JP2004292305A - Liquid phase epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used for the method - Google Patents

Liquid phase epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used for the method Download PDF

Info

Publication number
JP2004292305A
JP2004292305A JP2003333255A JP2003333255A JP2004292305A JP 2004292305 A JP2004292305 A JP 2004292305A JP 2003333255 A JP2003333255 A JP 2003333255A JP 2003333255 A JP2003333255 A JP 2003333255A JP 2004292305 A JP2004292305 A JP 2004292305A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
crystal silicon
sic
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003333255A
Other languages
Japanese (ja)
Other versions
JP4593099B2 (en
Inventor
Yasushi Asaoka
康 浅岡
Tadaaki Kaneko
忠昭 金子
Naokatsu Sano
直克 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Industry Research Organization NIRO
Original Assignee
New Industry Research Organization NIRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Industry Research Organization NIRO filed Critical New Industry Research Organization NIRO
Priority to JP2003333255A priority Critical patent/JP4593099B2/en
Priority to PCT/JP2004/003152 priority patent/WO2004088734A1/en
Publication of JP2004292305A publication Critical patent/JP2004292305A/en
Application granted granted Critical
Publication of JP4593099B2 publication Critical patent/JP4593099B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a high quality and high performance single crystal silicon carbide which has a micropipe defect density in the surface of ≤1 piece/cm<SP>2</SP>, a broad terrace, and a surface with a high flatness. <P>SOLUTION: A single crystal silicon carbide substrate used as a seed crystal and a polycrystalline silicon carbide substrate are superposed and they are placed in a closed vessel 5. The single crystal silicon carbide is epitaxially grown in a liquid phase on the single crystal silicon carbide substrate by previously heating the closed vessel 5 to a temperature of ≥800°C in a preheating chamber 3 having pressure of ≤10<SP>-5</SP>Pa, then reducing the pressure in the closed vessel 5 to pressure of ≤10<SP>-5</SP>Pa, transporting the closed vessel 5 into a heating chamber previously heated to 1,400-2,300°C and in a reduced pressure of ≤10<SP>-2</SP>Pa or in an inert gas atmosphere having prescribed reduced pressure, placing the vessel 5 in the chamber, and interposing a quite thin metallic silicon melt between the single crystal silicon carbide substrate and the polycrystalline silicon carbide substrate by heating the substrates to 1,400-2,300°C in a short period of time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、単結晶炭化ケイ素の液相エピタキシャル成長法及びそれに用いられる熱処理装置に関するものである。   The present invention relates to a liquid phase epitaxial growth method of single crystal silicon carbide and a heat treatment apparatus used for the method.

炭化ケイ素(以下、SiCという。)は、耐熱性及び機械的強度に優れているだけでなく、放射線にも強く、さらに不純物の添加によって電子や正孔の価電子制御が容易である上、広い禁制帯幅を持つ(因みに、6H型のSiC単結晶で約3.0eV、4H型のSiC単結晶で3.3eV)ために、シリコン(以下、Siという。)やガリウムヒ素(以下、GaAsという。)などの既存の半導体材料では実現することができない高温、高周波、耐電圧・耐環境性を実現することが可能で、次世代のパワーデバイス、高周波デバイス用半導体材料として注目され、かつ期待されている。また、六方晶SiCは、窒化ガリウム(以下、GaNという。)と格子定数が近く、GaNの基板として期待されている。   Silicon carbide (hereinafter, referred to as SiC) is not only excellent in heat resistance and mechanical strength, but also resistant to radiation, easy to control valence electrons and holes by adding impurities, and has a wide range. Since it has a forbidden band width (about 3.0 eV for 6H-type SiC single crystal and 3.3 eV for 4H-type SiC single crystal), silicon (hereinafter, referred to as Si) and gallium arsenide (hereinafter, referred to as GaAs). ), Which can achieve high temperature, high frequency, withstand voltage and environmental resistance that cannot be realized with existing semiconductor materials, and is attracting attention and expected as a semiconductor material for next-generation power devices and high-frequency devices. ing. Hexagonal SiC has a lattice constant close to that of gallium nitride (hereinafter, referred to as GaN), and is expected to serve as a GaN substrate.

この種の単結晶SiCは、例えば、特許文献1に記載されているように、ルツボ内の低温側に種結晶を固定配置し、高温側に原料となるSiを含む粉末を配置してルツボを不活性雰囲気中で1450〜2400℃の高温に加熱することによって、Siを含む粉末を昇華させて低温側の種結晶の表面上で再結晶させて単結晶の育成を行なう昇華再結晶法(改良レーリー法)によって形成されているものがある。   As described in Patent Document 1, for example, a single crystal SiC of this type is configured such that a seed crystal is fixedly arranged on a low temperature side in a crucible, and a powder containing Si as a raw material is arranged on a high temperature side. By heating to a high temperature of 1450 to 2400 ° C. in an inert atmosphere, the powder containing Si is sublimated and recrystallized on the surface of the seed crystal on the low temperature side to grow a single crystal, which is a sublimation recrystallization method (improved). Some are formed by the Rayleigh method.

また、例えば、特許文献2に記載されているように、SiC単結晶基板とSi原子及びC原子により構成された板材とを微小隙間を隔てて互いに平行に対峙させた状態で大気圧以下の不活性ガス雰囲気、且つ、SiC飽和蒸気雰囲気下でSiC単結晶基板側が板材よりも低温となるように温度傾斜を持たせて熱処理することにより、微小隙間内でSi原子及びC原子を昇華再結晶させてSiC単結晶基板上に単結晶を析出させるものもある。   Further, for example, as described in Patent Document 2, when a SiC single crystal substrate and a plate material composed of Si atoms and C atoms face each other in parallel with a small gap therebetween, a failure at a pressure lower than atmospheric pressure is caused. In an active gas atmosphere and a SiC saturated vapor atmosphere, a heat treatment is performed with a temperature gradient so that the SiC single crystal substrate side is lower than the plate material, so that Si atoms and C atoms are sublimated and recrystallized in the minute gap. In some cases, a single crystal is deposited on a SiC single crystal substrate.

また、例えば、特許文献3に記載されているように、液相エピタキシャル成長法によってSiC単結晶上に第1のエピタキシャル層を形成した後に、CVD法によって表面に第2のエピタキシャル層を形成して、マイクロパイプ欠陥を除去するものもある。   Further, for example, as described in Patent Document 3, after forming a first epitaxial layer on a SiC single crystal by a liquid phase epitaxial growth method, a second epitaxial layer is formed on the surface by a CVD method, Some also remove micropipe defects.

特開2001−158695号公報JP 2001-15869 A 特開平11−315000号公報JP-A-11-315000 特表平10−509943号公報Japanese Patent Publication No. Hei 10-509943

しかしながら、これら単結晶SiCの形成方法のうち、例えば、特許文献1や特許文献2に記載の昇華再結晶法の場合は、成長速度が数100μm/hrと非常に早い反面、昇華の際にSiC粉末がいったんSi、SiC2、Si2Cに分解されて気化し、さらにルツボの一部と反応する。このために、温度変化によって種結晶の表面に到達するガスの種類が異なり、これらの分圧を化学量論的に正確に制御することが技術的に非常に困難である。また、不純物も混入しやすく、その混入した不純物や熱に起因する歪みの影響で結晶欠陥やマイクロパイプ欠陥等を発生しやすく、また、多くの核生成に起因する結晶粒界の発生など、性能的、品質的に安定した単結晶SiCが得られないという問題がある。 However, among these single crystal SiC formation methods, for example, in the case of the sublimation recrystallization method described in Patent Literature 1 or Patent Literature 2, the growth rate is very fast, several hundreds μm / hr, but the SiC is sublimated during sublimation. The powder is once decomposed into Si, SiC 2 , and Si 2 C and vaporized, and further reacts with a part of the crucible. For this reason, the kind of gas that reaches the surface of the seed crystal varies depending on the temperature change, and it is technically very difficult to precisely control the partial pressure stoichiometrically. In addition, impurities are easily mixed, and crystal defects and micropipe defects are easily generated by the influence of the mixed impurities and heat-induced strain. There is a problem that monocrystalline SiC stable in terms of quality and quality cannot be obtained.

一方、特許文献3に記載のLPE法の場合は、昇華再結晶法で見られるようなマイクロパイプ欠陥や結晶欠陥などの発生が少なく、昇華再結晶法で製造されるものに比べて品質的に優れた単結晶SiCが得られる。その反面、成長過程が、Si融液中へのCの溶解度によって律速されるために、成長速度が10μm/hr以下と非常に遅くて単結晶SiCの生産性が低く、製造装置内の液相を精密に温度制御しなくてはならない。また、工程が複雑となり、単結晶SiCの製造コストが非常に高価なものになる。   On the other hand, in the case of the LPE method described in Patent Document 3, the occurrence of micropipe defects and crystal defects as seen in the sublimation recrystallization method is small, and the quality is lower than that produced by the sublimation recrystallization method. Excellent single crystal SiC is obtained. On the other hand, since the growth process is controlled by the solubility of C in the Si melt, the growth rate is very slow at 10 μm / hr or less, and the productivity of single crystal SiC is low. Temperature must be precisely controlled. In addition, the process becomes complicated, and the manufacturing cost of single crystal SiC becomes very expensive.

本発明は前記問題に鑑みてなされたもので、マイクロパイプ欠陥や界面欠陥等の発生が少ないとともに、幅広なテラスを有し表面の平坦度の高い、高品質、高性能な単結晶SiCの液相エピタキシャル成長法及びそれに用いられる熱処理装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problem, and has a low occurrence of micropipe defects and interface defects, and has a wide terrace and a high surface flatness. It is an object of the present invention to provide a phase epitaxial growth method and a heat treatment apparatus used for the method.

前記課題を解決するための本発明に係る単結晶SiCの液相エピタキシャル成長法は、種結晶となる単結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを重ね、密閉容器内に設置して、高温熱処理を行なうことによって、前記単結晶炭化ケイ素基板と前記多結晶炭化ケイ素基板との間に、熱処理中に極薄金属シリコン融液を介在させ、前記単結晶炭化ケイ素基板上に単結晶炭化ケイ素を液相エピタキシャル成長させる単結晶炭化ケイ素の液相エピタキシャル成長法であって、前記密閉容器を、予め圧力10-5Pa以下の高真空の予備加熱室で800℃以上に加熱するとともに、前記密閉容器内を圧力10-5Pa以下に減圧し、予め1400℃〜2,300℃に加熱された圧力10-2Pa以下の真空好ましくは、10-5Pa以下の真空、、又は予め圧力10-5Pa以下の高真空に到達した後に若干の不活性ガスを導入した希薄ガス雰囲気下の加熱室に移動して設置することで、前記単結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを短時間で1400℃〜2,300℃に加熱して微結晶粒界の存在しない、表面のマイクロパイプ欠陥密度が1/cm2以下である単結晶炭化ケイ素を製造するものである。 The liquid crystal epitaxial growth method of single crystal SiC according to the present invention for solving the above-mentioned problem is characterized in that a single crystal silicon carbide substrate serving as a seed crystal and a polycrystalline silicon carbide substrate are stacked, placed in a closed container, and subjected to a high-temperature heat treatment. By interposing an ultra-thin metal silicon melt during the heat treatment between the single-crystal silicon carbide substrate and the polycrystalline silicon carbide substrate, the single-crystal silicon carbide is liquefied on the single-crystal silicon carbide substrate. A liquid-phase epitaxial growth method of single-crystal silicon carbide to be subjected to phase epitaxial growth, wherein the closed vessel is heated to 800 ° C. or more in a high-vacuum preheating chamber having a pressure of 10 −5 Pa or less, and the inside of the closed vessel is pressurized. The pressure is reduced to 10 −5 Pa or less, and the pressure preliminarily heated to 1400 ° C. to 2,300 ° C. is 10 −2 Pa or less, preferably 10 −5 Pa or less. After reaching a high vacuum of 10 -5 Pa or less, the single-crystal silicon carbide substrate and the polycrystalline silicon carbide substrate are moved to and set in a heating chamber under a rare gas atmosphere in which some inert gas is introduced. It is intended to produce a single-crystal silicon carbide which is heated to 1400 ° C. to 2,300 ° C. for a short time and has no microcrystalline boundaries and has a micropipe defect density of 1 / cm 2 or less on the surface.

短時間で1400℃〜2,300℃に加熱することが可能であるため、効率良く単結晶SiCを形成することができる。また、成長結晶内部に微結晶粒界が存在せず、表面のマイクロパイプ欠陥の密度が1/cm2以下の単結晶SiCとできるため、各種半導体デバイスとしての適用が可能となる。ここで、マイクロパイプ欠陥とは、ピンホールとも呼ばれ、結晶の成長方向に沿って存在する数μm以下の直径の管状の空隙のことである。また、使用する種結晶となる単結晶SiC基板は、4H−SiC、6H−SiCの全ての結晶面で可能であるが,好ましくは(0001)Si面を使用することが好ましい。また、多結晶SiC基板には、平均粒子径が5μm〜10μmの粒子径で、粒子径が略均一なものが好ましい。このため、多結晶SiCの結晶構造には特に限定はなく、3C−SiC、4H−SiC、6H−SiCのいずれをも使用することができるが、好ましくは3C−SiCであることが好ましい。 Since it can be heated to 1400 ° C. to 2,300 ° C. in a short time, single crystal SiC can be formed efficiently. In addition, since there is no fine crystal grain boundary inside the grown crystal and the density of micropipe defects on the surface can be single crystal SiC of 1 / cm 2 or less, application to various semiconductor devices is possible. Here, the micropipe defect is also called a pinhole, and is a tubular void having a diameter of several μm or less that exists along the crystal growth direction. The single crystal SiC substrate serving as a seed crystal to be used can be formed on all crystal planes of 4H-SiC and 6H-SiC, but it is preferable to use a (0001) Si plane. The polycrystalline SiC substrate preferably has an average particle diameter of 5 μm to 10 μm and a substantially uniform particle diameter. Therefore, the crystal structure of polycrystalline SiC is not particularly limited, and any of 3C-SiC, 4H-SiC, and 6H-SiC can be used, but 3C-SiC is preferable.

また、本発明によると、熱処理時に単結晶SiC基板と多結晶SiC基板との間にSiが毛細管現象により界面のすみずみに濡れが浸透して極薄の金属Si融液層を形成する。多結晶SiC基板から流れ出したC原子はSi融液層を通して単結晶SiC基板に供給されて、その単結晶SiC基板上に単結晶SiCとして液相エピタキシャル成長する。このため、成長初期から終了まで欠陥の誘発を抑制できる。また、従来のように、溶融Si中に浸漬して処理する必要がないため、熱処理後に、種結晶となる単結晶SiC基板及び多結晶SiC基板に溶着するSiを除去する量が極めて少なくなる。また、単結晶SiC基板と多結晶SiC基板との間に、熱処理中に極薄金属Si融液を介在させるため、単結晶SiCのエピタキシャル成長に必要な金属Siのみを単結晶SiCの液相エピタキシャル成長に使用できる。このため、熱処理時に薄いSi層では外部との接触面積が最小となり、したがって不純物の進入確率が減り、高純度な単結晶SiCを形成することができる。   Further, according to the present invention, at the time of heat treatment, Si penetrates into every corner of the interface between the single-crystal SiC substrate and the polycrystalline SiC substrate due to a capillary phenomenon to form an ultrathin metal Si melt layer. The C atoms flowing out of the polycrystalline SiC substrate are supplied to the single crystal SiC substrate through the Si melt layer, and liquid phase epitaxially grow as single crystal SiC on the single crystal SiC substrate. Therefore, induction of defects can be suppressed from the beginning to the end of growth. Further, since it is not necessary to perform the treatment by immersion in molten Si as in the related art, the amount of Si deposited on the single-crystal SiC substrate and the polycrystalline SiC substrate serving as seed crystals after the heat treatment is extremely reduced. In addition, since an ultrathin metal Si melt is interposed between the single crystal SiC substrate and the polycrystalline SiC substrate during the heat treatment, only the metal Si necessary for epitaxial growth of single crystal SiC is used for liquid phase epitaxial growth of single crystal SiC. Can be used. For this reason, the contact area with the outside is minimized in the thin Si layer during the heat treatment, so that the probability of entry of impurities is reduced, and high-purity single-crystal SiC can be formed.

また、本発明に係る単結晶炭化ケイ素の液相エピタキシャル成長法は、前述の発明において、前記密閉容器を、前記加熱室に移動した際に、前記密閉容器の軸方向には温度差を設けず、前記密閉容器の面内方向に温度勾配を設け、前記温度勾配を任意に制御することによって微結晶粒界の生成を抑制するものである。   Further, in the liquid-phase epitaxial growth method of single-crystal silicon carbide according to the present invention, in the above-described invention, when the closed container is moved to the heating chamber, no temperature difference is provided in the axial direction of the closed container, A temperature gradient is provided in the in-plane direction of the closed container, and the generation of fine crystal grain boundaries is suppressed by arbitrarily controlling the temperature gradient.

密閉容器の軸方向に温度差を設けることがないため、単結晶SiC基板と多結晶SiC基板との間に温度差が形成されないため、熱平衡状態で熱処理することが可能となり、また金属Si融液が薄いため熱対流が抑制される。このため、成長初期から終了まで欠陥の誘発を抑制できる。さらに、熱処理時に核生成が抑制されるため、形成される単結晶SiCの微小結晶粒界の生成が抑制できる。また、簡易な熱処理装置を用いることができるとともに、加熱時の厳密な温度制御が必要ないことから製造コストの大幅な低減化が可能となる。加えて、密閉容器の面内方向に温度勾配を設けることで、この温度勾配を任意に制御することによって、単結晶SiCの成長時に、微結晶粒界を温度勾配の高温側から低温側に移動させるように単結晶SiCを成長させることができ、結果として、マイクロパイプ欠陥密度を1/cm2以下の単結晶SiCを形成することができる。 Since no temperature difference is provided in the axial direction of the closed container, no temperature difference is formed between the single crystal SiC substrate and the polycrystalline SiC substrate, so that heat treatment can be performed in a thermal equilibrium state, and a metal Si melt can be obtained. Is thin, thermal convection is suppressed. Therefore, induction of defects can be suppressed from the beginning to the end of growth. Further, since nucleation is suppressed during the heat treatment, generation of fine crystal grain boundaries of the formed single crystal SiC can be suppressed. In addition, a simple heat treatment apparatus can be used, and strict temperature control during heating is not required, so that the manufacturing cost can be significantly reduced. In addition, by providing a temperature gradient in the in-plane direction of the closed vessel, by controlling this temperature gradient arbitrarily, during the growth of single crystal SiC, the fine crystal grain boundaries are moved from the high temperature side to the low temperature side of the temperature gradient. As a result, single crystal SiC having a micropipe defect density of 1 / cm 2 or less can be formed.

また、本発明に係る単結晶SiCの液相エピタキシャル成長法は、前述の発明において、前記密閉容器が、タンタル又は炭化タンタルのいずれかで形成されているものである。   In the liquid phase epitaxial growth method of single-crystal SiC according to the present invention, in the above-mentioned invention, the closed container is formed of either tantalum or tantalum carbide.

密閉容器がタンタル又は炭化タンタルで形成されているため、密閉容器のSiC化を抑制するとともに、加熱室内を確実に圧力10-2Pa以下とすることができる。 Since the closed container is made of tantalum or tantalum carbide, it is possible to suppress the formation of SiC in the closed container and to reliably set the pressure in the heating chamber to 10 −2 Pa or less.

また、本発明に係る単結晶SiCの液相エピタキシャル成長法は、前述の発明において、前記密閉容器が上容器及び下容器で形成され、前記上容器及び前記下容器の嵌合部からシリコン蒸気が漏れ出す程度に前記密閉容器内の圧力が前記加熱室内の圧力よりも高くなるように制御し、前記密閉容器内に不純物が混入するのを抑制するものである。   Further, in the liquid-phase epitaxial growth method of single-crystal SiC according to the present invention, in the above-described invention, the closed container is formed of an upper container and a lower container, and silicon vapor leaks from a fitting portion between the upper container and the lower container. The pressure in the closed container is controlled to be higher than the pressure in the heating chamber to such an extent that the impurities are discharged, so that impurities are prevented from entering the closed container.

密閉容器をこのような構造とすることによって、密閉容器内への不純物の混入を抑制することができる。これによって、バッググランド5×1015/cm3以下の純度とできる。 With such a structure of the closed container, contamination of the closed container with impurities can be suppressed. As a result, the purity can be reduced to 5 × 10 15 / cm 3 or less.

また、本発明に係る単結晶SiCの液相エピタキシャル成長法は、前述の発明において、前記加熱室内に、前記密閉容器から漏出するシリコン蒸気を除去する汚染物除去機構が設けられているものである。   In the liquid-phase epitaxial growth method of single-crystal SiC according to the present invention, in the above-mentioned invention, a contaminant removing mechanism for removing silicon vapor leaking from the closed vessel is provided in the heating chamber.

加熱室内に、密閉容器から漏出するシリコン蒸気を除去する汚染物除去機構が設けられているため、加熱室内に設けられているヒータ等の加熱手段のシリコン蒸気による劣化を防止することができる。ここで、汚染物除去機構としては、真空ポンプ及び、他の一般的な排気手段等を使用することができる。   Since a contaminant removing mechanism for removing silicon vapor leaking from the closed vessel is provided in the heating chamber, deterioration of heating means such as a heater provided in the heating chamber due to the silicon vapor can be prevented. Here, as the contaminant removing mechanism, a vacuum pump and other general exhaust means can be used.

また、本発明に係る単結晶SiCの液相エピタキシャル成長法は、前述の発明において、前記単結晶SiCの表面が、3分子層を最小単位とした原子オーダーステップと、幅広のテラスと、を有し、前記テラスの幅が10μm以上であるものである。   In the liquid-phase epitaxial growth method of single-crystal SiC according to the present invention, in the above-mentioned invention, the surface of the single-crystal SiC has an atomic order step having a minimum unit of three molecular layers, and a wide terrace. The width of the terrace is 10 μm or more.

テラス幅が10μm以上であるため、成長表面は、単結晶SiC形成後に、機械加工等による表面処理をする必要がない。このため、加工工程を経ずとも製品とすることが可能となる。   Since the terrace width is 10 μm or more, the growth surface does not need to be subjected to surface treatment such as machining after the formation of single crystal SiC. For this reason, it is possible to produce a product without a processing step.

また、本発明に係る単結晶SiCの液相エピタキシャル成長法は、前述の発明において、前記表面が、(0001)Si面であるものである。   In the liquid-phase epitaxial growth method of single-crystal SiC according to the present invention, in the above-mentioned invention, the surface is a (0001) Si plane.

表面の面方位が(0001)Si面であるため、他の結晶面と比較して、表面エネルギーが低く、従って成長中の核形成エネルギーが高くなり、核形成しにくい。以上の理由から、液相成長後テラス幅の広い単結晶SiCとできる。なお、表面の面方位は、(0001)Si面に限定されるものではなく、4H−SiC、6H−SiCの全ての結晶面を使用することが可能である。   Since the plane orientation of the surface is the (0001) Si plane, the surface energy is lower than that of other crystal planes, and therefore the nucleation energy during growth is higher, and nucleation is less likely to occur. For the above reasons, single crystal SiC having a wide terrace width can be obtained after liquid phase growth. The plane orientation of the surface is not limited to the (0001) Si plane, and it is possible to use all crystal planes of 4H-SiC and 6H-SiC.

また、本発明に係る単結晶SiCの液相エピタキシャル成長法は、前述の発明において、前記極薄金属Si融液が、50μm以下の厚みであるものである。   In the liquid phase epitaxial growth method of single crystal SiC according to the present invention, in the above-mentioned invention, the ultrathin metal Si melt has a thickness of 50 μm or less.

熱処理中に単結晶SiC基板と多結晶SiC基板との間に介在される極薄金属Si融液が50μm以下、好ましくは30μm以下であるため、多結晶SiC基板から溶解したCが単結晶SiC基板表面へ拡散により輸送され、単結晶SiCの成長が促進される。前記極薄金属シリコン融液が50μm以上の厚みになると、金属シリコン融液が不安定になり、またCの輸送が阻害され、本発明に係る単結晶SiCの育成に適さない。   Since the ultrathin metal Si melt interposed between the single crystal SiC substrate and the polycrystalline SiC substrate during the heat treatment is 50 μm or less, preferably 30 μm or less, C dissolved from the polycrystalline SiC substrate becomes a single crystal SiC substrate. It is transported to the surface by diffusion, and the growth of single crystal SiC is promoted. If the ultra-thin metal silicon melt has a thickness of 50 μm or more, the metal silicon melt becomes unstable and the transport of C is hindered, which is not suitable for growing the single crystal SiC according to the present invention.

本発明によれば、従来の昇華法等の高温熱処理環境と同一環境で局所的な液相エピタキシャル成長を高温で行なうことができるため、種結晶に含まれるマイクロパイプ欠陥を引き継がず、マイクロパイプ欠陥の閉塞を行なうことができる。また、成長表面が常にSi融液と接するため、Si過剰の状態が形成され、Siの不足に起因する欠陥の発生が抑制されるとともに、使用しているSi融液の外部との接触面積が微小なため、成長表面への不純物の混入が抑制でき、高純度で結晶性に優れた高品質高性能の単結晶SiCを育成することができる。しかも従来のLPE法に比べて、本成長法は非常に高温で、短時間での成長が可能であるために、従来のLPE法に比べて成長速度を著しく速くすることができ、高品質単結晶SiCの育成効率を非常に高くすることができる。さらに、単結晶育成時に厳密な温度勾配制御をする必要性がなく、簡易な装置によることが可能となる。これらのことから、SiやGaAsなどの既存の半導体材科に比べて高温、高周波、耐電圧、耐環境性に優れパワーデバイス、高周波デバイス用半導体材科として期待されている単結晶SiCの実用化を促進することができる。   According to the present invention, since local liquid phase epitaxial growth can be performed at a high temperature in the same environment as a conventional high-temperature heat treatment environment such as a sublimation method, micropipe defects included in a seed crystal are not inherited, and micropipe defects are not inherited. Occlusion can be performed. In addition, since the growth surface is always in contact with the Si melt, an excess Si state is formed, and the generation of defects due to the shortage of Si is suppressed, and the contact area of the used Si melt with the outside is reduced. Because of the small size, impurities can be prevented from being mixed into the growth surface, and high-quality and high-performance single-crystal SiC having high purity and excellent crystallinity can be grown. Moreover, as compared with the conventional LPE method, the present growth method can be grown at a very high temperature and in a short time, so that the growth rate can be remarkably increased as compared with the conventional LPE method, and a high quality single crystal can be obtained. The growth efficiency of crystalline SiC can be made very high. Furthermore, there is no need to perform strict temperature gradient control during single crystal growth, and a simple apparatus can be used. From these facts, the practical use of single crystal SiC, which is expected to be used as a power device and a semiconductor material for high frequency devices, is excellent in high temperature, high frequency, withstand voltage and environmental resistance compared to existing semiconductor materials such as Si and GaAs. Can be promoted.

以下、図面を参照しつつ、本発明に係る単結晶SiCの液相成長法の一実施形態例について説明する。   Hereinafter, an embodiment of a liquid crystal growth method for single crystal SiC according to the present invention will be described with reference to the drawings.

図1は、本発明に係る単結晶SiCの液相エピタキシャル成長法に用いられる熱処理炉の実施形態の一例を示す断面概略図である。図1において、熱処理炉1は、加熱室2と、予備加熱室3と、予備加熱室3から加熱室2に続く前室4とで構成されている。そして、単結晶SiC及び種結晶SiC等が収容されている密閉容器5が予備加熱室3から前室4、加熱室2へと順次移動することで、単結晶SiCを育成するように構成されている。   FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a heat treatment furnace used for a liquid crystal epitaxial growth method of single crystal SiC according to the present invention. In FIG. 1, a heat treatment furnace 1 includes a heating chamber 2, a preheating chamber 3, and a prechamber 4 continuing from the preheating chamber 3 to the heating chamber 2. The closed vessel 5 containing single crystal SiC, seed crystal SiC, and the like is configured to grow single crystal SiC by sequentially moving from the preheating chamber 3 to the front chamber 4 and the heating chamber 2. I have.

図1に示すように、熱処理炉1は、加熱室2、予備加熱室3、前室4が連通している。このため、各室を予め所定の圧力下に制御することが可能となる。また、各室毎にゲートバルブ7等を設けることによって、各室毎に圧力調整をすることも可能である。これによって密閉容器5の移動時においても、外気に触れることなく、所定圧力下の炉内を図示しない移動手段によって移動させることができるため、不純物の混入等を抑制することができる。   As shown in FIG. 1, in the heat treatment furnace 1, a heating chamber 2, a preheating chamber 3, and a front chamber 4 communicate with each other. For this reason, each chamber can be controlled under a predetermined pressure in advance. Further, by providing a gate valve 7 and the like for each chamber, it is possible to adjust the pressure for each chamber. Thereby, even when the closed container 5 is moved, the inside of the furnace under a predetermined pressure can be moved by the moving means (not shown) without contacting the outside air, so that contamination of impurities can be suppressed.

予備加熱室3は、ランプ又はロッドヒータ等の加熱手段(本実施形態においては、ランプを用いている態様を示している。)6が設けられ、急速に800〜1000℃程度にまで加熱が可能な加熱炉になっている。また、予備加熱室3と前室4との接続部分には、ゲートバルブ7が設けらており、予備加熱室3及び前室4の圧力制御を容易なものとしている。密閉容器5は、この予備加熱室3で、テーブル8に載置された状態で800℃以上に予め加熱された後、予備加熱室3と前室4との圧力調整が済み次第、前室4に設けられている昇降式のサセプタ9に設置するように移動させられる。   The preheating chamber 3 is provided with heating means 6 such as a lamp or a rod heater (in this embodiment, a mode using a lamp is shown) 6, and can be rapidly heated to about 800 to 1000 ° C. Heating furnace. Further, a gate valve 7 is provided at a connection portion between the preheating chamber 3 and the front chamber 4 to facilitate the pressure control of the preheating chamber 3 and the front chamber 4. The sealed container 5 is pre-heated to 800 ° C. or higher in a state where it is placed on the table 8 in the pre-heating chamber 3, and after the pressure adjustment between the pre-heating chamber 3 and the front chamber 4 is completed, Is moved so as to be installed on the elevating type susceptor 9 provided in the apparatus.

前室4に移動させられた密閉容器5は、一部図示している昇降式の移動手段10によって前室4から加熱室2に移動させられる。このとき、加熱室2内は、図示しない真空ポンプで予め所定の圧力である10-1Pa以下、好ましくは10-2Pa以下の真空、更に好ましくは、10-5Pa以下の真空、、又は予め圧力10-5Pa以下の高真空に到達した後に若干の不活性ガスを導入し、10-1Pa以下、好ましくは10-2Pa以下の希薄ガス雰囲気下にし、加熱ヒータ11によって1400℃〜2,300℃に設定されていることが好ましい。加熱室2内の状態をこのように設定しておくことで、密閉容器5を前室4から加熱室2内に移動することによって、密閉容器5を1400℃〜2,300℃に急速に加熱することができる。また、加熱室2には、加熱ヒータ11の周囲に反射鏡12が配置されており、加熱ヒータ11の熱を反射して加熱ヒータ11の内部に位置する密閉容器5側に集中するようにしている。 The closed container 5 moved to the front chamber 4 is moved from the front chamber 4 to the heating chamber 2 by the vertically moving means 10 shown in part. At this time, the inside of the heating chamber 2 is preliminarily reduced to a predetermined pressure of 10 -1 Pa or less, preferably 10 -2 Pa or less, more preferably 10 -5 Pa or less, by a vacuum pump (not shown), or After reaching a high vacuum at a pressure of 10 −5 Pa or less in advance, a slight inert gas is introduced, the atmosphere is set to a rare gas atmosphere of 10 −1 Pa or less, preferably 10 −2 Pa or less. It is preferable that the temperature is set to 2,300 ° C. By setting the state in the heating chamber 2 in this manner, the closed vessel 5 is rapidly moved from 1400 ° C. to 2,300 ° C. by moving the closed vessel 5 from the front chamber 4 into the heating chamber 2. can do. In the heating chamber 2, a reflecting mirror 12 is arranged around the heater 11 so that the heat of the heater 11 is reflected to concentrate on the closed container 5 located inside the heater 11. I have.

また、加熱室2内の加熱ヒータ11の内側には、密閉容器5内から漏出するSi蒸気を、加熱ヒータ11と接触しないように除去する汚染物除去機構20が設けられている。これによって、加熱ヒータ11がSi蒸気と反応し劣化することを抑制できる。この、汚染物除去機構20は、密閉容器5内から漏出するシリコン蒸気を除去するものであれば、特に限定されるものではない。   A contaminant removing mechanism 20 is provided inside the heater 11 in the heating chamber 2 for removing Si vapor leaking from the inside of the closed vessel 5 so as not to contact the heater 11. Thereby, it is possible to suppress the heater 11 from reacting with the Si vapor and deteriorating. The contaminant removing mechanism 20 is not particularly limited as long as it removes silicon vapor leaking from the inside of the closed container 5.

加熱ヒータ11は、タンタル等の金属製の抵抗加熱ヒータであり、サセプタ9に設置されているベースヒータ11aと、側部及び上部が一体に筒状に形成された上部ヒータ11bとで構成されている。このように、密閉容器5を覆うように加熱ヒータ11が配置されているため、密閉容器5を均等に加熱することが可能となる。なお、加熱室2の加熱方式は、本実施形態例に示す抵抗加熱ヒータに限定されるものではなく、例えば、高周波誘導加熱式であっても構わない。   The heating heater 11 is a resistance heating heater made of metal such as tantalum, and includes a base heater 11a provided on the susceptor 9 and an upper heater 11b whose side and upper parts are integrally formed in a cylindrical shape. I have. As described above, since the heater 11 is disposed so as to cover the closed container 5, the closed container 5 can be heated evenly. Note that the heating method of the heating chamber 2 is not limited to the resistance heater shown in the present embodiment, and may be, for example, a high-frequency induction heating method.

密閉容器5は、図2に示すように、上容器5aと、下容器5bとで構成され、それぞれタンタル又は炭化タンタルのいずれかで形成されている。そして、上容器5aと下容器5bとの嵌め合わせ時の嵌合部の遊びは2mm以下であることが好ましい。これによって、密閉容器5内への不純物の混入を抑制することができる。また、遊びを2mm以下とすることによって、密閉容器5内のSi分圧を10Pa以下とならないように制御することもできる。このため、密閉容器5内のSiC分圧及びSi分圧を高め、単結晶SiC基板16及び多結晶SiC基板14,15、極薄金属Si融液17の昇華の防止に寄与するようになる。なお、この上容器5aと下容器5bとの嵌め合い時の嵌合部の遊びが2mmよりも大きい場合は、密閉容器5内のSi分圧を所定圧に制御することが困難になるばかりでなく、不純物がこの嵌合部を介して密閉容器5内に侵入することもあるため、好ましくない。この密閉容器5は、図2に示すように、形状が四角のものに限らず、円形のものであっても良い。   As shown in FIG. 2, the closed container 5 includes an upper container 5a and a lower container 5b, and is formed of either tantalum or tantalum carbide. The play of the fitting portion when fitting the upper container 5a and the lower container 5b is preferably 2 mm or less. This can suppress the entry of impurities into the closed container 5. Further, by setting the play to 2 mm or less, it is possible to control so that the Si partial pressure in the sealed container 5 does not become 10 Pa or less. For this reason, the SiC partial pressure and the Si partial pressure in the closed vessel 5 are increased, thereby contributing to the prevention of sublimation of the single crystal SiC substrate 16, the polycrystalline SiC substrates 14 and 15, and the ultra-thin metal Si melt 17. When the play of the fitting portion at the time of fitting the upper container 5a and the lower container 5b is larger than 2 mm, it is only difficult to control the Si partial pressure in the closed container 5 to a predetermined pressure. However, it is not preferable because impurities may enter the closed container 5 through the fitting portion. As shown in FIG. 2, the closed container 5 is not limited to a square shape, but may be a circular shape.

また、下容器5bには、図3及び図4に示すように、3本の支持部13が設けられている。この支持部13によって、後述する種結晶となる多結晶SiC基板14を支持している。なお、支持部13は、本実施形態例に示すようなピン状のものである必要はなく、例えば、SiC等で形成されているリング状のものであってもよい。   Further, the lower container 5b is provided with three support portions 13 as shown in FIGS. The support portion 13 supports a polycrystalline SiC substrate 14 serving as a seed crystal described later. Note that the support portion 13 does not need to be in the form of a pin as shown in this embodiment, but may be in the form of a ring made of, for example, SiC.

図3は上容器5aと下容器5bとが嵌合した状態の密閉容器5内に設置されている種結晶となる6H型の単結晶SiC基板16と、この単結晶SiC基板16を挟み込む多結晶SiC基板15と、これらの間に形成される極薄金属Si融液17の状態を示している。なお、極薄金属Si融液17は熱処理時に形成されるものであり、この極薄金属Si融液17のSi源となるのは、種結晶となる単結晶SiC基板16の表面に予め金属SiをCVD等によって10μmから50μmとなるよう膜を形成するか、Si粉末を置く等その方法は特に限定されない。   FIG. 3 shows a 6H-type single-crystal SiC substrate 16 serving as a seed crystal installed in the closed container 5 in a state where the upper container 5a and the lower container 5b are fitted to each other, and a polycrystal sandwiching the single-crystal SiC substrate 16 The state of the SiC substrate 15 and the ultra-thin metal Si melt 17 formed therebetween are shown. The ultra-thin metal Si melt 17 is formed at the time of heat treatment, and the source of Si of the ultra-thin metal Si melt 17 is a metal Si on the surface of a single crystal SiC substrate 16 serving as a seed crystal. The method is not particularly limited, such as forming a film to have a thickness of 10 μm to 50 μm by CVD or placing Si powder.

図3に示すように、これら単結晶SiC基板16、多結晶SiC基板14,15及び極薄金属Si融液17は、密閉容器5を構成する下容器5bに設けられている支持部13に載置されて、密閉容器5内に収納されている。ここで、単結晶SiC基板16は、昇華法で作製された単結晶6H−SiCのウェハーより所望の大きさ(10×10〜20×20mm)に切り出されたものである。また、多結晶SiC基板14,15は、CVD法で作製されたSi半導体製造工程でダミーウェハーとして使用されるSiCから所望の大きさに切り出されたものを使用することができる。これら各基板16,14,15は表面が鏡面に研磨加工され、表面に付着した油類、酸化膜、金属等が洗浄等によって除去されている。ここで、下部側に位置する多結晶SiC基板14は単結晶SiC基板16の密閉容器5からの侵食を防止するもので、単結晶SiC基板16上に液相エピタキシャル成長する単結晶SiCの品質向上に寄与するものである。   As shown in FIG. 3, the single-crystal SiC substrate 16, the polycrystalline SiC substrates 14 and 15, and the ultrathin metal Si melt 17 are mounted on a support 13 provided in a lower container 5b constituting the closed container 5. And housed in the closed container 5. Here, the single crystal SiC substrate 16 is cut into a desired size (10 × 10 to 20 × 20 mm) from a single crystal 6H—SiC wafer manufactured by a sublimation method. Further, as the polycrystalline SiC substrates 14 and 15, those cut out to a desired size from SiC used as a dummy wafer in a Si semiconductor manufacturing process manufactured by a CVD method can be used. The surfaces of these substrates 16, 14, and 15 are polished to mirror surfaces, and oils, oxide films, metals, and the like attached to the surfaces are removed by washing or the like. Here, the polycrystalline SiC substrate 14 located on the lower side is for preventing erosion of the single crystal SiC substrate 16 from the closed container 5, and is intended to improve the quality of single crystal SiC grown by liquid phase epitaxial on the single crystal SiC substrate 16. It will contribute.

また、この密閉容器5内には、熱処理時におけるSiCの昇華、Siの蒸発を制御するためのSi片と共に設置することもできる。Si片を同時に設置することによって、熱処理時に昇華して密閉容器5内のSiC分圧及びSi分圧を高め、単結晶SiC基板16及び多結晶SiC基板14,15、極薄金属Si融液17の昇華の防止に寄与するようになる。また、密閉容器5内の圧力を加熱室2内の圧力よりも高くなるように調整でき、これによって、上容器5aと下容器5bとの嵌合部から常にSi蒸気を放出でき、不純物の密閉容器5内への侵入を防止できる。   Further, in the closed container 5, it can be installed together with a Si piece for controlling sublimation of SiC and evaporation of Si during the heat treatment. By simultaneously installing the Si pieces, they are sublimated during the heat treatment to increase the SiC partial pressure and the Si partial pressure in the closed vessel 5, and the single crystal SiC substrate 16, the polycrystalline SiC substrates 14 and 15, and the ultrathin metal Si melt 17 Contributes to the prevention of sublimation. In addition, the pressure in the sealed container 5 can be adjusted to be higher than the pressure in the heating chamber 2, whereby the Si vapor can be constantly released from the fitting portion between the upper container 5 a and the lower container 5 b, and impurities are sealed. Intrusion into the container 5 can be prevented.

このように構成された密閉容器5は、予備加熱室3内に設置された後、10-5Pa以下に設定され、予備加熱室3に設けられているランプ及び又はロッドヒ−ター等の加熱手段6によって800℃以上、好ましくは1000℃以上に加熱される。この際、加熱室2内も同様に、10-2Pa以下に設定された後、1400℃〜2,300℃に加熱しておくことが好ましい。 After being set in the preheating chamber 3, the closed container 5 configured as described above is set to 10 −5 Pa or less, and a heating means such as a lamp and / or a rod heater provided in the preheating chamber 3. 6 to 800 ° C. or higher, preferably 1000 ° C. or higher. At this time, it is preferable that the inside of the heating chamber 2 is similarly set to 10 −2 Pa or less and then heated to 1400 ° C. to 2,300 ° C.

予備加熱室3内で予備加熱された密閉容器5は、ゲートバルブ7を開き、前室4のサセプタ9に移動して、昇降手段10によって、1400℃〜2,300℃に加熱されている加熱室2内に移動される。これによって、密閉容器5は、30分以内の短時間で急速に1400℃〜2,300℃に加熱される。加熱室2での熱処理温度は、密閉容器5内に同時に設置している金属Si片が溶融する温度であれば良いが、1400℃〜2,300℃にする。処理温度を高温で行なうほど、溶融SiとSiCとの濡れ性が上昇し、溶融Siが毛細管現象によって、単結晶SiC基板16と多結晶SiC基板14,15との間に浸透しやすくなる。これによって、単結晶SiC基板16と多結晶SiC基板14,15との間に厚み50μm以下の極薄金属Si融液17を介在させることができる。   The sealed container 5 preheated in the preheating chamber 3 opens the gate valve 7 and moves to the susceptor 9 of the front chamber 4, and is heated by the elevating means 10 to 1400 ° C. to 2,300 ° C. It is moved into the room 2. As a result, the closed container 5 is rapidly heated to 1400 ° C. to 2,300 ° C. in a short time within 30 minutes. The heat treatment temperature in the heating chamber 2 may be a temperature at which the metal Si pieces simultaneously placed in the closed vessel 5 can be melted, but it is set to 1400 ° C. to 2,300 ° C. The higher the processing temperature, the higher the wettability between the molten Si and SiC, and the more easily the molten Si penetrates between the single-crystal SiC substrate 16 and the polycrystalline SiC substrates 14 and 15 by the capillary phenomenon. Thereby, an ultrathin metal Si melt 17 having a thickness of 50 μm or less can be interposed between the single crystal SiC substrate 16 and the polycrystalline SiC substrates 14 and 15.

また、この際に、できるだけ、短時間で1400℃〜2,300℃とすることによって、結晶成長を短時間で終了することが可能となり結晶成長の効率化が可能となる。   At this time, by setting the temperature to 1400 ° C. to 2,300 ° C. in a short time as possible, the crystal growth can be completed in a short time, and the efficiency of the crystal growth can be improved.

また、熱処理時間は、生成される単結晶SiCが所望の厚みとなるように適宜選択することが可能である。ここで、Si源となる金属Siは、量が多くなると、熱処理時に溶融する量が多くなり、極薄金属Si融液が50μm以上の厚みになると、金属Si融液が不安定になり、またCの輸送が阻害され、本発明に係る単結晶SiCの育成に適さず、また単結晶SiCの形成に必要でないSiが、溶融し密閉容器5の底部に溜まり、単結晶SiC形成後に再度固化した金属Siを除去する必要が生じる。このため、金属Siの大きさ及び厚さについては、形成する単結晶SiCの大きさに合わせ適宜選択する。   The heat treatment time can be appropriately selected so that the generated single crystal SiC has a desired thickness. Here, as the amount of the metal Si serving as the Si source increases, the amount of the metal Si melted during the heat treatment increases, and when the ultrathin metal Si melt has a thickness of 50 μm or more, the metal Si melt becomes unstable, and The transport of C was inhibited, and Si that was not suitable for growing the single crystal SiC according to the present invention and that was not necessary for the formation of the single crystal SiC was melted and accumulated at the bottom of the closed vessel 5 and solidified again after the formation of the single crystal SiC. It is necessary to remove metal Si. For this reason, the size and thickness of the metal Si are appropriately selected according to the size of the single crystal SiC to be formed.

ところで、単結晶SiCの成長メカニズムについて簡単に説明すると、熱処理に伴い単結晶SiC基板16と上部の多結晶SiC基板15との間に溶融したSiが侵入して、両基板16,15の界面に厚さ約30μm〜50μmの金属Si融液層17を形成する。この金属Si融液層17は、熱処理温度が高温になるにしたがって、薄くなり、30μm程度となる。そして、多結晶SiC基板2から流れ出したC原子はSi融液層を通して単結晶SiC基板16に供給され、この単結晶SiC基板1上に6H−SiC単結晶として液相エピタキシャル成長(以下、LPEという。)する。このように、種結晶となる単結晶SiC基板16と多結晶SiC基板14との間が小さいため、熱処理時に熱対流が生成しない。このため、形成される単結晶SiCと、種結晶となる単結晶SiC基板16と界面が非常に滑らかとなり、この界面に歪み等が形成されない。したがって、非常に平滑な単結晶SiCが形成される。また、熱処理時にSiCの核生成が抑制されるため、形成される単結晶SiCの微小結晶粒界の生成を抑制することができる。本実施形態に係る単結晶SiCの育成方法においては、溶融したSiが単結晶SiC基板16と多結晶SiC基板15との間にのみ侵入することから、他の不純物が成長する単結晶SiC中に侵入することがないため、バッググランド5×1015/cm3以下の高純度の単結晶SiCを生成することが可能となる。 By the way, the growth mechanism of the single crystal SiC will be briefly described. Melt Si penetrates between the single crystal SiC substrate 16 and the upper polycrystalline SiC substrate 15 due to the heat treatment and enters the interface between the two substrates 16 and 15. A metal Si melt layer 17 having a thickness of about 30 μm to 50 μm is formed. The metal Si melt layer 17 becomes thinner to about 30 μm as the heat treatment temperature becomes higher. Then, the C atoms flowing out of the polycrystalline SiC substrate 2 are supplied to the single crystal SiC substrate 16 through the Si melt layer, and liquid phase epitaxial growth (hereinafter referred to as LPE) on the single crystal SiC substrate 1 as a 6H-SiC single crystal. ). As described above, since the space between the single crystal SiC substrate 16 serving as a seed crystal and the polycrystalline SiC substrate 14 is small, no thermal convection is generated during the heat treatment. Therefore, the interface between the formed single crystal SiC and the single crystal SiC substrate 16 serving as a seed crystal becomes very smooth, and no distortion or the like is formed at this interface. Therefore, very smooth single crystal SiC is formed. Further, since nucleation of SiC is suppressed during the heat treatment, generation of fine crystal grain boundaries of the formed single crystal SiC can be suppressed. In the method for growing single-crystal SiC according to the present embodiment, since molten Si penetrates only between single-crystal SiC substrate 16 and polycrystalline SiC substrate 15, other impurities grow in single-crystal SiC. Since there is no intrusion, it is possible to generate single crystal SiC having a high purity of 5 × 10 15 / cm 3 or less in the background.

図5は、前述の方法によって成長した単結晶SiCの表面状態を示す顕微鏡写真を示す図である。図5において、(a)は表面モフォロジー、(b)はその断面を示すものである。図5に示すように、LPE法による結晶の成長表面は、非常に平坦なテラスとステップ構造が観察できる。   FIG. 5 is a photomicrograph showing the surface state of single-crystal SiC grown by the method described above. In FIG. 5, (a) shows the surface morphology, and (b) shows the cross section. As shown in FIG. 5, a very flat terrace and a step structure can be observed on the crystal growth surface by the LPE method.

図6は、この表面を原子間力顕微鏡(以下、AFMという。)によって観察した結果を示す図である。図6から観察できるように、ステップの高さはそれぞれ4.0nm、8.4nmであることがわかる。これは、SiC分子(SiC1分子層の高さは0.25nm)の3分子層を基本とした整数倍の高さである。このように、非常に平坦な表面となっていることがわかる。   FIG. 6 is a diagram showing the result of observing this surface with an atomic force microscope (hereinafter, referred to as AFM). As can be seen from FIG. 6, the step heights are 4.0 nm and 8.4 nm, respectively. This is an integral multiple of the height based on three molecular layers of SiC molecules (the height of one SiC molecular layer is 0.25 nm). Thus, it can be seen that the surface is very flat.

また、図5の表面形態の顕微鏡写真からもわかるように、表面にマイクロパイプ欠陥が観察されない。これらのことから、本発明による単結晶SiCは、表面に形成されるマイクロパイプ欠陥の密度が1/cm2以下と非常に少なくなり、表面に形成されるテラスの幅も10μm以上と広く、平坦で欠陥の少ないものであることがわかる。 Further, as can be seen from the micrograph of the surface morphology in FIG. 5, no micropipe defects are observed on the surface. From these facts, in the single crystal SiC according to the present invention, the density of the micropipe defects formed on the surface is extremely low as 1 / cm 2 or less, the width of the terrace formed on the surface is as wide as 10 μm or more, and the single crystal SiC is flat. It can be seen that there are few defects.

一般に、結晶のエピタキシャル成長は、1分子層ごとに行なわれる。ところが、本実施形態に係る単結晶SiCでは、表面に10μm以上の幅広のテラスと3分子層を最小単位とした高さのステップで構成されている。このことから、結晶成長の過程で、ステップバンチングが起きたと考えられる。このステップバンチング機構は、結晶成長中の表面自由エネルギーの効果によって説明することができる。本実施形態例に係る単結晶6H−SiCは、単位積層周期の中にABCと、ACBという2種類の積層周期の方向がある。そこで、積層方向の折れ曲がる層から番号を1、2、3と付けることにより、図7に示すように3種類の表面が規定できる。そして、各面のエネルギーは以下のように求められている(T.Kimoto, et al.,J.Appl.Phys.81(1997)3494-3500)。
6H1=1.33meV
6H2=6.56meV
6H3=2.34meV
この様に面によってエネルギーが異なるため、テラスの広がる速度が異なる。すなわち、テラスは、各面の表面自由エネルギーの高いものほど成長速度が速く、図7(a)(b)(c)に示すように、3周期おきにステップハンチングが起きる。また、本実施形態例では、積層周期の違い(ABC又はACB)により、ステップ面からでている未結合手の数が1段おきに異なり、このステップ端から出ている未結合手の数の違いにより、3分子単位でさらにステップバンチングが起きると考えられる。1ステップの前進速度は、ステップから出ている未結合手が1本の所では遅く、2本の所では速いと考えられる。この様にして、6H−SiCでは格子定数の半整数倍の高さ単位でステップバンチングが進み、成長後、単結晶SiCの表面は3分子層を最小単位とした高さのステップと、平坦なテラスとで覆われると考えられる。
Generally, epitaxial growth of a crystal is performed for each molecular layer. However, the single-crystal SiC according to the present embodiment has a surface with a wide terrace of 10 μm or more and a height step of a minimum of three molecular layers. From this, it is considered that step bunching occurred during the crystal growth process. This step bunching mechanism can be explained by the effect of surface free energy during crystal growth. In the single crystal 6H-SiC according to the present embodiment, there are two kinds of stacking cycle directions ABC and ACB in the unit stacking cycle. Therefore, three types of surfaces can be defined as shown in FIG. 7 by assigning numbers 1, 2, and 3 from the layer that is bent in the stacking direction. The energy of each surface is determined as follows (T. Kimoto, et al., J. Appl. Phys. 81 (1997) 3494-3500).
6H1 = 1.33 meV
6H2 = 6.56 meV
6H3 = 2.34 meV
Since the energy varies depending on the surface, the spread speed of the terrace varies. That is, as the terrace has a higher surface free energy on each surface, the growth rate is higher, and step hunting occurs every three periods as shown in FIGS. 7 (a), 7 (b) and 7 (c). Further, in the present embodiment, the number of unbonded hands coming out of the step surface differs every other stage due to the difference in the lamination period (ABC or ACB). Due to the difference, it is considered that further step bunching occurs in units of three molecules. It is considered that the forward speed of one step is slow at one unjoined hand exiting the step, and fast at two unjoined hands. In this way, in 6H-SiC, step bunching proceeds in a height unit of a half integer multiple of the lattice constant, and after growth, the surface of single crystal SiC has a flat step with a height of three molecular layers as a minimum unit and a flat surface. It is thought to be covered with a terrace.

なお、以上説明したように、本発明に係る単結晶SiCは、ステップバンチングによってそのテラスが形成されている。そのため、ステップは、単結晶SiCの端部付近に集中して形成されるようになる。前述した図5及び図6は、ステップ部分を観察するために単結晶SiCの端部部分を観察したものである。   As described above, the terrace of the single crystal SiC according to the present invention is formed by step bunching. Therefore, the steps are formed intensively near the end of the single crystal SiC. FIGS. 5 and 6 show the end portions of the single-crystal SiC in order to observe the step portions.

また、本実施形態例における単結晶SiCは、その成長温度が1400℃〜2,300℃と従来の単結晶SiCの液相成長温度に比べて非常に高く、また、短時間で1400℃〜2,300℃に加熱出来る。成長温度が上がると、種結晶となる単結晶SiCと多結晶SiCとの間に形成されるSi融液中へのCの溶解濃度が増加する。また温度の上昇とともにSi融液中でのCの拡散が大きくなると考えられる。このように、Cの供給源と種結晶とが非常に近接しているため、500μm/hrという速い成長速度とする事も条件次第で可能になる。   Further, the single crystal SiC in the present embodiment has a growth temperature of 1400 ° C. to 2,300 ° C., which is much higher than the liquid phase growth temperature of the conventional single crystal SiC, and also has a growth temperature of 1400 ° C. to 2300 ° C. in a short time. , 300 ° C. As the growth temperature increases, the concentration of dissolved C in the Si melt formed between the single crystal SiC serving as a seed crystal and the polycrystalline SiC increases. Further, it is considered that the diffusion of C in the Si melt increases as the temperature increases. As described above, since the C source and the seed crystal are very close to each other, a high growth rate of 500 μm / hr can be achieved depending on conditions.

このように、本実施形態例に係る単結晶SiCは、表面のマイクロパイプ欠陥の密度が1/cm2以下であり、10μm以上の幅広のテラスが形成されることから、単結晶SiC形成後に、機械加工等の表面処理が不要となる。また、結晶欠陥等が少ないために、発光ダイオードや、各種半導体ダイオードとして使用することが可能となる。加えて、結晶の成長が温度に依存せず、種結晶及びCの供給源の結晶の表面エネルギーに依存することから、処理炉内の厳密な温度制御の必要性がなくなることから、製造コストの大幅な低減化が可能となる。さらに、種結晶となる単結晶SiC及びCの供給源である多結晶SiCとの間隔が非常に小さことから、熱処理時の熱対流を抑制することができる。また種結晶となる単結晶SiC及びCの供給源である多結晶SiCとの間に温度差が形成されにくいことから、熱平衡状態で熱処理することができる。 As described above, in the single-crystal SiC according to the present embodiment, the density of micropipe defects on the surface is 1 / cm 2 or less, and a wide terrace of 10 μm or more is formed. No surface treatment such as machining is required. Further, since there are few crystal defects and the like, it can be used as a light emitting diode or various semiconductor diodes. In addition, since the growth of the crystal does not depend on the temperature but on the surface energies of the seed crystal and the crystal of the C source, there is no need for strict temperature control in the processing furnace. Significant reduction is possible. Further, since the distance between the single crystal SiC serving as a seed crystal and the polycrystalline SiC serving as a supply source of C is extremely small, thermal convection during heat treatment can be suppressed. Further, since a temperature difference is hardly formed between single crystal SiC as a seed crystal and polycrystalline SiC as a supply source of C, heat treatment can be performed in a thermal equilibrium state.

また、前述したように、単結晶SiCの結晶成長は、結晶表面の面方向に沿って成長していくことから、密閉容器の面方向に温度勾配を設けることで、結晶の成長方向を温度の高い方から低い方へと方向性を持たせることができるようになる。温度勾配は、加熱室2に設けられているヒータ11の密閉容器5の側壁側に位置するサイドヒータ11b間の温度差を設ける等の方法を例示できる。このときの、温度勾配の大きさを制御することによって、結晶の成長速度を制御することができ、結晶表面の微結晶粒界の生成を抑制することが可能となる。   In addition, as described above, since the single crystal SiC grows in the plane direction of the crystal surface, the crystal growth direction of the single crystal SiC is controlled by providing a temperature gradient in the plane direction of the closed vessel. It becomes possible to give directionality from a higher side to a lower side. The temperature gradient can be exemplified by a method of providing a temperature difference between the side heaters 11b located on the side wall side of the closed vessel 5 of the heater 11 provided in the heating chamber 2. At this time, by controlling the magnitude of the temperature gradient, the crystal growth rate can be controlled, and the generation of fine crystal grain boundaries on the crystal surface can be suppressed.

なお、本実施形態例では、種結晶として、6H−SiCを用いたが、4H−SiCを使用することも可能である。   In the present embodiment, 6H-SiC is used as the seed crystal, but 4H-SiC can be used.

なお、本実施形態例では、種結晶として、(0001)Siを用いたが、(11−20)などのその他の面方位のものを使用することも可能である。   In the present embodiment, (0001) Si is used as the seed crystal, but other seeds such as (11-20) may be used.

また、本発明に係る単結晶SiCは、種結晶となる単結晶SiC及びCの供給源となる多結晶SiC基板の大きさを適宜選択することによって形成される単結晶SiCの大きさを制御することができる。また、形成される単結晶SiCと種結晶との間に歪みが形成されることもないため、非常に平滑な表面の単結晶SiCとできることから、表面の改質膜として適用することも可能である。   In the single crystal SiC according to the present invention, the size of the single crystal SiC formed by appropriately selecting the size of the single crystal SiC serving as a seed crystal and the size of the polycrystalline SiC substrate serving as a supply source of C is controlled. be able to. Further, since no strain is formed between the formed single crystal SiC and the seed crystal, the single crystal SiC having a very smooth surface can be obtained, so that it can be applied as a surface modified film. is there.

さらに、種結晶となる単結晶SiCとCの供給源である多結晶SiCを交互に積層、または横に並べて前述の方法によって、熱処理することによって、同時に多量の単結晶SiCを製造することも可能である。   Furthermore, a large amount of single-crystal SiC can be produced simultaneously by alternately stacking or arranging side-by-side single-crystal SiC as a seed crystal and polycrystalline SiC, which is a supply source of C, by the above-described method. It is.

また本発明に係る単結晶SiCの製造方法では、多結晶SiC基板及び金属Si中にあらかじめAlまたはB等のIII族金属の不純物を添加しておくか、さらに
は成長中の雰囲気中に窒素、AlまたはB等のSiCの伝導型を制御する元素を含むガスを送り込むことにより、成長結晶のp型、n型の伝導型を任意に制御することが可能である。
In the method for producing single-crystal SiC according to the present invention, impurities of a Group III metal such as Al or B are added to the polycrystalline SiC substrate and the metal Si in advance, or nitrogen, By feeding a gas containing an element that controls the conductivity type of SiC, such as Al or B, the p-type and n-type conductivity types of the grown crystal can be arbitrarily controlled.

本発明に係る単結晶SiCの液相エピタキシャル成長法に用いられる熱処理装置の一実施形態例の概略断面図である。1 is a schematic cross-sectional view of one embodiment of a heat treatment apparatus used for a liquid crystal epitaxial growth method of single crystal SiC according to the present invention. 密閉容器5の一実施形態例の概略図である。FIG. 2 is a schematic view of an example of an embodiment of a closed container 5. 上容器と下容器とが嵌合した状態の密閉容器内に設置されている種結晶となる6H型の単結晶SiC基板と、この単結晶SiC基板を挟み込む多結晶SiC基板と、これらの間に形成される極薄金属Si融液の状態を示す図である。A 6H-type single-crystal SiC substrate serving as a seed crystal placed in a closed container in which the upper container and the lower container are fitted, a polycrystalline SiC substrate sandwiching the single-crystal SiC substrate, and It is a figure showing the state of the ultra-thin metal Si melt formed. 下容器に基板を設置した状態を示す図である。It is a figure showing the state where the substrate was installed in the lower container. 本実施形態例に係る単結晶SiCの成長層の表面の顕微鏡写真を示す図である。(a)は表面モフォロジー、(b)はその断面を示す顕微鏡写真を示す図である。It is a figure showing a microscope picture of the surface of the growth layer of single crystal SiC concerning this embodiment. (A) is a figure which shows the surface morphology, (b) shows the micrograph which shows the cross section. 図5に示す単結晶SiCの表面のAFM像を示す図である。(a)は、表面モフォロジー、(b)はその断面を示すAFM像を示す図である。FIG. 6 is a diagram showing an AFM image of the surface of the single crystal SiC shown in FIG. 5. (a) is a figure which shows a surface morphology, (b) shows the AFM image which shows the cross section. 本実施形態例に係る単結晶SiCの成長過程におけるステップバンチング機構を説明するための図である。FIG. 4 is a diagram for explaining a step bunching mechanism in a growth process of single crystal SiC according to the embodiment.

符号の説明Explanation of reference numerals

1 熱処理炉
2 加熱室
3 予備加熱室
4 前室
5 密閉容器
5a 上容器
5b 下容器
6 加熱手段
7 ゲートバルブ
8 テーブル
9 サセプタ
10 移動手段
11 加熱ヒータ
12 反射鏡
DESCRIPTION OF SYMBOLS 1 Heat treatment furnace 2 Heating chamber 3 Preheating chamber 4 Front chamber 5 Closed container 5a Upper container 5b Lower container 6 Heating means 7 Gate valve 8 Table 9 Susceptor 10 Moving means 11 Heater 12 Reflecting mirror

Claims (9)

種結晶となる単結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを重ね、密閉容器内に設置して、高温熱処理を行なうことによって、前記単結晶炭化ケイ素基板と前記多結晶炭化ケイ素基板との間に、熱処理中に極薄金属シリコン融液を介在させ、前記単結晶炭化ケイ素基板上に単結晶炭化ケイ素を液相エピタキシャル成長させる単結晶炭化ケイ素の液相エピタキシャル成長法であって、
前記密閉容器を、予め圧力10-5Pa以下の予備加熱室で800℃以上に加熱するとともに、前記密閉容器内を圧力10-5Pa以下に減圧し、予め1400℃〜2,300℃に加熱された圧力10-2Pa以下、好ましくは10-5Pa以下の真空、又は予め圧力10-5Pa以下に到達した後に不活性ガスを導入した希薄ガス雰囲気下の加熱室に移動して設置することで、前記単結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを短時間で1400℃〜2,300℃に加熱して微結晶粒界の存在しない、表面のマイクロパイプ欠陥密度が1/cm2以下である単結晶炭化ケイ素を製造する単結晶炭化ケイ素の液相エピタキシャル成長法。
A single-crystal silicon carbide substrate serving as a seed crystal and a polycrystalline silicon carbide substrate are stacked, placed in a closed container, and subjected to a high-temperature heat treatment, so that the single-crystal silicon carbide substrate and the polycrystalline silicon carbide substrate In the liquid phase epitaxial growth method of single crystal silicon carbide, intervening ultra-thin metal silicon melt during heat treatment, liquid crystal epitaxial growth of single crystal silicon carbide on the single crystal silicon carbide substrate,
Heating said sealed container, with heating to 800 ° C. or higher in advance pressure 10 -5 Pa or less preheating chamber, the closed vessel was reduced to below the pressure 10 -5 Pa, in advance 1400 ℃ ~2,300 ℃ After moving to a heating chamber under a reduced pressure of 10 −2 Pa or less, preferably 10 −5 Pa or less, or a rare gas atmosphere into which an inert gas is introduced after reaching a pressure of 10 −5 Pa or less in advance. By heating the single-crystal silicon carbide substrate and the polycrystalline silicon carbide substrate to 1400 ° C. to 2,300 ° C. in a short time, the micropipe defect density on the surface where there is no fine crystal grain boundary is 1 / cm 2. A liquid phase epitaxial growth method of a single crystal silicon carbide for producing the following single crystal silicon carbide.
前記密閉容器を、前記加熱室に移動した際に、前記密閉容器の軸方向には温度差を設けず、前記密閉容器の面内方向に温度勾配を設け、前記温度勾配を任意に制御することによって微結晶粒界の生成を抑制する請求項1に記載の単結晶炭化ケイ素の液相エピタキシャル成長法。   When the closed container is moved to the heating chamber, a temperature gradient is not provided in the axial direction of the closed container, a temperature gradient is provided in an in-plane direction of the closed container, and the temperature gradient is arbitrarily controlled. 2. The method of claim 1, wherein the formation of fine crystal grain boundaries is suppressed. 前記密閉容器が、タンタル又は炭化タンタルのいずれかで形成されている請求項1又は2に記載の単結晶炭化ケイ素の液相エピタキシャル成長法。   3. The liquid phase epitaxial growth method for single-crystal silicon carbide according to claim 1, wherein the closed container is formed of either tantalum or tantalum carbide. 前記密閉容器が上容器及び下容器で形成され、前記上容器及び前記下容器の嵌合部からシリコン蒸気が漏れ出す程度に前記密閉容器内の圧力が前記加熱室内の圧力よりも高くなるように制御し、前記密閉容器内に不純物が混入するのを抑制する請求項1又は2に記載の単結晶炭化ケイ素の液相エピタキシャル成長法。   The closed container is formed of an upper container and a lower container, and the pressure in the closed container is higher than the pressure in the heating chamber to the extent that silicon vapor leaks from a fitting portion of the upper container and the lower container. The liquid phase epitaxial growth method of single-crystal silicon carbide according to claim 1, wherein the method controls and prevents impurities from being mixed into the closed vessel. 前記加熱室内に、前記密閉容器から漏出するシリコン蒸気を物理吸着する汚染物除去機構が設けられている請求項1又は2に記載の単結晶炭化ケイ素の液相エピタキシャル成長法。   3. The liquid phase epitaxial growth method of single-crystal silicon carbide according to claim 1, wherein a contaminant removal mechanism for physically adsorbing silicon vapor leaking from the closed vessel is provided in the heating chamber. 前記単結晶炭化ケイ素の表面が、3分子層を最小単位とした原子オーダーステップと、幅広のテラスと、を有し、前記テラスの幅が10μm以上である請求項1又は2に記載の単結晶炭化ケイ素の液相エピタキシャル成長法。   3. The single crystal according to claim 1, wherein the surface of the single crystal silicon carbide has an atomic order step using a trimolecular layer as a minimum unit and a wide terrace, and the width of the terrace is 10 μm or more. 4. Liquid phase epitaxial growth of silicon carbide. 前記表面が、(0001)Si面である請求項8に記載の単結晶炭化ケイ素の液相エピタキシャル成長法。   9. The method of claim 8, wherein the surface is a (0001) Si plane. 前記極薄金属シリコン融液が、50μm以下の厚みである請求項1乃至10のいずれかに記載の単結晶炭化ケイ素の液相エピタキシャル成長法。   The liquid-phase epitaxial growth method for single-crystal silicon carbide according to claim 1, wherein the ultra-thin metal silicon melt has a thickness of 50 μm or less. 請求項1乃至8のいずれかに記載の単結晶炭化ケイ素の液相エピタキシャル成長法に用いられる熱処理装置。
A heat treatment apparatus used for the liquid phase epitaxial growth method of the single crystal silicon carbide according to claim 1.
JP2003333255A 2003-03-10 2003-09-25 Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor Expired - Lifetime JP4593099B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003333255A JP4593099B2 (en) 2003-03-10 2003-09-25 Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor
PCT/JP2004/003152 WO2004088734A1 (en) 2003-03-10 2004-03-10 Method of heat treatment and heat treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003063324 2003-03-10
JP2003333255A JP4593099B2 (en) 2003-03-10 2003-09-25 Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2004292305A true JP2004292305A (en) 2004-10-21
JP4593099B2 JP4593099B2 (en) 2010-12-08

Family

ID=33421481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333255A Expired - Lifetime JP4593099B2 (en) 2003-03-10 2003-09-25 Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor

Country Status (1)

Country Link
JP (1) JP4593099B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339397A (en) * 2005-06-02 2006-12-14 Kwansei Gakuin Method of processing single crystal silicon carbide substrate, method of manufacturing semiconductor element, and semiconductor element
WO2006137192A1 (en) * 2005-06-23 2006-12-28 Sumitomo Electric Industries, Ltd. Method of surface reconstruction for silicon carbide substrate
JP2008016691A (en) * 2006-07-07 2008-01-24 Kwansei Gakuin Method of reforming surface of single crystal silicon carbide substrate, method of forming single crystal silicon carbide thin film, ion implantation and annealing method, and single crystal silicon carbide substrate and single crystal silicon carbide semiconductor substrate
JP2008230946A (en) * 2007-03-23 2008-10-02 Kwansei Gakuin Liquid phase epitaxial growth method of single crystal silicon carbide, method for producing single crystal silicon carbide substrate, and single crystal silicon carbide substrate
EP1978137A1 (en) * 2006-01-24 2008-10-08 Toyota Jidosha Kabushiki Kaisha PROCESS FOR PRODUCING SiC SINGLE CRYSTAL
JP2009170457A (en) * 2008-01-10 2009-07-30 Sumitomo Electric Ind Ltd Surface treatment method for silicon carbide substrate and semiconductor device
WO2009107188A1 (en) * 2008-02-25 2009-09-03 財団法人地球環境産業技術研究機構 METHOD FOR GROWING SINGLE CRYSTAL SiC
JP2009299901A (en) * 2009-09-04 2009-12-24 Kwansei Gakuin Screw
WO2010055569A1 (en) * 2008-11-13 2010-05-20 株式会社エコトロン Mosfet and method for manufacturing same
JP2010228937A (en) * 2009-03-26 2010-10-14 Mitsui Eng & Shipbuild Co Ltd Raw material for manufacturing single crystal silicon carbide
JP2010265126A (en) * 2009-05-12 2010-11-25 Kwansei Gakuin SINGLE CRYSTAL SiC SUBSTRATE, SINGLE CRYSTAL SiC SUBSTRATE WITH EPITAXIAL GROWTH LAYER, SiC SUBSTRATE, CARBON SUPPLY FEED SUBSTRATE, AND SiC SUBSTRATE WITH CARBON NANOMATERIAL
JP2011119412A (en) * 2009-12-02 2011-06-16 Kwansei Gakuin Method of manufacturing semiconductor wafer
JP2011230941A (en) * 2010-04-26 2011-11-17 Sumitomo Electric Ind Ltd Silicon carbide crystal and method for producing the silicon carbide crystal
JP2012028446A (en) * 2010-07-21 2012-02-09 Kwansei Gakuin HEAT TREATMENT APPARATUS FOR SiC SEMICONDUCTOR WAFER
WO2012017798A1 (en) 2010-08-03 2012-02-09 住友電気工業株式会社 Semiconductor device and process for production thereof
JP2013155111A (en) * 2013-05-07 2013-08-15 Kwansei Gakuin SiC SUBSTRATE, CARBON SUPPLY FEED SUBSTRATE, AND SiC SUBSTRATE WITH CARBON NANOMATERIAL
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
US9000447B2 (en) 2011-09-26 2015-04-07 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
US8999854B2 (en) 2011-11-21 2015-04-07 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
US9012922B2 (en) 2011-09-14 2015-04-21 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
WO2021060365A1 (en) * 2019-09-27 2021-04-01 学校法人関西学院 Method for producing semiconductor substrates and device for producing semiconductor substrates

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300666A (en) * 1994-04-27 1995-11-14 Nissin Electric Co Ltd Production of molecular beam source for silicon evaporation and crucible used for the same
JPH11199395A (en) * 1998-01-13 1999-07-27 Showa Denko Kk Production of silicon carbide single crystal
JP2000053500A (en) * 1998-08-06 2000-02-22 Nippon Pillar Packing Co Ltd METHOD AND DEVICE FOR GROWING SINGLE CRYSTAL SiC
JP2000302599A (en) * 1999-04-23 2000-10-31 New Japan Radio Co Ltd Epitaxial growth method of silicon carbide
JP2002047100A (en) * 2000-07-31 2002-02-12 Nippon Pillar Packing Co Ltd METHOD FOR GROWING SINGLE CRYSTAL SiC

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300666A (en) * 1994-04-27 1995-11-14 Nissin Electric Co Ltd Production of molecular beam source for silicon evaporation and crucible used for the same
JPH11199395A (en) * 1998-01-13 1999-07-27 Showa Denko Kk Production of silicon carbide single crystal
JP2000053500A (en) * 1998-08-06 2000-02-22 Nippon Pillar Packing Co Ltd METHOD AND DEVICE FOR GROWING SINGLE CRYSTAL SiC
JP2000302599A (en) * 1999-04-23 2000-10-31 New Japan Radio Co Ltd Epitaxial growth method of silicon carbide
JP2002047100A (en) * 2000-07-31 2002-02-12 Nippon Pillar Packing Co Ltd METHOD FOR GROWING SINGLE CRYSTAL SiC

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339397A (en) * 2005-06-02 2006-12-14 Kwansei Gakuin Method of processing single crystal silicon carbide substrate, method of manufacturing semiconductor element, and semiconductor element
WO2006137192A1 (en) * 2005-06-23 2006-12-28 Sumitomo Electric Industries, Ltd. Method of surface reconstruction for silicon carbide substrate
US7846491B2 (en) 2005-06-23 2010-12-07 Sumitomo Electric Industries, Ltd. Surface reconstruction method for silicon carbide substrate
EP1978137A4 (en) * 2006-01-24 2010-04-07 Toyota Motor Co Ltd PROCESS FOR PRODUCING SiC SINGLE CRYSTAL
EP1978137A1 (en) * 2006-01-24 2008-10-08 Toyota Jidosha Kabushiki Kaisha PROCESS FOR PRODUCING SiC SINGLE CRYSTAL
JP2008016691A (en) * 2006-07-07 2008-01-24 Kwansei Gakuin Method of reforming surface of single crystal silicon carbide substrate, method of forming single crystal silicon carbide thin film, ion implantation and annealing method, and single crystal silicon carbide substrate and single crystal silicon carbide semiconductor substrate
JP2008230946A (en) * 2007-03-23 2008-10-02 Kwansei Gakuin Liquid phase epitaxial growth method of single crystal silicon carbide, method for producing single crystal silicon carbide substrate, and single crystal silicon carbide substrate
JP2009170457A (en) * 2008-01-10 2009-07-30 Sumitomo Electric Ind Ltd Surface treatment method for silicon carbide substrate and semiconductor device
WO2009107188A1 (en) * 2008-02-25 2009-09-03 財団法人地球環境産業技術研究機構 METHOD FOR GROWING SINGLE CRYSTAL SiC
WO2010055569A1 (en) * 2008-11-13 2010-05-20 株式会社エコトロン Mosfet and method for manufacturing same
JP2010228937A (en) * 2009-03-26 2010-10-14 Mitsui Eng & Shipbuild Co Ltd Raw material for manufacturing single crystal silicon carbide
JP2010265126A (en) * 2009-05-12 2010-11-25 Kwansei Gakuin SINGLE CRYSTAL SiC SUBSTRATE, SINGLE CRYSTAL SiC SUBSTRATE WITH EPITAXIAL GROWTH LAYER, SiC SUBSTRATE, CARBON SUPPLY FEED SUBSTRATE, AND SiC SUBSTRATE WITH CARBON NANOMATERIAL
JP2009299901A (en) * 2009-09-04 2009-12-24 Kwansei Gakuin Screw
JP2011119412A (en) * 2009-12-02 2011-06-16 Kwansei Gakuin Method of manufacturing semiconductor wafer
US8574529B2 (en) 2010-04-26 2013-11-05 Sumitomo Electric Industries, Ltd. Silicon carbide crystal and method of manufacturing silicon carbide crystal
JP2011230941A (en) * 2010-04-26 2011-11-17 Sumitomo Electric Ind Ltd Silicon carbide crystal and method for producing the silicon carbide crystal
US9725823B2 (en) 2010-04-26 2017-08-08 Sumitomo Electric Industries, Ltd. Silicon carbide crystal and method of manufacturing silicon carbide crystal
JP2012028446A (en) * 2010-07-21 2012-02-09 Kwansei Gakuin HEAT TREATMENT APPARATUS FOR SiC SEMICONDUCTOR WAFER
US8981384B2 (en) 2010-08-03 2015-03-17 Sumitomo Electric Industries, Ltd. Semiconductor device and method for manufacturing same
WO2012017798A1 (en) 2010-08-03 2012-02-09 住友電気工業株式会社 Semiconductor device and process for production thereof
US9054022B2 (en) 2010-08-03 2015-06-09 Sumitomo Electric Industries, Ltd. Method for manufacturing semiconductor device
US9012922B2 (en) 2011-09-14 2015-04-21 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
US9000447B2 (en) 2011-09-26 2015-04-07 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
US8999854B2 (en) 2011-11-21 2015-04-07 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US9337277B2 (en) 2012-09-11 2016-05-10 Dow Corning Corporation High voltage power semiconductor device on SiC
US9165779B2 (en) 2012-10-26 2015-10-20 Dow Corning Corporation Flat SiC semiconductor substrate
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
JP2013155111A (en) * 2013-05-07 2013-08-15 Kwansei Gakuin SiC SUBSTRATE, CARBON SUPPLY FEED SUBSTRATE, AND SiC SUBSTRATE WITH CARBON NANOMATERIAL
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
US10002760B2 (en) 2014-07-29 2018-06-19 Dow Silicones Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
WO2021060365A1 (en) * 2019-09-27 2021-04-01 学校法人関西学院 Method for producing semiconductor substrates and device for producing semiconductor substrates

Also Published As

Publication number Publication date
JP4593099B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4593099B2 (en) Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor
JP4848495B2 (en) Single crystal silicon carbide and method for producing the same
JP6830658B2 (en) Nitride semiconductor substrate manufacturing method and manufacturing equipment
JP5562641B2 (en) Micropipe-free silicon carbide and method for producing the same
JP4964672B2 (en) Low resistivity silicon carbide single crystal substrate
US7678195B2 (en) Seeded growth process for preparing aluminum nitride single crystals
US20060249073A1 (en) Method of heat treatment and heat treatment apparatus
JP4431647B2 (en) Method for improving surface of single crystal silicon carbide substrate and method for growing single crystal silicon carbide
JP5418385B2 (en) Method for producing silicon carbide single crystal ingot
JP2008110907A (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP3741283B2 (en) Heat treatment apparatus and heat treatment method using the same
JP4431643B2 (en) Single crystal silicon carbide growth method
JP2006298722A (en) Method for manufacturing single crystal silicon carbide substrate
JP2013043822A (en) Method for producing semiconductor wafer, and semiconductor wafer
JP4482642B2 (en) Single crystal silicon carbide growth method
JP4850807B2 (en) Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP5164121B2 (en) Single crystal silicon carbide growth method
JP4418879B2 (en) Heat treatment apparatus and heat treatment method
WO2004088734A1 (en) Method of heat treatment and heat treatment apparatus
JP2006103997A (en) Method for manufacturing semiconductor crystal
JP2006041544A5 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050829

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4593099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250