JP2006173338A - Manufacturing method of epitaxial wafer for light emitting diode - Google Patents

Manufacturing method of epitaxial wafer for light emitting diode Download PDF

Info

Publication number
JP2006173338A
JP2006173338A JP2004363343A JP2004363343A JP2006173338A JP 2006173338 A JP2006173338 A JP 2006173338A JP 2004363343 A JP2004363343 A JP 2004363343A JP 2004363343 A JP2004363343 A JP 2004363343A JP 2006173338 A JP2006173338 A JP 2006173338A
Authority
JP
Japan
Prior art keywords
raw material
material solution
epitaxial
emitting diode
epitaxial wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004363343A
Other languages
Japanese (ja)
Inventor
Norio Shimada
紀雄 島田
Teppei Sugawara
鉄平 菅原
Shunsuke Yamamoto
俊輔 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004363343A priority Critical patent/JP2006173338A/en
Publication of JP2006173338A publication Critical patent/JP2006173338A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To permit the manufacturing of a light emitting diode with excellent crystallinity through the reduced amount of Zn charge than before by preventing Zn diffusion of Zn dopant upon temperature rise to supply stable Zn dopant and preventing the participation of the same into an n-type layer. <P>SOLUTION: In the manufacturing method of an epitaxial wafer for light emitting diode, the epitaxial layer of a compound semiconductor is grown employing an epitaxial growing device with a substrate holder 12 for receiving a substrate 1 for growing, and a raw material solution holder 13 having two sets or more of raw material solution reservoirs 15 in the sliding direction which are opposed so as to be relatively slidable. Partitioning plates 20, 30 are inserted into one of the raw material solution reservoirs 15 to partition the raw material solution into up-and-down three layers, and the raw material solution in respective chambers is dropped into a lower layer to use the same for the epitaxial growth by pulling out the partitioning plates 20, 30. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光ダイオード用エピタキシャルウェハの製造方法に係わり、詳しくは液相エピタキシャル成長に使われるグラファイト治具の改善及び成長中のZnドーパントの拡散について防止を図る技術に関するものである。   The present invention relates to a method for manufacturing an epitaxial wafer for light emitting diodes, and more particularly to a technique for improving a graphite jig used for liquid phase epitaxial growth and preventing diffusion of Zn dopant during growth.

図4にGaAlAs薄膜を液相エピタキシャル成長させる従来の液相成長装置の概略を示す。   FIG. 4 shows an outline of a conventional liquid phase growth apparatus for liquid phase epitaxial growth of a GaAlAs thin film.

この液相成長装置は、台座11、基板ホルダ(スライダー)12、原料溶液ホルダ13、キャップホルダ14、の4つのグラファイト製部品を上下に積み重ね、台座11及び原料溶液ホルダ13に対し基板ホルダ12を水平方向に摺動させることができるスライドボートにより構成されている。   In this liquid phase growth apparatus, four graphite parts of a pedestal 11, a substrate holder (slider) 12, a raw material solution holder 13, and a cap holder 14 are stacked up and down, and the substrate holder 12 is attached to the pedestal 11 and the raw material solution holder 13. It is comprised by the slide boat which can be made to slide in a horizontal direction.

この相互に摺動する原料溶液ホルダ13と基板ホルダ12のうち、下側の基板ホルダ12には、その摺動面である上面の装置長手方向一端側に、表面の一部を掘り込んで、GaAs基板1を載置する基板収納載置凹部16が形成されている。   Among the raw material solution holder 13 and the substrate holder 12 that slide relative to each other, the lower substrate holder 12 is dug in a part of the surface on one end side in the apparatus longitudinal direction of the upper surface that is the sliding surface, A substrate storage mounting recess 16 for mounting the GaAs substrate 1 is formed.

一方、上側の原料溶液ホルダ13には、成長用溶液を入れる原料溶液溜15が、スライド方向に複数個(ここでは3個)順次間隔を置いて形成され、原料溶液ホルダ13の摺動面と反対側の面である上面はキャップホルダ14で気密に蓋されている。   On the other hand, the upper raw material solution holder 13 is formed with a plurality (three in this case) of raw material solution reservoirs 15 in which the growth solution is placed in the slide direction at sequential intervals. The upper surface, which is the opposite surface, is airtightly covered with a cap holder 14.

この成長装置を用いた成長法としては、(1)半導体原料の溶融液を時間の経過に伴い一定の割合で温度を下げる「徐冷法」、(2)溶融液の上下に温度差を設け、溶融液の上部に溶質を過飽和状態に保つように一定温度下で配置し、下部の基板に結晶を成長させる「温度差法」、(3)両者を併用した「併用法」等がある。   The growth method using this growth apparatus is as follows: (1) “Slow cooling method” in which the temperature of the molten semiconductor raw material is lowered at a constant rate as time elapses, and (2) a temperature difference is provided above and below the molten liquid. There are a “temperature difference method” in which the solute is placed at a constant temperature so as to keep the solute in a supersaturated state on the upper part of the liquid, and a crystal is grown on the lower substrate, and (3) a “combined method” in which both are used together.

ここで製造対象が、図3に示す発光ダイオード用エピタキシャルウェハである場合、徐冷法を例にすると、まずGaAs基板1上に、p型GaAlAsクラッド層2、p型GaAlAs活性層3、n型GaAlAsクラッド層4を成長させため、上記3つの溶液溜15には、p型GaAlAsクラッド層原料溶液7、p型GaAlAs活性層原料溶液8、n型GaAlAsクラッド層原料溶液9が入れられる。すなわち原料をセットしたスライドボートを炉に入れて、成長開始温度である700〜900℃の高温領域に昇温し、溶液溜15に成長用溶液を作成する。その後、徐冷しながら溶液溜15をGaAs基板1上に移動させ、上記成長用溶液7をGaAs基板1と接触させる。これによりGaAs基板1上にGaAlAsエピタキシャル層2が成長する。所定の厚さの薄膜が成長した後、再び溶液溜15をGaAs基板1の上から移動させ、成長を停止させる。この操作を3つの上記成長用溶液7、8、9についてそれぞれ繰り返し、図3の発光ダイオード用エピタキシャルウェハの各エピタキシャル層を成長させる。   Here, when the object to be manufactured is an epitaxial wafer for a light emitting diode shown in FIG. 3, when the slow cooling method is taken as an example, first, a p-type GaAlAs cladding layer 2, a p-type GaAlAs active layer 3, and an n-type GaAlAs cladding In order to grow the layer 4, the p-type GaAlAs cladding layer material solution 7, the p-type GaAlAs active layer material solution 8, and the n-type GaAlAs cladding layer material solution 9 are placed in the three solution reservoirs 15. That is, a slide boat in which raw materials are set is put into a furnace, and the temperature is raised to a high temperature region of 700 to 900 ° C. which is a growth start temperature, and a growth solution is created in the solution reservoir 15. Thereafter, the solution reservoir 15 is moved onto the GaAs substrate 1 while gradually cooling, and the growth solution 7 is brought into contact with the GaAs substrate 1. As a result, a GaAlAs epitaxial layer 2 is grown on the GaAs substrate 1. After the thin film having a predetermined thickness is grown, the solution reservoir 15 is moved again from above the GaAs substrate 1 to stop the growth. This operation is repeated for each of the three growth solutions 7, 8, and 9 to grow the respective epitaxial layers of the light emitting diode epitaxial wafer of FIG.

なお、成長温度が一定のままでエピタキシャル成長を可能とする方法も開発されている(例えば、特許文献1参照)。
特開平9−115842号公報
A method has also been developed that enables epitaxial growth with a constant growth temperature (see, for example, Patent Document 1).
JP-A-9-115842

しかしながら、上記p型層のドーパントには、通常Znが用いられる。また通常、液相エピタキシャル法により成長されるウェハは、成長過程で700℃〜900℃の高温に加熱される。その高温下においてZnドーパントは拡散する。その拡散量は定量的に拡散しないため安定した特性が得られず、多量のZnをチャージするため、結晶性を悪くする。また、拡散したZnがn型層に達し輝度等の発光特性に悪影響を及ぼしている。   However, Zn is usually used as the dopant of the p-type layer. In general, a wafer grown by a liquid phase epitaxial method is heated to a high temperature of 700 ° C. to 900 ° C. during the growth process. The Zn dopant diffuses at that high temperature. Since the diffusion amount is not quantitatively diffused, stable characteristics cannot be obtained, and a large amount of Zn is charged, so that the crystallinity is deteriorated. Further, the diffused Zn reaches the n-type layer and adversely affects the light emission characteristics such as luminance.

液相エピタキシャル成長法に使われるグラファイト治具での成長は、上部溶液溜め部の真下に来るように(基板表面と溶液が接触するよう)スライダーを移動させ、周囲にある加熱ヒータを降温させながらGaAs基板上に成長させている。   Growth with a graphite jig used in the liquid phase epitaxial growth method is performed by moving the slider so that it is directly under the upper solution reservoir (so that the substrate surface comes into contact with the solution) and lowering the temperature of the surrounding heater to lower the temperature of the GaAs Grown on the substrate.

上部溶液溜め部は、開放状態にあり、昇温時ドーパントであるZnが拡散しやすい状態である。更に拡散したZnがn型層へ達し発光特性に悪影響を及ぼしている。   The upper solution reservoir is in an open state, and Zn as a dopant is easily diffused when the temperature is raised. Further, the diffused Zn reaches the n-type layer and adversely affects the light emission characteristics.

そこで、本発明の目的は、上記課題を解決し、p型層の上部溶液溜め部を三重構造にすることで、昇温時のZnドーパントのZn拡散を防止し、安定したZnドーパントを供給すること及びn型層への飛入を防止することで、従来よりも少ないZnチャージ量で結晶性のよい、発光ダイオードを製造する方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems and to prevent the Zn diffusion of the Zn dopant at the time of temperature rise and to supply a stable Zn dopant by making the upper solution reservoir of the p-type layer have a triple structure. It is another object of the present invention to provide a method for manufacturing a light-emitting diode having good crystallinity with a Zn charge amount smaller than that of the prior art by preventing entry into the n-type layer.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係る発光ダイオード用エピタキシャルウェハの製造方法は、成長用基板を収容する基板ホルダと、原料溶液溜を摺動方向に2以上有する原料溶液ホルダとを対向させ且つ相対的に摺動可能としたエピタキシャル成長装置を用いて、化合物半導体のエピタキシャル層を成長させる発光ダイオード用エピタキシャルウェハの製造方法において、上記原料溶液溜の一つに仕切板を挿入して原料溶液を上下三層に区切り、この仕切板を引き抜くことで、各室の原料溶液を下層に落としてエピタキシャル成長に使用することを特徴とする。   According to a first aspect of the present invention, there is provided a method of manufacturing an epitaxial wafer for a light emitting diode, wherein a substrate holder for accommodating a growth substrate and a raw material solution holder having two or more raw material solution reservoirs in a sliding direction are opposed to each other and relatively slid. In a method of manufacturing an epitaxial wafer for a light-emitting diode in which an epitaxial layer of a compound semiconductor is grown using a movable epitaxial growth apparatus, a partition plate is inserted into one of the raw material solution reservoirs to divide the raw material solution into upper and lower layers. By pulling out the partition plate, the raw material solution in each chamber is dropped to the lower layer and used for epitaxial growth.

請求項2の発明は、請求項1に記載した発光ダイオード用エピタキシャルウェハの製造方法において、上記仕切板をp型ドーパントの原料溶液溜に対して設け、成長中における原料溶液からのp型ドーパントの拡散を防止することを特徴とする。   According to a second aspect of the present invention, in the method for manufacturing an epitaxial wafer for a light-emitting diode according to the first aspect, the partition plate is provided for a p-type dopant raw material solution reservoir, and the p-type dopant from the raw material solution during the growth is provided. It is characterized by preventing diffusion.

請求項3の発明は、請求項2に記載した発光ダイオード用エピタキシャルウェハの製造方法において、成長用基板にGaAs基板を用い、上記p型ドーパントにZnを用いることを特徴とする。   According to a third aspect of the present invention, in the method of manufacturing an epitaxial wafer for a light emitting diode according to the second aspect, a GaAs substrate is used as a growth substrate and Zn is used as the p-type dopant.

本発明によれば、原料溶液溜の一つに仕切板を挿入して原料溶液を上下三層に区切り、この仕切板を引き抜くことで、各室の原料溶液を下層に落としてエピタキシャル成長に使用するので、仕切板を引き抜く前においては、Znなどのp型ドーパントの拡散を防止することができる。   According to the present invention, a partition plate is inserted into one of the raw material solution reservoirs to divide the raw material solution into three upper and lower layers, and by pulling out the partition plate, the raw material solution in each chamber is dropped to the lower layer and used for epitaxial growth. Therefore, before the partition plate is pulled out, diffusion of p-type dopants such as Zn can be prevented.

すなわち、本発明によれば、p型層の上部溶液溜め部を三重構造にすることで、昇温時のZnドーパントのZn拡散を防止し、安定したZnドーパントを供給すること及びn型層への飛入を防止することで、従来よりも少ないZnチャージ量で結晶性のよい、発光ダイオードを製造することができる。   That is, according to the present invention, the upper solution reservoir portion of the p-type layer has a triple structure, thereby preventing Zn diffusion of the Zn dopant at the time of temperature rise, supplying a stable Zn dopant, and supplying the n-type layer to the n-type layer. Thus, a light-emitting diode with good crystallinity can be manufactured with a smaller amount of Zn charge than in the past.

以下、本発明を図示の実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

この液相エピタキシャル成長装置は、図4のものと基本的に同じ構成である。すなわち、台座11、基板ホルダ12、原料溶液ホルダ13、キャップホルダ14(図4参照)、の4つのグラファイト製部品を上下に積み重ねて構成され、台座11及び原料溶液ホルダ13に対し基板ホルダ12を水平方向に摺動させることができるようになっている。そして、この相互に摺動する原料溶液ホルダ13と基板ホルダ12のうち、下側の基板ホルダ12には、その摺動面である上面の装置長手方向一端側に、GaAs基板1を収納載置する凹部から成る基板収納載置凹部16が形成されている。また、上側の原料溶液ホルダ13には、図2のシングルヘテロ接合の発光ダイオードを製造すべく、成長用溶液8、9を入れる2つの原料溶液溜15が、装置の長手方向に複数個(ここではp型GaAlAs活性層溶液8の液溜、n型GaAlAsクラッド層溶液9の液溜の2個)順次間隔を置いて形成されている。なお、原料溶液ホルダ13の摺動面と反対側の面である上面は必要に応じキャップホルダ14(図4参照)で気密に蓋されるように構成されている。   This liquid phase epitaxial growth apparatus has basically the same configuration as that of FIG. That is, the base 11, the substrate holder 12, the raw material solution holder 13, and the cap holder 14 (see FIG. 4) are stacked up and down, and the substrate holder 12 is attached to the base 11 and the raw material solution holder 13. It can be slid horizontally. Of the raw material solution holder 13 and the substrate holder 12 that slide relative to each other, the lower substrate holder 12 accommodates and places the GaAs substrate 1 on one end side in the apparatus longitudinal direction of the upper surface that is the sliding surface. A substrate storage mounting recess 16 is formed which is formed of a recess. The upper raw material solution holder 13 includes a plurality of two raw material solution reservoirs 15 in the longitudinal direction of the apparatus (here, for manufacturing the single heterojunction light emitting diode of FIG. 2). In this case, the p-type GaAlAs active layer solution 8 and the n-type GaAlAs clad layer solution 9 are formed at intervals. In addition, the upper surface which is the surface opposite to the sliding surface of the raw material solution holder 13 is configured to be airtightly covered with a cap holder 14 (see FIG. 4) as necessary.

ここでp型ドーパントにはZnが用いられている。しかしZnは蒸気圧が高い性質のため、高温にした場合、昇華し拡散しやすい。   Here, Zn is used as the p-type dopant. However, since Zn has a high vapor pressure, it tends to sublimate and diffuse at high temperatures.

そこで、本実施形態では、液相エピタキシャル成長法において、二つの仕切板20、30を、p型GaAlAs活性層溶液8を入れた液溜15に挿入して、原料溶液8を上下三層に区切り、p型層の上部に位置することとなる溶液溜め部を三重構造にすることで、Zn拡散を防止し、またZnのn型層への飛入を防止する。これにより、従来よりも少ないZnチャージ量で結晶性のよい発光ダイオードを製造する。   Therefore, in the present embodiment, in the liquid phase epitaxial growth method, the two partition plates 20 and 30 are inserted into the liquid reservoir 15 containing the p-type GaAlAs active layer solution 8 to divide the raw material solution 8 into upper and lower three layers, By making the solution reservoir portion located above the p-type layer have a triple structure, Zn diffusion is prevented and Zn is prevented from entering the n-type layer. As a result, a light-emitting diode with good crystallinity is manufactured with a smaller amount of Zn charge than before.

詳述するに、p型GaAlAs活性層溶液8の原料溶液溜15に第一の仕切板20及び第二の仕切板30を操作側から平行に挿入して、当該原料溶液溜を下室、中間室、上室からなる上下三つの室に区切り、原料溶液8を上下三層に分ける。この仕切板20、30には、それぞれ開口部21、31を設けておく。そして、必要時に、操作手段たる操作棒22、32により仕切板20及び仕切板30を引くことにより、その開口部21、31をp型GaAlAs活性層溶液8の原料溶液溜15の位置まで移動させ、開口部21、31を通してメルトを下層に落とす。そして、操作棒10により基板ホルダ12をスライドして、基板収納載置凹部16内に位置させたp型GaAs基板1にp型GaAlAs活性層溶液8を接触させる。   Specifically, the first partition plate 20 and the second partition plate 30 are inserted in parallel into the raw material solution reservoir 15 of the p-type GaAlAs active layer solution 8 from the operation side, and the raw material solution reservoir is placed in the lower chamber, the middle The raw material solution 8 is divided into three upper and lower layers by dividing into three upper and lower chambers consisting of a chamber and an upper chamber. Openings 21 and 31 are provided in the partition plates 20 and 30, respectively. When necessary, by pulling the partition plate 20 and the partition plate 30 with the operation rods 22 and 32 as operation means, the openings 21 and 31 are moved to the position of the raw material solution reservoir 15 of the p-type GaAlAs active layer solution 8. The melt is dropped to the lower layer through the openings 21 and 31. Then, the substrate holder 12 is slid by the operation rod 10, and the p-type GaAlAs active layer solution 8 is brought into contact with the p-type GaAs substrate 1 positioned in the substrate storage placement recess 16.

上記において、Znドーパントは中間層(仕切板20、30間の中間室)にセットして置き、溶解後Znドーパントが成長雰囲気にさらされる時間を短くして、Znの拡散を防止する。Znの拡散を防止されることで、またZnのn型層への飛入が防止されることで、従来よりも少ないZn量で、従来と同じ特性のエピタキシャルウェハを製造することが可能となる。   In the above, the Zn dopant is set and placed in an intermediate layer (intermediate chamber between the partition plates 20 and 30), and the time during which the Zn dopant is exposed to the growth atmosphere after dissolution is shortened to prevent Zn diffusion. By preventing the diffusion of Zn and preventing the Zn from entering the n-type layer, an epitaxial wafer having the same characteristics as the conventional one can be manufactured with a smaller amount of Zn than the conventional one. .

図2のシングルヘテロ接合の発光ダイオードを製造した実施例について述べる。   An embodiment in which the single heterojunction light emitting diode of FIG. 2 is manufactured will be described.

成長治具は、図1に示すカーボン製のグラファイト治具を用いた。これを液相エピタキシャル成長装置内の所定の箇所に設置し、水素気流中で成長装置を900℃に加熱して、3時間保持後700℃まで1℃/minの割合で降温させた。   As the growth jig, a carbon graphite jig shown in FIG. 1 was used. This was installed at a predetermined location in the liquid phase epitaxial growth apparatus, and the growth apparatus was heated to 900 ° C. in a hydrogen stream, held for 3 hours, and then cooled to 700 ° C. at a rate of 1 ° C./min.

液層エピタキシャル成長装置が900℃に達し3時間保持後、仕切り20及び仕切り30を引いて、メルトを下層に落とし、成長用溶液溜め部15の真下に、セットしたGaAs基板1が来るようにスライダー(基板ホルダ12)を動かすことで、溶液8をGaAs基板1と接触させる。溶液8がGaAs基板1と接触した後、周囲温度を降温することにより、GaAs基板1上にエピタキシャル層を成長させる。   After the liquid layer epitaxial growth apparatus reaches 900 ° C. and is held for 3 hours, the partition 20 and the partition 30 are pulled, the melt is dropped to the lower layer, and the slider (so that the set GaAs substrate 1 comes directly under the growth solution reservoir 15. The solution 8 is brought into contact with the GaAs substrate 1 by moving the substrate holder 12). After the solution 8 comes into contact with the GaAs substrate 1, the epitaxial layer is grown on the GaAs substrate 1 by lowering the ambient temperature.

この実施例の場合、Znドーパントのチャージ量は、通常0.5μg/Ga1g(Ga1g中のZn量)に対し、その半分の0.25μg/Ga1g(Ga1g中のZn量)とした。   In the case of this example, the charge amount of Zn dopant was usually 0.25 μg / Ga1g (Zn amount in Ga1g) to 0.5 μg / Ga1g (Zn amount in Ga1g).

そして、図2のシングルヘテロLED構造を成長用エピタキシャルウェハ上に積層したウェハを作製し、得られたLED用エピタキシャルウェハを用い、その品質を、膜厚、グルービング法及び表面及びキャリア濃度、ポラロンにて評価した。   Then, a wafer obtained by laminating the single hetero LED structure of FIG. 2 on the epitaxial wafer for growth is manufactured, and the quality of the obtained epitaxial wafer for LED is adjusted to the film thickness, grooving method, surface and carrier concentration, and polaron. And evaluated.

比較用として、上部溶液溜め部が三重構造になっていない従来の治具を使用し、GaAs基板でエピタキシャル成長を行い、得られたLED用エピタキシャルウェハを用い、その品質を、膜厚、グルービング法及びポラロンにて評価した。   For comparison, using a conventional jig in which the upper solution reservoir does not have a triple structure, epitaxial growth is performed on a GaAs substrate, and the obtained epitaxial wafer for LED is used for quality, thickness, grooving method and It was evaluated with Polaron.

表1に成長したエピタキシャルウェハの評価(膜厚、輝度、キャリア濃度)結果を示す。     Table 1 shows the evaluation (film thickness, luminance, carrier concentration) results of the grown epitaxial wafer.

Figure 2006173338
Figure 2006173338

表1から明らかな通り、上記実施例の方法で成長したエピタキシャルウェハの特性は、従来の半分のZn量でありながら、比較用に成長したウェハと比較して、その特性上の大差がない。これは、p型層の上部溶液溜め部を三重構造にて、昇温時のZnの拡散量を防止したことにより、Znドーパントを安定供給できたこと及びn型層への飛入を防止できたためである。   As is apparent from Table 1, the characteristics of the epitaxial wafer grown by the method of the above-described embodiment are not much different in characteristics as compared with the wafer grown for comparison although the amount of Zn is half that of the conventional one. This is because the upper solution reservoir of the p-type layer has a triple structure, and the amount of Zn diffused at the time of temperature rise is prevented, so that Zn dopant can be supplied stably and the entry into the n-type layer can be prevented. This is because.

上記した実施例では、シングルヘテロ構造のエピタキシャルウェハの形態において説明したが、本発明は図3に示すダブルヘテロ構造のエピタキシャルウェハの製造においても同様に適用することができる。   In the above-described embodiments, description has been made in the form of an epitaxial wafer having a single heterostructure, but the present invention can be similarly applied to the manufacture of an epitaxial wafer having a double heterostructure shown in FIG.

また、本発明は、ダブルヘテロ構造のエピタキシャルウェハからGaAs基板1を除去して作られる裏面反射型の発光ダイオードの製造にも適用することができる。   The present invention can also be applied to the production of a back-reflection type light emitting diode made by removing the GaAs substrate 1 from an epitaxial wafer having a double hetero structure.

本発明の製造方法の実施例に使われる液相エピタキシャル成長治具の縦断面図である。It is a longitudinal cross-sectional view of the liquid phase epitaxial growth jig | tool used for the Example of the manufacturing method of this invention. 本発明の方法で製造されるシングルへテロ構造のエピタキシャルウェハの縦断面図である。It is a longitudinal cross-sectional view of the epitaxial wafer of the single hetero structure manufactured with the method of this invention. 本発明の方法で製造されるダブルへテロ構造のエピタキシャルウェハの縦断面図である。It is a longitudinal cross-sectional view of the epitaxial wafer of the double hetero structure manufactured with the method of this invention. 従来の液相エピタキシャル成長治具を示した断面図である。It is sectional drawing which showed the conventional liquid phase epitaxial growth jig | tool.

符号の説明Explanation of symbols

1 p型GaAs基板
2 p型GaAlAsクラッド層
3 p型GaAlAs活性層
4 n型GaAlAsクラッド層
7 p型GaAlAsクラッド層原料溶液
8 p型GaAlAs活性層原料溶液
9 n型GaAlAsクラッド層原料溶液
12 基板ホルダ
13 原料溶液ホルダ
15 原料溶液溜
16 基板収納載置凹部
20、30 仕切板
21、31 開口部
1 p-type GaAs substrate 2 p-type GaAlAs clad layer 3 p-type GaAlAs active layer 4 n-type GaAlAs clad layer 7 p-type GaAlAs clad layer raw material solution 8 p-type GaAlAs active layer raw material solution 9 n-type GaAlAs clad layer raw material solution 12 substrate holder 13 Raw material solution holder 15 Raw material solution reservoir 16 Substrate storage mounting recess 20, 30 Partition plate 21, 31 Opening

Claims (3)

成長用基板を収容する基板ホルダと、原料溶液溜を摺動方向に2以上有する原料溶液ホルダとを対向させ且つ相対的に摺動可能としたエピタキシャル成長装置を用いて、化合物半導体のエピタキシャル層を成長させる発光ダイオード用エピタキシャルウェハの製造方法において、
上記原料溶液溜の一つに仕切板を挿入して原料溶液を上下三層に区切り、この仕切板を引き抜くことで、各室の原料溶液を下層に落としてエピタキシャル成長に使用することを特徴とする発光ダイオード用エピタキシャルウェハの製造方法。
An epitaxial layer of a compound semiconductor is grown using an epitaxial growth apparatus in which a substrate holder for accommodating a growth substrate and a raw material solution holder having two or more raw material solution reservoirs in the sliding direction are opposed to each other and are slidable relative to each other. In the manufacturing method of the epitaxial wafer for the light emitting diode to be made,
A partition plate is inserted into one of the raw material solution reservoirs to divide the raw material solution into upper and lower three layers, and by pulling out the partition plate, the raw material solution in each chamber is dropped to the lower layer and used for epitaxial growth. Manufacturing method of epitaxial wafer for light emitting diode.
請求項1に記載した発光ダイオード用エピタキシャルウェハの製造方法において、
上記仕切板をp型ドーパントの原料溶液溜に対して設け、成長中における原料溶液からのp型ドーパントの拡散を防止することを特徴とする発光ダイオード用エピタキシャルウェハの製造方法。
In the manufacturing method of the epitaxial wafer for light emitting diodes described in Claim 1,
A method for producing an epitaxial wafer for a light-emitting diode, wherein the partition plate is provided for a p-type dopant raw material solution reservoir to prevent diffusion of the p-type dopant from the raw material solution during growth.
請求項2に記載した発光ダイオード用エピタキシャルウェハの製造方法において、
成長用基板にGaAs基板を用い、上記p型ドーパントにZnを用いることを特徴とする発光ダイオード用エピタキシャルウェハの製造方法。
In the manufacturing method of the epitaxial wafer for light emitting diodes described in Claim 2,
A method for producing an epitaxial wafer for a light-emitting diode, wherein a GaAs substrate is used as a growth substrate and Zn is used as the p-type dopant.
JP2004363343A 2004-12-15 2004-12-15 Manufacturing method of epitaxial wafer for light emitting diode Pending JP2006173338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363343A JP2006173338A (en) 2004-12-15 2004-12-15 Manufacturing method of epitaxial wafer for light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363343A JP2006173338A (en) 2004-12-15 2004-12-15 Manufacturing method of epitaxial wafer for light emitting diode

Publications (1)

Publication Number Publication Date
JP2006173338A true JP2006173338A (en) 2006-06-29

Family

ID=36673756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363343A Pending JP2006173338A (en) 2004-12-15 2004-12-15 Manufacturing method of epitaxial wafer for light emitting diode

Country Status (1)

Country Link
JP (1) JP2006173338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022198482A1 (en) * 2021-03-22 2022-09-29 台湾积体电路制造股份有限公司 Auxiliary tooling for semiconductor manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022198482A1 (en) * 2021-03-22 2022-09-29 台湾积体电路制造股份有限公司 Auxiliary tooling for semiconductor manufacturing

Similar Documents

Publication Publication Date Title
US7527869B2 (en) Single crystal silicon carbide and method for producing the same
JPH08335715A (en) Epitaxial wafer and its manufacture
JP2006173338A (en) Manufacturing method of epitaxial wafer for light emitting diode
JPS6136395B2 (en)
TWI405880B (en) Epitaxial substrate and liquid - phase epitaxy growth method
JP2008300603A (en) Semiconductor production apparatus
JP2006005074A (en) Method for liquid phase epitaxy
JP2006080169A (en) Liquid phase growing apparatus
JPH08335555A (en) Fabrication of epitaxial wafer
JP2008177286A (en) Method for manufacturing epitaxial wafer, epitaxial wafer and device
JP2005175198A (en) Method and apparatus for liquid phase epitaxial growth
JP2006318960A (en) Liquid phase growing apparatus
JP2000182978A (en) Method and apparatus for liquid phase epitaxial growth
JPH08264467A (en) Method of forming nitrogen-doped gap epitaxial layer
JP2004221174A (en) Liquid phase epitaxial growth device and method of manufacturing liquid phase epitaxial growth device
JPH0243723A (en) Solution growth device
JPS60115271A (en) Preparation of red light emitting element of gallium phosphide
JPS5831739B2 (en) Method for manufacturing gallium phosphide green light emitting device
JPS628518A (en) Liquid phase growth method
JP2009026788A (en) Manufacturing method and apparatus for epitaxial wafer, and the epitaxial water
JP2006128279A (en) Method and device of liquid phase growth
JP2010161294A (en) Manufacturing method and apparatus for epitaxial wafer for light-emitting diode
JP2005123417A (en) Liquid phase epitaxial growing method
JPH08288545A (en) Luminescent diode and manufacture thereof
JP2008004616A (en) Method and apparatus of manufacturing epitaxial wafer and epitaxial wafer