JPH0380185A - Method and device for liquid epitaxial growth - Google Patents

Method and device for liquid epitaxial growth

Info

Publication number
JPH0380185A
JPH0380185A JP21589689A JP21589689A JPH0380185A JP H0380185 A JPH0380185 A JP H0380185A JP 21589689 A JP21589689 A JP 21589689A JP 21589689 A JP21589689 A JP 21589689A JP H0380185 A JPH0380185 A JP H0380185A
Authority
JP
Japan
Prior art keywords
substrate
melt
growth
substrate holder
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21589689A
Other languages
Japanese (ja)
Other versions
JPH0784359B2 (en
Inventor
Koichi Hasegawa
孝一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1215896A priority Critical patent/JPH0784359B2/en
Publication of JPH0380185A publication Critical patent/JPH0380185A/en
Publication of JPH0784359B2 publication Critical patent/JPH0784359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain multilayered epitaxial wafers having excellent uniformity of characteristics with good mass productivity by combining the contact and sepn. of a substrate and a melt for growth by the vertical movement of a substrate holder and the linear movement of melt reservoirs, thereby forming plural epitaxial layers on the substrate. CONSTITUTION:While the substrate 14 is set in a substrate holding part 2 of the substrate holder 1, necessary raw materials are put into the melt reservoirs 8, 8',... for growth. The holder 1 is moved to an upper part and is set in this state into a quartz reaction tube of a horizontal furnace. After the inside of the reaction tube is substd. with a gaseous atmosphere, the temp. is increased up to a prescribed temp. to melt the raw materials and to prepare the melt 12 for growth. The temp. in the furnace is set at the growth start temp. of the 1st epitaxial layer and after the melt 12 levels off, a slider 5 is slid to lower the substrate 14 together with the holder 1 and to bring the substrate 14 and the melt 12 into contact with each other. The inside of the furnace is thereafter cooled down to a prescribed temp. at a prescribed rate to grow the 1st epitaxial layer on the substrate surface. The same operation as the above-mentioned operation is thereafter repeated to laminate and grow the epitaxial layers of the 2nd, 3rd....

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は多層の液相エピタキシャル成長方法及びそれに
用いる成長装置に係り、特に特性の面内均一性が良く、
エピタキシャル層表面状態が良好なエピタキシャルウェ
ハーを得るために好適なものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a multilayer liquid phase epitaxial growth method and a growth apparatus used therefor, and in particular has good in-plane uniformity of properties.
This is suitable for obtaining an epitaxial wafer with a good epitaxial layer surface condition.

[従来の技術] m−V族化合物半導体のエピタキシャル成長層は発光ダ
イオード、レーザーダイオードなどの光デバイスや、F
ETなどの高速デバイス等に広く応用されている。さら
に最近ではデバイス・1!ト能を向」ニさせるために数
〜数十オングストロームの半導体薄膜を積み重ねた微細
な構造が要求されている。このような薄膜積層構造は気
相又は液相エピタキシャル成長方法によって作られる。
[Prior art] Epitaxially grown layers of m-V compound semiconductors are used in optical devices such as light emitting diodes and laser diodes,
It is widely applied to high-speed devices such as ET. More recently, Device 1! In order to improve performance, a fine structure in which semiconductor thin films of several to several tens of angstroms are stacked is required. Such thin film stack structures are produced by vapor phase or liquid phase epitaxial growth methods.

化合物半導体基板上に複数のエピタキシャル層を液相成
長させる為には、一般に第4図に示す様なスライドボー
トが用いられている。例えば3層のエピタキシャル層を
成長させる場合、底板9」二の基板収納凹部13に基板
14を置き、その上に底板9に対して相対的に摺動可能
なメルトスライダー10を置く。メルトスライダー10
のメルト収容部11.11’、11°°にはそれぞれ目
的とするエピタキシャル層を成長させる為に必要な組成
の成長用メルト12.12°、12”が収容されている
。この状態でスライドポー1〜をエピタキシャル成長炉
(図示せず)内に挿入し、11□ガスあるいは不活性ガ
ス等の雰囲気ガス中で所定の温度まで昇温する。成長用
メルトが均一になった後にメルトスライダー10を矢印
方向にスライドさせ、基板14と第1の成長用メルト1
2とを接触させる。この状態で炉内温度を徐々に冷却し
、基板14上に第1のエピタキシャル層を成長させる。
In order to liquid phase grow a plurality of epitaxial layers on a compound semiconductor substrate, a slide boat as shown in FIG. 4 is generally used. For example, when growing three epitaxial layers, the substrate 14 is placed in the substrate storage recess 13 of the bottom plate 9, and the melt slider 10, which is slidable relative to the bottom plate 9, is placed on top of the substrate 14. melt slider 10
Growth melts 12, 12° and 12'' having the composition necessary to grow the intended epitaxial layer are respectively accommodated in the melt storage portions 11.11' and 11°.In this state, the slide port is opened. 1 to 1 are inserted into an epitaxial growth furnace (not shown) and heated to a predetermined temperature in an atmosphere gas such as 11□ gas or inert gas.After the growth melt becomes uniform, move the melt slider 10 in the direction of the arrow. the substrate 14 and the first growth melt 1.
Contact with 2. In this state, the temperature inside the furnace is gradually cooled and a first epitaxial layer is grown on the substrate 14.

所定量のエピタキシャル層が成長した後、メルトスライ
ダー10をさらに矢印方向にスライドさせ、基板14と
メルト12を分離する。次にメルト12°と接触させ再
び徐冷して第2のエピタキシャル層を成長させる。以下
同様にして第3のエピタキシャル層成長が終了した後、
基板14とメルト12°゛を分離し放冷する。
After a predetermined amount of epitaxial layer has grown, the melt slider 10 is further slid in the direction of the arrow to separate the substrate 14 and the melt 12. Next, it is brought into contact with the melt at 12° and slowly cooled again to grow a second epitaxial layer. After the third epitaxial layer growth is completed in the same manner,
The substrate 14 and the melt 12° are separated and allowed to cool.

〔発明が解決しようとする課題1 上記方法において底板9上の基板収納凹部13の深さは
、底板9とノル1〜スライダー10が摺動可能とする為
にエピタキシャル層成長後のウェハーの厚さよりも深く
する。この為、基板14に成長用メルト12を分離する
際に基板14にメルトスライダーlOの底部との間にす
きまができ、成長用メル1へ12が完全に分離できず一
部が基板14上に残留する。基板を次のメルトに接触さ
せるとき、この基板14上に残ったメルト12が次のメ
ルト中に持ち込まれる為メルトの組成が変化してしまい
、所望の組成のエピタキシャル層が得られず、ウェハー
面内でのエピタキシャル成長層の組成のバラツキも大き
くなる欠点がある。また、最終エピタキシャル層の成長
後、基板とメルトを分離する際に、基板14上にメルト
の一部が残るとエピタキシャル層表面にメルトの跡がつ
き、良好なエピタキシャル層表面が得られないという欠
点もある。
[Problem to be Solved by the Invention 1] In the above method, the depth of the substrate storage recess 13 on the bottom plate 9 is set to be smaller than the thickness of the wafer after epitaxial layer growth in order to allow the bottom plate 9 and the nols 1 to 1 to sliders 10 to slide. Also make it deeper. For this reason, when separating the growth melt 12 onto the substrate 14, a gap is created between the substrate 14 and the bottom of the melt slider 1O, and the growth melt 12 cannot be completely separated, and a portion of it remains on the substrate 14. remain. When the substrate is brought into contact with the next melt, the melt 12 remaining on this substrate 14 is brought into the next melt, so the composition of the melt changes, making it impossible to obtain an epitaxial layer with the desired composition, and causing the wafer surface to deteriorate. The disadvantage is that the composition of the epitaxially grown layer varies widely within the layer. Another disadvantage is that when the substrate and the melt are separated after the growth of the final epitaxial layer, if some of the melt remains on the substrate 14, traces of the melt will be left on the epitaxial layer surface, making it impossible to obtain a good epitaxial layer surface. There is also.

さらに、ノル1〜スライダー10をスライドさせる際に
メルト12中あるいは基板14周辺部等に析出した多結
晶品出物等との摩擦により基板表面にキズが発生する場
合がある。量産性についても例えば3層成長させる場合
には基板1枚について3個の成長用メルトが必要であり
量産性に乏しい。
Further, when sliding the sliders 1 to 10, scratches may occur on the substrate surface due to friction with polycrystalline products deposited in the melt 12 or around the substrate 14. Regarding mass productivity, for example, when growing three layers, three growth melts are required for one substrate, which is poor in mass productivity.

表面状態の良好なエピタキシャル成長層を得る手段とし
ては、竪型(デイツプ方式)の液相成長方法がある。竪
型法はメルト溜に入れられたメルト中に基板を浸漬して
エピタキシャル成長させ、成長終了後基板を引上げて基
板表面に成長用メルトが残留しないようにするものであ
る。本出願人も先に複層エピタキシャル成長用の装置を
提案した(特開昭62−83398参照)。この装置は
複数の溶液槽を円周上に配列して回転可能とし、基板を
セットした基板保持具を第1の成長溶液槽から順次移し
換えていくことにより、連続して多層のエピタキシャル
層を成長させるものである。
As a means for obtaining an epitaxially grown layer with a good surface condition, there is a vertical (dip method) liquid phase growth method. In the vertical method, a substrate is immersed in a melt placed in a melt reservoir for epitaxial growth, and after the growth is completed, the substrate is pulled up to prevent the growth melt from remaining on the surface of the substrate. The present applicant has also previously proposed an apparatus for multilayer epitaxial growth (see Japanese Patent Application Laid-Open No. 62-83398). This device has a plurality of solution tanks arranged on the circumference and is rotatable, and by sequentially transferring the substrate holder holding the substrate from the first growth solution tank, multiple epitaxial layers can be continuously grown. It is something that grows.

この方式ではエピタキシャル層の数を増やす場合は溶液
槽を収容する成長炉中の反応管の内径を大きくせねばな
らず、また、1回に処理する基板枚数を増やす場合も反
応管の直径を大きくしなければならない。反応管は通常
高純度石英で造るが、強度的にも経済的にも直径40c
m程度が限度であリ、これ以」二大きな直径の反応管は
実用的でない。つまり、1回の処理枚数を増やして大量
生産しようとしても装置上の制約がある。
In this method, when increasing the number of epitaxial layers, it is necessary to increase the inner diameter of the reaction tube in the growth furnace that houses the solution bath, and when increasing the number of substrates processed at one time, the diameter of the reaction tube must be increased. Must. The reaction tube is usually made of high-purity quartz, but the diameter is 40cm for both strength and economy.
The diameter of the reaction tube is approximately 1.5 m, and it is not practical to use a reaction tube with a diameter larger than this. In other words, even if an attempt is made to mass produce by increasing the number of sheets processed at one time, there are restrictions on the equipment.

これに対して本発明の方法では、反応管の直径を拡大す
る必要は無く、従来の直径のまま長さを長くすることに
より溶液槽の大きさや数を増やすことが可能であり、量
産性にも優れた方法である。
On the other hand, in the method of the present invention, there is no need to enlarge the diameter of the reaction tube, and by increasing the length while keeping the conventional diameter, it is possible to increase the size and number of solution tanks, which improves mass production. is also an excellent method.

[課題を解決するための手段1 本発明省は上記の欠点を解決する為に研究を進め、新し
い構造の液相エピタキシャル成長装置を着想し、この装
置を用いたエピタキシャル成長方法により上記欠点を解
決できることを見いだした。本発明による成長方法にお
いては基板を垂直または斜めに保持した基板ホルダーを
定位置で上下方向に移動させることにより、基板ホルダ
ー下方に設置された成長用メルト溜中の成長用メルI〜
中に浸漬させメルトと基板との接触、分離を行なう。ま
た、成長用メルトの移動は基板ホルダーを上方に移動さ
せた状態でメルト溜を直線方向に基板ホルダーに対して
相対的にスライドさせ順次移動させる。上記の基板ホル
ダーを上下方向に移動させることによる基板と成長用メ
ルトとの接触分離と、メルト溜の直線方向の移動を組み
合わせることにより、基板」二に複数のエピタキシャル
層を成長させるものである。この方法によれば基板と成
長用メルトどの分離は、基板を成長用メル1〜から上に
引き上げることによりなされるので成長用メルトは重力
により落下して基板上にはほとんど残らない。従ってメ
ルトが次の成長用メルトに持ち込まれることがない為、
所望する組成のエピタキシャル層が再現性よく得られ均
一性も向上する。基板ホルダーの基板保持部分は装置の
他の部分と摺動することがないのでウェハー表面にキズ
が発生することもない。また、1組(3層エピタキシャ
ルの場合は3個)のメルト溜で複数枚の基板にエピタキ
シャル成長させることができるので従来のスライドボー
ト法と比較して量産性も大巾に向−1ニするし、メルト
溜を縦長方向に拡大することにより、反応管径を拡大す
ることなく1個の基板処理枚数を増大することができる
[Means for Solving the Problems 1] The Ministry of the Invention has conducted research to solve the above-mentioned drawbacks, conceived of a liquid phase epitaxial growth device with a new structure, and found that the above-mentioned drawbacks can be solved by an epitaxial growth method using this device. I found it. In the growth method according to the present invention, a substrate holder that holds a substrate vertically or diagonally is moved vertically at a fixed position, so that a growth melt I~
The melt is immersed in the melt and the substrate is brought into contact and separated. Further, the growth melt is moved by sequentially moving the melt reservoir by sliding the melt reservoir in a linear direction relative to the substrate holder while the substrate holder is moved upward. A plurality of epitaxial layers are grown on the substrate by combining the contact separation between the substrate and the growth melt by moving the substrate holder in the vertical direction and the linear movement of the melt reservoir. According to this method, the substrate and the growth melt are separated by pulling the substrate upward from the growth melts 1 to 1, so that the growth melt falls due to gravity and hardly remains on the substrate. Therefore, the melt will not be carried over to the next growth melt.
An epitaxial layer having a desired composition can be obtained with good reproducibility and uniformity can be improved. Since the substrate holding part of the substrate holder does not slide against other parts of the apparatus, no scratches will occur on the wafer surface. In addition, since epitaxial growth can be performed on multiple substrates using one set (three in the case of three-layer epitaxial) of melt reservoirs, mass productivity is greatly improved compared to the conventional slide boat method. By enlarging the melt reservoir in the longitudinal direction, it is possible to increase the number of substrates that can be processed without enlarging the diameter of the reaction tube.

本方法に用いる装置は、直線方向に移動可能な複数の成
長用メルト溜と上下方向に移動可能な基板ホルダーと該
基板ホルダーの側面に接し直線方向に移動可能なスライ
ダーを有し、スライダーには斜めの溝が形成され、基板
ホルダー側面にはスライダーの溝に入る凸部ガイドが形
成されている。スライダーを直線方向に移動させるとス
ライダーの斜めの溝より基板ホルダーの凸部ガイドに垂
直成分の力と水平方向の力が働く。ここでガイドにより
基板ホルダーを定位置で上下方向に移動可能な構造にし
ておくことにより基板ホルダーは上下方向にのみ移動す
る。
The apparatus used in this method has a plurality of melt reservoirs for growth that are movable in a linear direction, a substrate holder that is movable in a vertical direction, and a slider that is in contact with the side surface of the substrate holder and that is movable in a linear direction. A diagonal groove is formed, and a convex guide that fits into the groove of the slider is formed on the side surface of the substrate holder. When the slider is moved in a straight line, a vertical component of force and a horizontal force are applied to the convex guide of the substrate holder from the diagonal groove of the slider. Here, by making the substrate holder movable in the vertical direction at a fixed position using a guide, the substrate holder moves only in the vertical direction.

本装置を用いてエピタキシャル成長を行なう場合、最初
の成長用メルトと基板の接触までの間、基板ホルダーを
上下に保持しておくと、基板ホルダーは雰囲気ガスに対
して開放状態であり、基板が高温の雰囲気ガス流にさら
される為、基板がAsあるいはP等の易蒸発性元素を含
む化合物である場合は基板表面からのAs抜けあるいは
P抜けが発生するし、エピタキシャル層が不均質になっ
たり、電気特性が変化してしまう場合がある。この場合
装置に基板ホルダーを収納する容器を設置し、基板と最
初の成長用メルトとの接触までの時間基板ホルダーを格
納容器内に収納しておくことにより、基板表面からのい
わゆるAs抜けあるいはP抜けを防ぐことかできる。こ
の時収納容器内にAsもしくはP元素またはAs化合物
もしくはP化合物を入れておくことにより格納容器内の
As圧力もしくはP圧力が高まり、さらに効果は大きく
なる。
When performing epitaxial growth using this device, if the substrate holder is held up and down until the first contact between the growth melt and the substrate, the substrate holder will be open to atmospheric gas and the substrate will be at a high temperature. If the substrate is a compound containing easily evaporable elements such as As or P, As or P may be removed from the substrate surface, and the epitaxial layer may become non-uniform. Electrical characteristics may change. In this case, a container for storing the substrate holder is installed in the device, and by storing the substrate holder in the storage container until the substrate comes into contact with the first growth melt, it is possible to eliminate so-called As or P from the substrate surface. You can prevent it from falling out. At this time, by placing As or P element, As compound, or P compound in the storage container, the As pressure or P pressure in the storage container is increased, and the effect is further increased.

格納容器はメルト溜と同様の容器を準備し、基板ホルダ
ーを収納して雰囲気ガス流から遮断することにより効果
を達成することができる。
This effect can be achieved by preparing a containment vessel similar to the melt reservoir, housing the substrate holder, and shutting it off from the flow of atmospheric gas.

本発明の液相エピタキシャル成長装置の一実施例につい
て図を用いて詳細に説明する。
An embodiment of the liquid phase epitaxial growth apparatus of the present invention will be described in detail with reference to the drawings.

第1図は本発明の液相エピタキシャル成長装置の一実施
例の斜視図、第2図は第1図において基板ホルダーIを
下方に移動した状態におけるAA゛方同方面断面概略図
る。また、第3図は該成0 長装置の動作状態を示す側面図である。
FIG. 1 is a perspective view of an embodiment of the liquid phase epitaxial growth apparatus of the present invention, and FIG. 2 is a schematic cross-sectional view along the AA' direction in a state in which the substrate holder I is moved downward in FIG. Further, FIG. 3 is a side view showing the operating state of the growth device.

基板14は第2図に示すように基板ホルダー1の基板保
持部2にメルトが基板表面に残留しないように垂直ある
いは斜めに保持される。基板ホルダー1は支持体3の中
央空間部4に組み込まれ、支持体3に設けられたガイド
溝3aによって支持体3に対して上下方向にのみ移動可
能である。支持体3の外側には基板ホルダー1の側面に
接してスライダー5が組み込まれ、スライダー5は支持
体3に沿って水平方向に摺動可能となっている。
As shown in FIG. 2, the substrate 14 is held vertically or diagonally by the substrate holding portion 2 of the substrate holder 1 so that no melt remains on the surface of the substrate. The substrate holder 1 is incorporated into the central space 4 of the support 3, and is movable only in the vertical direction relative to the support 3 by means of a guide groove 3a provided in the support 3. A slider 5 is installed on the outside of the support 3 in contact with the side surface of the substrate holder 1, and the slider 5 is horizontally slidable along the support 3.

スライダー5の基板ホルダー側には斜めの溝6が形成さ
れている。また、基板ホルダー1の外側側面にはスライ
ダーの溝6と同一の角度で該溝6に噛合する凸部ガイド
7が形成されている。
A diagonal groove 6 is formed on the substrate holder side of the slider 5. Furthermore, a convex guide 7 is formed on the outer side surface of the substrate holder 1 and engages with the groove 6 of the slider at the same angle.

スライダー5を水平方向に移動させると、基板ホルダー
1の凸部ガイド7がスライダーの溝内を移動することに
より、基板ホルダー1は上下方向に移動する(第3図(
a)、(b))。
When the slider 5 is moved horizontally, the convex guide 7 of the substrate holder 1 moves within the groove of the slider, causing the substrate holder 1 to move vertically (see Fig. 3).
a), (b)).

支持体3の内部には成長用メルト溜8が設置されており
、メルト溜8の最−1部は基板ホルダー11 が最」二部に移動している時の基板保持部2の最下部よ
りも低くなっている。メルト溜8は支持体3の内部を直
線方向に移動させることができる。
A growth melt reservoir 8 is installed inside the support body 3, and the lowest part of the melt reservoir 8 is lower than the lowest part of the substrate holding part 2 when the substrate holder 11 is moved to the lowest part. is also lower. The melt reservoir 8 can be moved inside the support 3 in a linear direction.

この側では成長用メルト清が3槽の場合を図示したが、
成長させるエピタキシャル層の種類に応じてヌル1〜溜
の数を増減する。
This side shows the case where there are 3 tanks of melt liquid for growth.
The number of nulls 1 to 1 is increased or decreased depending on the type of epitaxial layer to be grown.

尚、これらの装置各部は高純度石英で造るのが望ましい
It is preferable that each part of these devices be made of high-purity quartz.

次に本装置を用いた液相エピタキシャル成長方法の一例
を示す。
Next, an example of a liquid phase epitaxial growth method using this apparatus will be described.

基板ホルダー1の基板保持部2に基板14をセットし、
一方成長用メルト溜8.8°、・・・・・・に所望する
エピタキシャル層を成長させるのに必要な原料を入れる
。第3図(a)のように基板ホルダー1を上部に移動さ
せた状態で横型エピタキシャル炉の石英反応管(図示せ
ず)の内部にセットする。反応管内を雰囲気ガスで置換
した後、所定の温度まで昇温し、原料を溶解させて成長
用メルト12を準備する。炉内温度を第1エピタキシャ
ル層の成長開始温度とし、成長用メルI・が均一2 になった後スライダー5をスライドさせて基板ホルダー
1を下方に降下させ、基板14と第1の成長用メルト1
2を接触させる(第3図(b))。
Set the substrate 14 on the substrate holding part 2 of the substrate holder 1,
On the other hand, raw materials necessary for growing a desired epitaxial layer are put into the growth melt reservoir 8.8°. As shown in FIG. 3(a), the substrate holder 1 is moved upward and set inside a quartz reaction tube (not shown) of a horizontal epitaxial furnace. After replacing the inside of the reaction tube with atmospheric gas, the temperature is raised to a predetermined temperature to dissolve the raw materials and prepare the melt 12 for growth. The temperature inside the furnace is set as the growth start temperature of the first epitaxial layer, and after the growth melt I becomes uniform 2, the slider 5 is slid to lower the substrate holder 1, and the substrate 14 and the first growth melt are 1
2 into contact (Fig. 3(b)).

その後炉内温度を所定の速度で所定の温度まで冷却し基
板表面に第1のエピタキシャル層を成長させる。第1の
エピタキシャル層の成長が終了した後、スライダー5を
スライドさせて基板ホルダー■を」ニガに移動させ、基
板14と第1の成長用メルト12を分離する(第3図(
a)の状態)。次に成長用メルト溜8.8′、・・・−
・・をスライドさせ第2の成長用メルl−12’ を基
板ホルダーlの下に移動させる。炉内温度を第2のエピ
タキシャル層の成長開始温度にした後スライダー5をス
ライドさせて基板ホルダー1を降下させ、基板14と第
2の成長用メルト】2゛を接触させる(第3図(C))
。所定の温度まで冷却し第2のエピタキシャル層を成長
させた後、スライダー5をスライドさせ基板ホルダー1
を」1昇させて基板14と成長用メルトI2°を分離さ
せる。以下同様に成長用メルト溜の移動と基板とメルト
の接触、分離を1  ス くり返し、必要な数のエピタキシャル層を順次成長させ
る。
Thereafter, the temperature inside the furnace is cooled down to a predetermined temperature at a predetermined rate, and a first epitaxial layer is grown on the substrate surface. After the growth of the first epitaxial layer is completed, the slider 5 is slid to move the substrate holder 2 to 100 degrees, and the substrate 14 and the first growth melt 12 are separated (see Fig. 3).
a) condition). Next, the melt reservoir for growth 8.8',...-
... to move the second growth melt l-12' under the substrate holder l. After the temperature in the furnace reaches the growth starting temperature of the second epitaxial layer, the slider 5 is slid to lower the substrate holder 1, and the substrate 14 and the second growth melt] 2 are brought into contact (see Fig. 3 (C). ))
. After cooling to a predetermined temperature and growing the second epitaxial layer, the slider 5 is slid to remove the substrate holder 1.
1 to separate the substrate 14 and the growth melt I2°. Thereafter, in the same manner, the movement of the growth melt reservoir, the contact and separation of the substrate and the melt are repeated once, and the required number of epitaxial layers are successively grown.

[実施例1] 第1図に示した液相エピタキシャル成長装置を使用して
、GaAlAsシングルへテロ赤色LEDエピタキシャ
ルウェハーを作成した。P型GaAs基板(2inφ)
は5mm間隔で2枚ずつ+rr+かい合わせで合計60
枚を基板ホルダー1にセットした。第1のメルト溜には
第1の成長メルト用としてGaメタル2400 g 、
 GaAs多結晶170g、 A14.5g、 Zn 
5.Ogを装入した。第2のメルト溜には第2の成長メ
ルト用としてGaメタル2400 g 、GaAs多結
晶60g、Al16 g 、 Te70 gを装入した
。最初、基板ホルダ1を上方に置き、第1のメルト溜8
が基板ホルダ1の下方に位置するようにセットする。装
置を横型エピタキシャル炉の石英反応管内に挿入し、炉
内を11□ガスで置換した後H2ガスを流しながら88
0℃まで昇温する。880℃で120分保持し、メタル
が完全に溶解して均一温度になった後、GaAs基板と
第1の成長用メルトと接触させ、冷却速度 4 03℃/分で850°Cまで冷却した後、GaAs基板
14を第1の成長用メルト8から分離した。次に温度8
50℃のまま成長用メルト溜8゛を基板ボルダ−1の下
に移動させ、G d A s %板14を第2の成長用
メルl−12’ と接触させ4却速度り5℃/分で75
0℃まで冷却した後筒2の成長用メルト12′から分1
iilE した。その後室)品まで1攻ン令し、G +
IAs基板14を炉から取りだし、エピタキシャル成長
層表面及び裏面にそれぞれオーミック電極を形成して0
.3mm角のI−E D素子を作成した。
[Example 1] Using the liquid phase epitaxial growth apparatus shown in FIG. 1, a GaAlAs single hetero red LED epitaxial wafer was produced. P-type GaAs substrate (2inφ)
is 2 pieces at 5mm intervals + rr + stitching for a total of 60
The sheet was set on substrate holder 1. The first melt reservoir contains 2400 g of Ga metal for the first growth melt.
GaAs polycrystal 170g, A14.5g, Zn
5. Og was charged. The second melt reservoir was charged with 2400 g of Ga metal, 60 g of GaAs polycrystal, 16 g of Al, and 70 g of Te for the second growth melt. First, the substrate holder 1 is placed upward, and the first melt reservoir 8
is positioned below the substrate holder 1. The device was inserted into the quartz reaction tube of a horizontal epitaxial furnace, and after replacing the inside of the furnace with 11□ gas, it was heated to 88°C while flowing H2 gas.
Raise the temperature to 0°C. After holding at 880°C for 120 minutes and the metal completely melting to a uniform temperature, the GaAs substrate was brought into contact with the first growth melt and cooled to 850°C at a cooling rate of 403°C/min. , the GaAs substrate 14 was separated from the first growth melt 8 . Then temperature 8
The growth melt reservoir 8' was moved under the substrate boulder 1 while maintaining the temperature at 50°C, and the G d A s % plate 14 was brought into contact with the second growth melt 12' at a cooling rate of 5°C/min. 75 at
1 minute from the growth melt 12' in the rear tube 2 cooled to 0°C.
iiiE I did. After that, I ordered 1 attack to the item (Muro), and G +
The IAs substrate 14 is taken out of the furnace, and ohmic electrodes are formed on the front and back surfaces of the epitaxial growth layer.
.. A 3 mm square I-ED element was created.

[比較例1] 比較のため図4に示す従来の横型スライドホトと同様の
構造をもつ量産用スライドボートを用いて同じGaAl
Asシングルへテロエピタキシャル成長を行なった。実
施例1の装置に使用した横型エピタキシャル炉で、スラ
イドボー1〜では1段に基板2枚で5段、計10枚の2
inφ型P型GaAs基板を一度にセットできた。成長
用メル1−として基板1枚につき、それぞれ第1の成長
メルト用としてGaメタル50 g 、GaAs多結晶
3.54 g 、 A193.8mg、 5 Zn 104mg、第2の成長メルト用としてGaメタ
ル50g、 GaAs多結品]、25g、 AI−33
3mg、 Te1.46mgをセットした。基板と成長
用メルトをセットシたスライドポートを横型エピタキシ
ャル炉の石英反応管内に挿入し、炉内をH2ガスで置換
した後11□ガスを流しながら880℃まで昇温した。
[Comparative Example 1] For comparison, a slide boat for mass production having a structure similar to that of the conventional horizontal slide photocoat shown in FIG.
As single heteroepitaxial growth was performed. In the horizontal epitaxial furnace used in the apparatus of Example 1, in slide board 1~, 5 stages with 2 substrates per stage, a total of 10 2
Inφ type P type GaAs substrates could be set at once. For each substrate as the growth melt 1-, 50 g of Ga metal for the first growth melt, 3.54 g of GaAs polycrystal, 193.8 mg of A, 104 mg of 5 Zn, and 50 g of Ga metal for the second growth melt. , GaAs polycrystalline product], 25g, AI-33
3 mg and Te 1.46 mg were set. The slide port with the substrate and growth melt set was inserted into a quartz reaction tube of a horizontal epitaxial furnace, and after replacing the inside of the furnace with H2 gas, the temperature was raised to 880° C. while flowing 11□ gas.

880℃で120分保持した後メルト溜をスライドさせ
GaAs基板と第1の成長用メルトと接触させた。冷却
速度03℃/分で850℃まで冷却した後再びメルト溜
をスライドさせGaAs基板を第1の成長用メルトから
分離した。次に、温度850℃のままでさらにメエルト
溜をスライドさせ、GaAs基板を第2の成長用メルト
と接触させ冷却速度0.5℃/分で750℃まで冷却し
た後、第2の成長用メルトから分離した。
After holding at 880° C. for 120 minutes, the melt reservoir was slid to bring the GaAs substrate into contact with the first growth melt. After cooling to 850° C. at a cooling rate of 03° C./min, the melt reservoir was slid again to separate the GaAs substrate from the first growth melt. Next, the melt reservoir is further slid while the temperature remains at 850°C, the GaAs substrate is brought into contact with the second growth melt, and the GaAs substrate is cooled to 750°C at a cooling rate of 0.5°C/min. Separated from.

その後室温まで放冷し、GaAs基板を炉から取り出し
、エピタキシャル成長層表面及び裏面にそれぞれオーミ
ック電極を形成し、 0.3mm角のLED素子を作成
した。
Thereafter, it was allowed to cool to room temperature, the GaAs substrate was taken out of the furnace, and ohmic electrodes were formed on the front and back surfaces of the epitaxial growth layer, respectively, to produce a 0.3 mm square LED element.

実施例1と比較例1で作成したL E D素子の輝度に
波長の分布を第5図、第6図に示す。
The luminance and wavelength distributions of the LED elements produced in Example 1 and Comparative Example 1 are shown in FIGS. 5 and 6.

 6 第5図および第6図から明らかなとおり、輝度、波長い
ずれも比較例1に比べて実施例Iの方が分布のバラツキ
が非常に小さい。
6 As is clear from FIGS. 5 and 6, the distribution variations in both luminance and wavelength are much smaller in Example I than in Comparative Example 1.

また、キズやメタル残り跡等による外観検査不良率につ
いても比較例1では約8%の不良が発生するのに対し、
実施例1では不良は約2%と著しく減少した。
In addition, regarding the appearance inspection defect rate due to scratches, metal residue, etc., about 8% of defects occurred in Comparative Example 1, whereas
In Example 1, the number of defects was significantly reduced to about 2%.

[実施例2] 実施例1と同じ第1図に示す装置を用いて、GaAs赤
外LEDエピタキシャルウェハーを作成した。n型Ga
As基板(2inφ)を5mm間隔で2枚ずつ向かい合
わせに基板ホルダーにセットした。第1の成長用メルト
溜に第1の成長メルト用としてGaメタル2400 g
 、 GaAs多結晶384g、 Si 4.8g、第
2の成長用メルト溜に第2の成長メルト用としてGaメ
タル2400g 、 GaAs多結晶240g、 Sj
 3.6gを入れた。
[Example 2] Using the same apparatus shown in FIG. 1 as in Example 1, a GaAs infrared LED epitaxial wafer was produced. n-type Ga
Two As substrates (2 in φ) were set facing each other on a substrate holder with an interval of 5 mm. 2400 g of Ga metal for the first growth melt in the first growth melt reservoir
, 384 g of GaAs polycrystal, 4.8 g of Si, 2400 g of Ga metal for the second growth melt in the second growth melt reservoir, 240 g of GaAs polycrystal, Sj
3.6g was added.

成長用メルト溜に隣接して成長用ヌル1〜溜と友に移動
可能な空のメタル溜を基板ホルダー格納容器として設置
し、基板に第1の成長用メルトを接触させる直前まで基
板ホルダーを該基板ホルダ格納容器内に格納しておき、
基板と第1の成長用メルトの接触以後は次の条件でエピ
タキシャル成長を行なった。
An empty metal reservoir that can be moved from growth null 1 to the reservoir is installed adjacent to the growth melt reservoir as a substrate holder storage container, and the substrate holder is held until just before contacting the first growth melt with the substrate. Store it in the substrate holder storage container,
After contact between the substrate and the first growth melt, epitaxial growth was performed under the following conditions.

装置を横型エピタキシャル炉の石英反応管内に挿入し、
炉内をH2ガスで置換した後、H2ガスを流しながら9
30℃まで昇温した。930℃で60分保持した後、G
aAs基板と第1の成長用メルトを接触させ、冷却速度
0.8℃/分で900℃まで冷却、GaAs基板を第1
の成長用メルトから分離した。次に炉内温度を870℃
まで降温した後基板を第2の成長用メルトと接触させ、
冷却速度1.2℃/分で700℃まで冷却し、基板を第
2の成長用メルトから分離した。その後室温まで放冷し
、GaAs基板を炉から取り出した。
Insert the device into the quartz reaction tube of a horizontal epitaxial furnace,
After replacing the inside of the furnace with H2 gas, while flowing H2 gas,
The temperature was raised to 30°C. After holding at 930℃ for 60 minutes, G
The aAs substrate and the first growth melt are brought into contact and cooled to 900°C at a cooling rate of 0.8°C/min.
isolated from the growth melt. Next, increase the temperature inside the furnace to 870℃
After cooling the substrate to a temperature of
The substrate was cooled to 700° C. at a cooling rate of 1.2° C./min and separated from the second growth melt. Thereafter, it was allowed to cool to room temperature, and the GaAs substrate was taken out from the furnace.

また、基板ホルダー格納容器内底部に基板に接触しない
程度の量のGaAs多結晶を入れ、−に記と同じ方法で
エピタキシャル成長させた。
Further, an amount of GaAs polycrystal was placed in the inner bottom of the substrate holder storage container in an amount that did not contact the substrate, and epitaxial growth was performed in the same manner as described in -.

その結果、エピタキシャル層表面のAs抜けが原因と思
われるピットは格納容器を使用しない場合 8 に比較して大巾に減少した。さらに格納容器内にGaA
s多結晶を入れた状態でJl(板ホルダーを格納し、同
様にエピタキシャル成長を行なうと、ビットは全く発生
しなかった。
As a result, the number of pits thought to be caused by As missing on the surface of the epitaxial layer was significantly reduced compared to when no containment vessel was used. Furthermore, GaA in the containment vessel
When epitaxial growth was performed in the same manner with the Jl (plate holder) stored in the state where the s-polycrystal was inserted, no bits were generated.

上記3種類のエピタキシャルウェハーについてそれぞれ
エピタキシャル表面及び裏面にオーミツ電極を形成し0
.3mm角のLED素子を作成した。
Omitsu electrodes were formed on the epitaxial surface and back surface of each of the three types of epitaxial wafers mentioned above.
.. A 3 mm square LED element was created.

[比較例2] 比較例1と同じスライドボー1〜装置を用いてGaAs
赤外L E Dエピタキシャルウェハーを作成した。基
板収容部にn型GaAs基板をセットし、第1の成長メ
ルト用としてGaメタル50 g 、 GaAs多結晶
8g、 Si 100mg、第2の成長メルト用として
Gaメタル50g、 GaAs多結晶5g、 5175
gをセットする。装置を横型エピタキシャル炉の石英反
応管内に挿入し、炉内をH2ガスで置換した後、H2ガ
スを流しながら930℃まで昇温する。930℃で60
分保持した後メルト溜をスライドさせGaAs基板と第
1の成長用メルトを接触させた。冷却速度0.8℃/分
で900℃まで冷却した後再びメルト溜をスライ 9 ドさせ、GaAs基板を第1の成長用メル1〜から分離
した。次に炉内湯度を870℃まで降温した後、メルト
溜をさらにスライドさせ、GaAs基板を第2の成長用
メルトと接触させ、冷却速度1.2℃/分で700℃ま
で冷却し、第2の成長用メルトから分離した。その後室
温まで放冷し、GaAs基板を炉から取り出し、エピタ
キシャル成長層表面及び裏面にそれぞれオーミック電極
を形成し、 0.3mm角のLED素子を作成した。
[Comparative Example 2] Using the same slide board 1 to device as Comparative Example 1, GaAs
An infrared LED epitaxial wafer was created. An n-type GaAs substrate was set in the substrate storage part, and 50 g of Ga metal, 8 g of GaAs polycrystal, and 100 mg of Si were added for the first growth melt, and 50 g of Ga metal, 5 g of GaAs polycrystal, and 5175 for the second growth melt.
Set g. The apparatus is inserted into a quartz reaction tube of a horizontal epitaxial furnace, and after replacing the inside of the furnace with H2 gas, the temperature is raised to 930° C. while flowing H2 gas. 60 at 930℃
After holding it for a few minutes, the melt reservoir was slid to bring the GaAs substrate into contact with the first growth melt. After cooling to 900° C. at a cooling rate of 0.8° C./min, the melt reservoir was slid again to separate the GaAs substrate from the first growth melt 1. Next, after the temperature in the furnace was lowered to 870°C, the melt reservoir was further slid to bring the GaAs substrate into contact with the second growth melt, and the second growth melt was cooled to 700°C at a cooling rate of 1.2°C/min. isolated from the growth melt. Thereafter, it was allowed to cool to room temperature, the GaAs substrate was taken out of the furnace, and ohmic electrodes were formed on the front and back surfaces of the epitaxial growth layer, respectively, to produce a 0.3 mm square LED element.

実施例2及び比較例2の各LED素子についてそれぞれ
全数検査を実施した。
A 100% inspection was conducted for each of the LED elements of Example 2 and Comparative Example 2.

主な結果を第1表にまとめて示す。The main results are summarized in Table 1.

(以下余白) 第 表 [発明の効果] 上述の様に、本発明の液相エピタキシャル成長装置を用
いて、本発明の液相エピタキシャル成長方法によりエピ
タキシャル成長を行なうことにより、従来より特性の均
一性に優れ、エピタキシャル表面の良好な多層エピタキ
シャルウェハーが得られ、量産性も大巾に向上する。ま
たエピタキシャル条件により基板からのAs、 P等の
易蒸発性I 元素の抜けが発生する場合には、基板ホルダー格納容器
を設置し、基板と成長用メルトの接触の前まで基板を格
納容器内に格納することにより易蒸発性元素の抜けを低
減することができる。このとき格納容器内に易蒸発性元
素を含む化合物を入れることにより効果は更に増大する
(Leaving space below) Table [Effects of the Invention] As described above, by performing epitaxial growth using the liquid phase epitaxial growth apparatus of the present invention and the liquid phase epitaxial growth method of the present invention, the uniformity of characteristics is superior to that of the conventional method. A multilayer epitaxial wafer with a good epitaxial surface can be obtained, and mass productivity can be greatly improved. In addition, if epitaxial conditions cause the loss of easily evaporable I elements such as As and P from the substrate, a substrate holder storage container is installed and the substrate is kept in the storage container until the substrate comes into contact with the growth melt. By storing it, it is possible to reduce the loss of easily evaporable elements. At this time, the effect is further enhanced by placing a compound containing an easily evaporable element in the containment vessel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の液相エピタキシャル成長装置の一実施
例の斜視図、第2図は第1図の装置の基板ホルダーを下
方に移動した状態におけるAA゛方同方面断面概略図3
図は本発明の液相エピタキシャル成長装置の一実施例の
動作状態を示す側面図、第4図は従来の液相エピタキシ
ャル成長装置の断面図、第5図はL E D素子の輝度
の分布図、第6図は第5図と同一のLED素子の発光ピ
ーク波長の分布図である。 1・・−・・・基板ホルダ 2−・−・・基板保持部 3・・・・・・支持体 4・・・−・−支持体中央空間部  2 5・・・・・・スライダ 6・・−・・・スライダー溝 7・・−・・・凸部ガイド 8・・・−・−成長用メルト溜 9・・・・・・底板 O・・・−・・メルトスライダ ト・・・・・メルト収容部 2・・・・・・成長用メルト 3−・−・・一基板収納凹部 4・・・・・・基板
FIG. 1 is a perspective view of an embodiment of the liquid phase epitaxial growth apparatus of the present invention, and FIG. 2 is a schematic cross-sectional view of the apparatus shown in FIG.
4 is a sectional view of a conventional liquid phase epitaxial growth device, FIG. 5 is a luminance distribution diagram of an LED element, and FIG. FIG. 6 is a distribution diagram of the emission peak wavelength of the same LED element as FIG. 5. 1...Substrate holder 2...Substrate holding section 3...Support body 4...-Support central space 2 5...Slider 6. ---Slider groove 7 --- Convex guide 8 --- Melt reservoir for growth 9 --- Bottom plate O --- Melt slider ---・Melt storage part 2...Melt for growth 3...One substrate storage recess 4...Substrate

Claims (4)

【特許請求の範囲】[Claims] (1)横型エピタキシャル成長炉による多層液相エピタ
キシャル成長方法において、基板を垂直もしくは斜めに
保持した基板ホルダーを定位置で上下に移動させるとと
もに、複数個のメルト溜を炉の長手方向に沿って直線的
に移動させ、基板を複数の成長用メルト中に順次浸漬さ
せて連続してエピタキシャル成長させることを特徴とす
る液相エピタキシャル成長方法。
(1) In a multilayer liquid phase epitaxial growth method using a horizontal epitaxial growth furnace, a substrate holder holding a substrate vertically or diagonally is moved up and down in a fixed position, and multiple melt reservoirs are moved linearly along the longitudinal direction of the furnace. A liquid phase epitaxial growth method characterized by moving the substrate and sequentially immersing the substrate in a plurality of growth melts to cause continuous epitaxial growth.
(2)メルト溜に隣接して基板ホルダー格納容器を配設
し、エピタキシャル成長開始前に基板ホルダーを該格納
容器に収納し、基板を高温で保持した後エピタキシャル
成長を開始することを特徴とする第1項記載の液相エピ
タキシャル成長方法。
(2) A first method characterized in that a substrate holder storage container is disposed adjacent to the melt reservoir, the substrate holder is stored in the storage container before the start of epitaxial growth, and the epitaxial growth is started after the substrate is held at a high temperature. The liquid phase epitaxial growth method described in .
(3)基板ホルダー格納容器内に基板を構成する元素の
うち易蒸発性元素もしくはそれらの化合物を共存させる
ことを特徴とする第2項記載の液相エピタキシャル成長
方法。
(3) The liquid phase epitaxial growth method according to item 2, wherein easily evaporable elements or compounds thereof among the elements constituting the substrate are allowed to coexist in the substrate holder storage container.
(4)横長の箱状の支持体と、該支持体内を長手方向に
移動可能な連続した複数のメルト溜と、該支持体内の定
位置で上下方向に移動可能な基板ホルダーと、該支持体
の側面外側と該基板ホルダーの側面外側に接し、該支持
体側面に沿って長手方向に摺動可能なスライダーとから
構成されており、該スライダーの摺動面には斜めの溝を
形成し、前記基板ホルダー側面には前記スライダーの溝
に嵌合する凸部ガイドを形成し、該スライダーを直線方
向に移動させることにより、基板ホルダーが前記メタル
溜内の位置まで上下移動するように構成したことを特徴
とする液相エピタキシャル成長装置。
(4) A horizontally elongated box-shaped support, a plurality of continuous melt reservoirs that are movable in the longitudinal direction within the support, a substrate holder that is movable in the vertical direction at a fixed position within the support, and the support and a slider that is in contact with the outer side surface of the substrate holder and the outer side surface of the substrate holder and is slidable in the longitudinal direction along the side surface of the support, and a diagonal groove is formed on the sliding surface of the slider, A convex guide that fits into the groove of the slider is formed on the side surface of the substrate holder, and by moving the slider in a linear direction, the substrate holder is moved up and down to a position within the metal reservoir. A liquid phase epitaxial growth device featuring:
JP1215896A 1989-08-24 1989-08-24 Liquid phase epitaxial growth system Expired - Lifetime JPH0784359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1215896A JPH0784359B2 (en) 1989-08-24 1989-08-24 Liquid phase epitaxial growth system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1215896A JPH0784359B2 (en) 1989-08-24 1989-08-24 Liquid phase epitaxial growth system

Publications (2)

Publication Number Publication Date
JPH0380185A true JPH0380185A (en) 1991-04-04
JPH0784359B2 JPH0784359B2 (en) 1995-09-13

Family

ID=16680050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1215896A Expired - Lifetime JPH0784359B2 (en) 1989-08-24 1989-08-24 Liquid phase epitaxial growth system

Country Status (1)

Country Link
JP (1) JPH0784359B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939221A (en) * 1972-08-23 1974-04-12
JPS5815218A (en) * 1981-07-20 1983-01-28 Hitachi Ltd Liquid phase epitaxial growth apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939221A (en) * 1972-08-23 1974-04-12
JPS5815218A (en) * 1981-07-20 1983-01-28 Hitachi Ltd Liquid phase epitaxial growth apparatus

Also Published As

Publication number Publication date
JPH0784359B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
EP2071062B1 (en) Process for producing group iii element nitride crystal
KR101936967B1 (en) Group 13 element nitride film and laminate thereof
JP2004292305A (en) Liquid phase epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used for the method
JP2001064098A (en) Method and device for growing crystal, and group iii nitride crystal
US20120111264A1 (en) Method for producing group iii metal nitride single crystal
US3897281A (en) Method for epitaxially growing a semiconductor material on a substrate from the liquid phase
JP4431647B2 (en) Method for improving surface of single crystal silicon carbide substrate and method for growing single crystal silicon carbide
US3809584A (en) Method for continuously growing epitaxial layers of semiconductors from liquid phase
JPS63209122A (en) Method and apparatus for vapor phase thin film crystal growth
US20200181801A1 (en) Ramo4 substrate and method of manufacture thereof, and group iii nitride semiconductor
JPH0380185A (en) Method and device for liquid epitaxial growth
US4052252A (en) Liquid phase epitaxial growth with interfacial temperature difference
WO2011074176A1 (en) Process for production of silicon epitaxial wafer
JP2599767B2 (en) Solution growth equipment
JP5116632B2 (en) Method for producing Group III element nitride crystal
JPS63256599A (en) Gaalas epitaxial wafer and its production
JP2010111556A (en) GROWTH METHOD OF GaN CRYSTAL
JPH02133390A (en) Method and device for multilayer epitaxial growth
JPS62128522A (en) Liquid growth method
JP2006173338A (en) Manufacturing method of epitaxial wafer for light emitting diode
JPH0247439B2 (en) EKISOEPITAKISHARUSEICHOHOHO
JPH0694398B2 (en) Liquid phase epitaxial growth method
JPH0279422A (en) Liquid phase epitaxial growth device and growth method
JPH0522677B2 (en)
JPH01153592A (en) Boat for epitaxial growth

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 14

EXPY Cancellation because of completion of term