抵抗部品1について説明したが、この発明は、たとえば、外部電極において厚膜抵抗体を備え、抵抗素子をコンデンサ素子に直列に接続したCR複合部品を構成する積層型セラミックコンデンサなどにも適用することができる。   As described above, the resistance component 1 as shown in FIG. 1 has been described as the electronic component including the thick film resistor to which the specific resistance adjusting method according to the present invention is applied. The present invention can also be applied to a multilayer ceramic capacitor that constitutes a CR composite component that includes a body and has a resistance element connected in series to a capacitor element.

次に、この発明の範囲および好ましい範囲を求めるために実施した実験例について説明する。   Next, experimental examples carried out to determine the scope and preferred range of the present invention will be described.

(実験例1)
まず、抵抗ペーストに含まれるITO粉末として、In粉末とSnO粉末との合計量に対してSnO粉末が5重量%となるように、In粉末にSnOを混合し、大気中において1400℃の温度で5時間の仮焼を行ない、SnOを十分に固溶させた後、平均粒径約1μmになるまで粉砕処理を施したものを用意した。
(Experimental example 1)
First, ITO powder contained in the resistor paste as SnO 2 powder is 5% by weight relative to the total amount of In 2 O 3 powder and SnO 2 powder, a SnO 2 mixed with In 2 O 3 powder Then, calcination was performed in the air at a temperature of 1400 ° C. for 5 hours to sufficiently dissolve SnO 2, and then subjected to pulverization treatment until the average particle size became about 1 μm.

他方、抵抗ペーストに含まれるガラスフリットとして、表1に示すように、組成および軟化点の互いに異なる複数種類のものを用意した。ここで、用意された各試料に係るガラスフリットの粒径は、平均粒径で1.0〜1.5μmであった。   On the other hand, as the glass frit contained in the resistance paste, as shown in Table 1, a plurality of types having different compositions and softening points were prepared. Here, the particle diameter of the glass frit which concerns on each prepared sample was 1.0-1.5 micrometers in average particle diameter.

次に、上記のように用意されたITO粉末およびガラスフリットに、20重量%のアクリル樹脂を含む有機ビヒクルを加えて混合し、ロール分散処理によって、抵抗ペーストを作製した。この抵抗ペーストにおいて、(ITO粉末):(ガラスフリット):(有機ビヒクル)の体積比率は10:10:80とした。   Next, the ITO powder and glass frit prepared as described above were mixed with an organic vehicle containing 20% by weight of acrylic resin, and a resistance paste was prepared by roll dispersion treatment. In this resistance paste, the volume ratio of (ITO powder) :( glass frit) :( organic vehicle) was 10:10:80.

次に、図1に示した抵抗部品1と同様、Ag−Pt合金からなる2つの電極が、5mmの間隔を隔てて予め形成されたアルミナ基板上に、2つの電極間を跨ぐように、スクリーン印刷により、幅3mmをもって上記の抵抗ペーストからなる膜を形成した。次いで、この抵抗ペースト膜を、150℃の温度で10分間乾燥した後、窒素雰囲気(酸素濃度:5ppm未満)中で、ガラス軟化点(logη)が3.5となる温度、すなわち表1に示した最適焼成温度で15分間保持して焼成を行ない、厚膜抵抗体を得た。なお、焼成後の厚膜抵抗体の厚みは5〜10μmとなるように上記に印刷条件を制御した。   Next, similarly to the resistance component 1 shown in FIG. 1, a screen is formed so that two electrodes made of an Ag—Pt alloy straddle between the two electrodes on an alumina substrate previously formed with an interval of 5 mm. A film made of the above-described resistance paste was formed by printing with a width of 3 mm. Next, after drying this resistance paste film at a temperature of 150 ° C. for 10 minutes, the temperature at which the glass softening point (log η) becomes 3.5 in a nitrogen atmosphere (oxygen concentration: less than 5 ppm), that is, shown in Table 1 is shown. The film was fired at the optimum firing temperature for 15 minutes to obtain a thick film resistor. The printing conditions were controlled as described above so that the thickness of the thick film resistor after firing was 5 to 10 μm.

このようにして得られた各試料に係る厚膜抵抗体について、電極間の抵抗値および膜厚を測定し、比抵抗を算出した。表1に示した比抵抗は、試料数5についての平均値である。また、表1に示すように、比抵抗のばらつきの指標となる3CVを試料数5について求めた。   About the thick film resistor according to each sample thus obtained, the resistance value and the film thickness between the electrodes were measured, and the specific resistance was calculated. The specific resistance shown in Table 1 is an average value for five samples. Further, as shown in Table 1, 3CV, which is an index of variation in specific resistance, was obtained for 5 samples.

また、透過型電子顕微鏡観察およびWDXによるポイント分析を行ない、各試料に係る厚膜抵抗体のガラス中へのIn溶解量を測定した。表1に示したガラス中へのIn溶解量は、試料数5についての平均値である。   Further, observation with a transmission electron microscope and point analysis by WDX were performed, and the amount of dissolved In in the glass of the thick film resistor according to each sample was measured. The amount of In dissolved in the glass shown in Table 1 is an average value for 5 samples.

Figure 2008103372
Figure 2008103372

表1に示したガラス中へのIn溶解量と比抵抗との関係が前述の図3においてグラフ化されている。図3からよくわかるように、In溶解量の増大に伴い、比抵抗が指数関数的に増大することが確認できた。また、In溶解量が多く、比抵抗の高いものほど、比抵抗のばらつきが増大する傾向が認められた。この点で、表1の試料1〜10および15のように、In溶解量を17.2原子%以下とすることが好ましく、これにより、比抵抗のばらつきを3CVで20.5%以下とすることができる。   The relationship between the amount of dissolved In and the specific resistance shown in Table 1 is graphed in FIG. As can be seen from FIG. 3, it was confirmed that the specific resistance increased exponentially as the amount of dissolved In increased. Moreover, the tendency for the dispersion | variation in specific resistance to increase was recognized, so that there was much In melt | dissolution amount and specific resistance was high. In this regard, as in samples 1 to 10 and 15 of Table 1, the amount of dissolved In is preferably 17.2 atomic% or less, and thereby, the variation in specific resistance is 20.5% or less at 3 CV. be able to.

また、ガラス中へのIn溶解量が30.3原子%を超える試料14および16では、抵抗測定器の上限(1GΩ)を超えたため、電極間の抵抗値を測定できなかった。これら試料14および16に係る厚膜抵抗体は、実質的に絶縁体となり、正確な意味での抵抗体としては実用に供し得ないものとなった。これは、ガラス中へのITO溶解量が増大するに従い、ITO粒子間のガラス層の厚みが増大することによるものと推測できる。すなわち、ガラス層の厚みが薄い場合、トンネル伝導効果あるいはホッピング伝導効果により、電子の移動が可能で、抵抗体として振る舞うが、あるガラス層の厚みをしきい値として電子の移動が不可能となり、絶縁体となるためであると推測できる。   Moreover, in the samples 14 and 16 in which the amount of In dissolved in the glass exceeded 30.3 atomic%, the resistance value between the electrodes could not be measured because the upper limit (1 GΩ) of the resistance measuring instrument was exceeded. These thick film resistors according to Samples 14 and 16 were substantially insulators and could not be put to practical use as resistors in the accurate sense. It can be assumed that this is because the thickness of the glass layer between the ITO particles increases as the amount of dissolved ITO in the glass increases. That is, when the glass layer is thin, electrons can move due to the tunnel conduction effect or the hopping conduction effect, and it behaves as a resistor, but it becomes impossible to move electrons with a certain glass layer thickness as a threshold, It can be inferred that this is because it becomes an insulator.

表1に示したガラス中のSiO量(SiO比率)とガラス中へのIn溶解量との関係が前述の表4においてグラフ化されている。他の成分の影響もあるため、一概にSiO比率のみでIn溶解量との相関を示すことは難しいが、同一組成系内で比較すると、表4からよくわかるように、SiO比率の増大に伴い、In溶解量が増大する傾向が見られた。 The relationship between the amount of SiO 2 (SiO 2 ratio) in the glass shown in Table 1 and the amount of dissolved In in the glass is graphed in Table 4 described above. Since there is an influence of other components, it is difficult to show a correlation with the dissolved amount of In only by the SiO 2 ratio in general. However, when compared in the same composition system, the increase in the SiO 2 ratio can be seen from Table 4. Along with this, there was a tendency for the amount of dissolved In to increase.

表1に示したガラス中のSiO量(SiO比率)と最適焼成温度(ガラス粘度logηが3.5となる温度)との関係が前述の表5においてグラフ化されている。表5からよくわかるように、最適焼成温度は、ガラス中のSiO比率が低いほど低くなる傾向が見られた。一般に、焼成温度が高すぎる場合、基板の反りや配線および/または電極材料の拡散などにより、特性が低下するという問題を引き起こす。また、生産性、消費エネルギー等を考慮すると、焼成温度としては800℃未満であることが望ましい。このような観点から、試料1〜4のように、ガラス中のSiO量を9.9重量%以下とすることが望ましい。 The relationship between the amount of SiO 2 in the glass shown in Table 1 (SiO 2 ratio) and the optimum firing temperature (temperature at which the glass viscosity log η becomes 3.5) is graphed in Table 5 described above. As can be seen from Table 5, the optimum firing temperature tended to be lower as the SiO 2 ratio in the glass was lower. In general, when the firing temperature is too high, there is a problem that characteristics deteriorate due to warpage of the substrate, diffusion of wiring and / or electrode materials, and the like. In view of productivity, energy consumption, etc., the firing temperature is preferably less than 800 ° C. From such a viewpoint, it is desirable that the amount of SiO 2 in the glass is 9.9% by weight or less as in samples 1 to 4.

(実験例2)
実験例2では、焼成後の厚膜抵抗体におけるガラスの体積比について、その最適範囲を求めた。
(Experimental example 2)
In Experimental Example 2, the optimum range was determined for the volume ratio of the glass in the thick film resistor after firing.

実験例1における試料3の場合と同様のガラスフリットを用い、(ITO粉末):(ガラスフリット):(有機ビヒクル)の体積比率を4〜16:16〜4:80とし、表2のガラス比率の欄に示されるように、焼成後に残存する成分については、ITOが20〜80体積%、ガラスが80〜20体積%の各範囲で変えたことを除いて、実験例1の場合と同様の工程を経て、各試料に係る厚膜抵抗体を得た。   Using the same glass frit as in the case of Sample 3 in Experimental Example 1, the volume ratio of (ITO powder) :( glass frit) :( organic vehicle) was 4-16: 16-4: 80, and the glass ratios in Table 2 As shown in the column, the components remaining after firing were the same as those in Experimental Example 1 except that ITO was changed in each range of 20 to 80% by volume and glass was changed to 80 to 20% by volume. Through the process, a thick film resistor according to each sample was obtained.

そして、各試料に係る厚膜抵抗体について、実験例1の場合と同様の方法により、抵抗値および膜厚を測定して、比抵抗を算出し、これを初期比抵抗とした。また、アルミナ基板上に形成された厚膜抵抗体に対して、−50℃の温度を30分間保持し、次いで150℃の温度を30分間保持する、熱衝撃試験を200サイクル実施し、この熱衝撃試験後の比抵抗を求めた。そして、抵抗変化率を、抵抗変化率=(試験後比抵抗−初期比抵抗)/初期比抵抗の式より求めた。これらの結果が表2に示されている。   And about the thick film resistor which concerns on each sample, the resistance value and the film thickness were measured by the method similar to the case of Experimental example 1, the specific resistance was calculated, and this was made into the initial specific resistance. In addition, a thermal shock test was performed for 200 cycles on the thick film resistor formed on the alumina substrate by holding a temperature of −50 ° C. for 30 minutes and then holding a temperature of 150 ° C. for 30 minutes. The specific resistance after the impact test was determined. And the resistance change rate was calculated | required from the formula of resistance change rate = (specific resistance after a test-initial specific resistance) / initial specific resistance. These results are shown in Table 2.

Figure 2008103372
Figure 2008103372

表2に示すように、ガラス比率が20〜25体積%の試料21および22では、熱衝撃試験後に比抵抗の著しい増大が見られた。これは、ITO粒子間の結合材であるガラスが不足したため、熱衝撃の際の基板との線膨張率の差でITO粒子間に微細なクラックが生じたためであると考えられる。   As shown in Table 2, in Samples 21 and 22 having a glass ratio of 20 to 25% by volume, a significant increase in specific resistance was observed after the thermal shock test. This is thought to be because fine cracks were generated between the ITO particles due to the difference in the coefficient of linear expansion from the substrate during thermal shock because the glass serving as a binder between the ITO particles was insufficient.

一方、ガラス比率が30〜70体積%の試料23〜31では、熱衝撃試験前後での比抵抗にほとんど変化が見られなかった。   On the other hand, in the samples 23 to 31 having a glass ratio of 30 to 70% by volume, almost no change was observed in the specific resistance before and after the thermal shock test.

ガラス比率が75〜80体積%の試料32および33では、抵抗値が測定上限を超え、測定不可能であった。これは、絶縁体としてのガラス比率が増大し、ITO粒子間のガラス層の厚みが増大しすぎたためであると考えられる。   In the samples 32 and 33 having a glass ratio of 75 to 80% by volume, the resistance value exceeded the upper limit of measurement and measurement was impossible. This is considered to be because the glass ratio as an insulator increased and the thickness of the glass layer between ITO particles increased too much.

この発明に係る比抵抗調整方法が適用される厚膜抵抗体を備える電子部品の一例としての抵抗部品1を示す平面図である。It is a top view which shows the resistance component 1 as an example of an electronic component provided with the thick film resistor to which the specific resistance adjustment method concerning this invention is applied. 3種類のガラスA、B、およびCについての焼成温度と比抵抗との関係を示す図である。It is a figure which shows the relationship between the calcination temperature about 3 types of glass A, B, and C, and a specific resistance. 厚膜抵抗体についてのIn溶解量と比抵抗との関係を示す図である。It is a figure which shows the relationship between In dissolution amount and specific resistance about a thick film resistor. 厚膜抵抗体についてのガラス中のSiO比率とIn溶解量との関係を示す図である。It is a diagram showing the relationship between SiO 2 ratio and the In amount dissolved in the glass for the thick film resistor. 厚膜抵抗体についてのガラス中のSiO比率と最適焼成温度との関係を示す図である。It is a diagram showing the relationship between SiO 2 ratio and the optimum firing temperature in the glass for the thick film resistor.

符号の説明Explanation of symbols

1 抵抗部品
2 セラミック基板
3,4 電極
5 厚膜抵抗体
DESCRIPTION OF SYMBOLS 1 Resistance component 2 Ceramic substrate 3, 4 Electrode 5 Thick film resistor

Claims (5)

無機成分としてITOとガラスとを含む抵抗ペーストを焼成して得られた厚膜抵抗体の比抵抗調整方法であって、
焼成後の前記ガラス中へのIn溶解量を30.3原子%以下の範囲内で変えることによって、厚膜抵抗体の比抵抗を調整する工程を備える、厚膜抵抗体の比抵抗調整方法。
A method for adjusting the specific resistance of a thick film resistor obtained by firing a resistor paste containing ITO and glass as inorganic components,
A method for adjusting the specific resistance of a thick film resistor, comprising a step of adjusting the specific resistance of the thick film resistor by changing the amount of In dissolved in the glass after firing within a range of 30.3 atomic% or less.
前記厚膜抵抗体の比抵抗を調整する工程において、焼成後の前記ガラス中へのIn溶解量を17.2原子%以下の範囲内で変えることが行なわれる、請求項1に記載の厚膜抵抗体の比抵抗調整方法。   2. The thick film according to claim 1, wherein in the step of adjusting the specific resistance of the thick film resistor, the amount of dissolved In in the glass after firing is changed within a range of 17.2 atomic% or less. Method for adjusting the specific resistance of the resistor. 焼成後の前記ガラス中へのIn溶解量を変えるため、前記ガラス中のSiO量を変える工程を備える、請求項1または2に記載の厚膜抵抗体の比抵抗調整方法。 The method for adjusting the specific resistance of the thick film resistor according to claim 1, further comprising a step of changing the amount of SiO 2 in the glass in order to change the amount of dissolved In in the glass after firing. 前記ガラス中のSiO量を変える工程において、前記ガラス中のSiO量を9.9重量%以下の範囲内で変えることが行なわれる、請求項3に記載の厚膜抵抗体の比抵抗調整方法。 In the step of varying the amount of SiO 2 in said glass, the SiO 2 content of the glass be varied in the range 9.9 wt% or less is performed, the specific resistance adjusting thick film resistor according to claim 3 Method. 焼成後の前記厚膜抵抗体において、前記ガラスの体積比は30〜70体積%である、請求項1ないし4のいずれかに記載の厚膜抵抗体の比抵抗調整方法。   The method for adjusting the specific resistance of the thick film resistor according to any one of claims 1 to 4, wherein the glass has a volume ratio of 30 to 70% by volume in the thick film resistor after firing.
JP2006282125A 2006-10-17 2006-10-17 Method of adjusting specific resistance of thick-film resistor Pending JP2008103372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282125A JP2008103372A (en) 2006-10-17 2006-10-17 Method of adjusting specific resistance of thick-film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282125A JP2008103372A (en) 2006-10-17 2006-10-17 Method of adjusting specific resistance of thick-film resistor

Publications (1)

Publication Number Publication Date
JP2008103372A true JP2008103372A (en) 2008-05-01

Family

ID=39437504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282125A Pending JP2008103372A (en) 2006-10-17 2006-10-17 Method of adjusting specific resistance of thick-film resistor

Country Status (1)

Country Link
JP (1) JP2008103372A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856026A (en) * 2012-09-10 2013-01-02 临安爱华电子有限公司 Method for adjusting printed resistor resistance value

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374005A (en) * 1989-08-15 1991-03-28 Asahi Glass Co Ltd Resistor paste and ceramics substrate
JPH0380591A (en) * 1989-08-23 1991-04-05 Asahi Glass Co Ltd Resistor paste and ceramic substrate
JP2002343602A (en) * 2001-05-15 2002-11-29 Sumitomo Metal Mining Co Ltd Thick-film resistor composition, thick-film resistor using the same and formation method the resistor
JP2004172250A (en) * 2002-11-19 2004-06-17 Sumitomo Metal Mining Co Ltd Thick-film resistor composition and thick-film resistor using the same, and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374005A (en) * 1989-08-15 1991-03-28 Asahi Glass Co Ltd Resistor paste and ceramics substrate
JPH0380591A (en) * 1989-08-23 1991-04-05 Asahi Glass Co Ltd Resistor paste and ceramic substrate
JP2002343602A (en) * 2001-05-15 2002-11-29 Sumitomo Metal Mining Co Ltd Thick-film resistor composition, thick-film resistor using the same and formation method the resistor
JP2004172250A (en) * 2002-11-19 2004-06-17 Sumitomo Metal Mining Co Ltd Thick-film resistor composition and thick-film resistor using the same, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856026A (en) * 2012-09-10 2013-01-02 临安爱华电子有限公司 Method for adjusting printed resistor resistance value

Similar Documents

Publication Publication Date Title
JP2007103594A (en) Resistor composition and thick film resistor
KR100693896B1 (en) Thick-film resistor paste and thick-film resistor
JP2005235754A (en) Conductive material, its manufacturing method, resistor paste, resistor and electronic component
JPWO2004047124A1 (en) Resistor paste, resistor and electronic components
WO2018150890A1 (en) Resistor composition, resistor paste containing same, and thick-film resistor using same
JP2008103372A (en) Method of adjusting specific resistance of thick-film resistor
JP2001196201A (en) Thick film resistor
JP2005209744A (en) Thick film resistor paste, thick film resistor, electronic component
JP2005236274A (en) Resistive paste, resistor and electronic components
JP2006229164A (en) Thick-film resistor paste and thick-film resistor
JP2006261350A (en) Resistor paste and resistor
JP2005244115A (en) Resistor paste, resistor and electronic part
JP2018067640A (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor, and method for manufacturing positive temperature coefficient resistor
JP3800614B1 (en) Thick film resistor paste and thick film resistor
JP2006279043A (en) Thick film resistor paste, thick film resistor, and electronic component
JP2005129806A (en) Resistor paste and thick film resistor
JP7116362B2 (en) Resistor composition, resistor paste, and resistor
JP2006261348A (en) Resistor paste and resistor
JP2006202579A (en) Conductor composition and conductive paste
JP2005209738A (en) Thick film resistor and its production process
JP2006165347A (en) Resistor paste, resistor and electronic component
JP2005209740A (en) Thick film resistor and its production process, thick film resistor paste and its production process
JP2006073716A (en) Glass composition for thick film resistor and thick film resistor paste using the same, thick film resistor and electronic part
JP2005072485A (en) Resistor paste and resistor and method for manufacturing resistor
KR20230004486A (en) Thick Film Resistor Pastes, Thick Film Resistors, and Electronic Components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807