JP2006080169A - Liquid phase growing apparatus - Google Patents

Liquid phase growing apparatus Download PDF

Info

Publication number
JP2006080169A
JP2006080169A JP2004260372A JP2004260372A JP2006080169A JP 2006080169 A JP2006080169 A JP 2006080169A JP 2004260372 A JP2004260372 A JP 2004260372A JP 2004260372 A JP2004260372 A JP 2004260372A JP 2006080169 A JP2006080169 A JP 2006080169A
Authority
JP
Japan
Prior art keywords
substrate
raw material
liquid phase
material solution
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004260372A
Other languages
Japanese (ja)
Inventor
Norio Shimada
紀雄 島田
Yukiya Shibata
幸弥 柴田
Teppei Sugawara
鉄平 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004260372A priority Critical patent/JP2006080169A/en
Publication of JP2006080169A publication Critical patent/JP2006080169A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid phase growing apparatus capable of manufacturing a light emitting diode with less occurrence rate of failure by preventing arsenic from escaping through the rear surface of a substrate comprising gallium arsenide. <P>SOLUTION: In the liquid phase growing apparatus, a substrate holder 12 having a substrate housing/placing recess 16 formed therein for housing the substrate 1 comprising gallium arsenide, and a stock solution holder 13 having two or more of stock solution reservoirs in a sliding direction, are made relatively slidable opposed to each other, and the substrate 1 is brought into contact with the stock solutions 7, 8, 9 to grow a semiconductor layer comprising a compound semiconductor on the substrate 1. In the apparatus, the surface of the substrate housing/placing recess 16 undergoes mirror surface processing 16a to prevent arsenic from escaping from the substrate 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液相成長装置において、ガリウム砒素(GaAs)からなる基板から砒素が抜けることを防止する技術に関するものである。   The present invention relates to a technique for preventing arsenic from escaping from a substrate made of gallium arsenide (GaAs) in a liquid phase growth apparatus.

図2に、GaAlAsからなる半導体層をエピタキシャル成長させる、従来の液相成長装置の概略を示す。   FIG. 2 shows an outline of a conventional liquid phase growth apparatus for epitaxially growing a semiconductor layer made of GaAlAs.

この液相成長装置は、台座11、基板ホルダ12、原料溶液ホルダ13、キャップホルダ14、の4つのグラファイト製部品からなり、台座11及び原料溶液ホルダ13に対し基板ホルダ12を水平方向に摺動させることができるように構成されている。   This liquid phase growth apparatus is composed of four graphite parts, a pedestal 11, a substrate holder 12, a raw material solution holder 13, and a cap holder 14, and slides the substrate holder 12 in the horizontal direction with respect to the pedestal 11 and the raw material solution holder 13. It is comprised so that it can be made to.

この相互に摺動する原料溶液ホルダ13と基板ホルダ12のうち、下側の基板ホルダ12には、その摺動面である上面の装置長手方向一端側に、表面の一部を掘り込んで、ガリウム砒素からなる基板1を載置する基板収納載置凹部16が形成されている。   Among the raw material solution holder 13 and the substrate holder 12 that slide relative to each other, the lower substrate holder 12 is dug in a part of the surface on one end side in the apparatus longitudinal direction of the upper surface that is the sliding surface, A substrate storage mounting recess 16 is formed for mounting the substrate 1 made of gallium arsenide.

一方、上側の原料溶液ホルダ13には、原料溶液を入れる原料溶液溜15が、水平方向に複数個(ここでは3個)順次間隔を置いて形成され、原料溶液ホルダ13の摺動面と反対側の面である上面はキャップホルダ14で気密に蓋されている。   On the other hand, in the upper raw material solution holder 13, a plurality of raw material solution reservoirs 15 for storing the raw material solutions are formed in the horizontal direction (three in this case) sequentially spaced apart from the sliding surface of the raw material solution holder 13. The upper surface, which is the side surface, is airtightly covered with the cap holder 14.

この液相成長装置を用いた成長法(液相成長法)としては、(1)原料溶液を時間の経過に伴い一定の割合で温度を下げる「徐冷法」、(2)原料溶液の上下に温度差を設け、原料溶液の上部に溶質を過飽和状態に保つように一定温度下で配置し、下部の基板に結晶を成長させる「温度差法」、(3)両者を併用した「併用法」等がある。   As a growth method (liquid phase growth method) using this liquid phase growth apparatus, (1) “slow cooling method” in which the temperature of the raw material solution is lowered at a constant rate as time passes, and (2) the temperature above and below the raw material solution. “Temperature difference method” in which a difference is provided, and the solute is placed on the upper part of the raw material solution at a constant temperature so as to keep it in a supersaturated state, and crystals are grown on the lower substrate, (3) “Combination method” using both There is.

ここで製造対象が、図4に示す発光ダイオード用エピタキシャルウェハである場合、徐冷法を例にすると、まずGaAsからなる基板1上に、p型GaAlAsからなるp型クラッド層2、p型GaAlAsからなる活性層3、n型GaAlAsからなるn型クラッド層4を成長させるため、上記3つの原料溶液溜15には、p型クラッド層用の原料溶液7、活性層用の原料溶液8、n型クラッド層用の原料溶液9が入れられる。すなわち原料をセットした液相成長装置を炉に入れて、成長開始温度である700〜900℃の高温領域に昇温し、原料溶液溜15に原料溶液を作成する。その後、徐冷しながら原料溶液溜15を基板1上に移動させ、原料溶液7を基板1と接触させる。これにより基板1上にGaAlAsからなるp型クラッド層2が成長する。所定の厚さの薄膜が成長した後、再び原料溶液溜15を基板1の上から移動させ、成長を停止させる。この操作を3つの原料溶液7、8、9について繰り返し、図4の発光ダイオード用エピタキシャルウェハの各層をエピタキシャル成長させる。   Here, when the object to be manufactured is the epitaxial wafer for light emitting diodes shown in FIG. 4, taking the slow cooling method as an example, first, on the substrate 1 made of GaAs, the p-type cladding layer 2 made of p-type GaAlAs, and made of p-type GaAlAs. In order to grow the active layer 3 and the n-type cladding layer 4 made of n-type GaAlAs, the three raw material solution reservoirs 15 include a raw material solution 7 for the p-type cladding layer, a raw material solution 8 for the active layer, and an n-type cladding. A layer raw material solution 9 is placed. That is, a liquid phase growth apparatus in which raw materials are set is placed in a furnace, and the temperature is raised to a high temperature region of 700 to 900 ° C. that is a growth start temperature, so that a raw material solution is created in the raw material solution reservoir 15. Thereafter, the raw material solution reservoir 15 is moved onto the substrate 1 while gradually cooling, and the raw material solution 7 is brought into contact with the substrate 1. Thereby, the p-type cladding layer 2 made of GaAlAs is grown on the substrate 1. After the thin film having a predetermined thickness is grown, the raw material solution reservoir 15 is moved again from above the substrate 1 to stop the growth. This operation is repeated for the three raw material solutions 7, 8, and 9, and the layers of the light emitting diode epitaxial wafer of FIG. 4 are epitaxially grown.

なお、成長温度が一定のままでエピタキシャル成長を可能とする方法も開発されている(例えば、特許文献1参照)。
特開平9−115842号公報
A method has also been developed that enables epitaxial growth with a constant growth temperature (see, for example, Patent Document 1).
JP-A-9-115842

しかしながら、通常、液相成長法により成長される基板は、成長過程で700℃〜900℃の高温に加熱される。その高温下においてガリウム砒素からなる基板から砒素が抜け易い(砒素抜けが起き易い)。また、通常使用するグラファイト製部品の表面には、直径約30μm深さ約10μmの孔が無数にある。基板の裏面は成長面と比べ高温にさらされる時間が長いため、グラファイト製部品の表面にある孔から、砒素が抜け易く、素子の動作電圧等の特性に悪影響を及ぼしている。   However, a substrate grown by a liquid phase growth method is usually heated to a high temperature of 700 ° C. to 900 ° C. during the growth process. Arsenic is easily released from the substrate made of gallium arsenide at the high temperature (arsenic is easily removed). In addition, there are innumerable holes having a diameter of about 30 μm and a depth of about 10 μm on the surface of a graphite part that is normally used. Since the back surface of the substrate is exposed to a high temperature for a long time as compared with the growth surface, arsenic tends to escape from the holes in the surface of the graphite part, which adversely affects the characteristics such as the operating voltage of the element.

そこで、本発明の目的は、上記課題を解決し、上述したガリウム砒素からなる基板の裏面からの砒素が抜けること(砒素抜け)を防止して特性不良の少ない発光ダイオードを製造することができる液相成長装置を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems and to prevent the arsenic from escaping from the back surface of the gallium arsenide substrate (arsenic detachment) and to manufacture a light emitting diode with few characteristic defects. It is to provide a phase growth apparatus.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係る液相成長装置は、ガリウム砒素からなる基板を収容するための基板収納載置凹部を設けた基板ホルダと、原料溶液溜を摺動方向に2以上有する原料溶液ホルダとを、互いに対向させて相対的に摺動可能とし、原料溶液に前記基板を接触させて前記基板上に化合物半導体からなる半導体層を成長する液相成長装置において、前記基板収納載置凹部の表面に鏡面加工を施し、前記基板から砒素が抜けることを防止したことを特徴とする。   A liquid phase growth apparatus according to a first aspect of the present invention includes a substrate holder provided with a substrate storage mounting recess for storing a substrate made of gallium arsenide, and a raw material solution holder having two or more raw material solution reservoirs in the sliding direction; In a liquid phase growth apparatus for growing a semiconductor layer made of a compound semiconductor on the substrate by bringing the substrate into contact with a raw material solution and making the substrate slidable relative to each other. The substrate is mirror-finished to prevent arsenic from escaping from the substrate.

請求項2の発明は、請求項1に記載した液相成長装置において、前記基板収納載置凹部の表面にある孔の大きさを、前記鏡面加工により直径5μm以下、深さ1μm以下としたことを特徴とする。   According to a second aspect of the present invention, in the liquid phase growth apparatus according to the first aspect, the size of the hole in the surface of the substrate storage mounting recess is set to a diameter of 5 μm or less and a depth of 1 μm or less by the mirror finish. It is characterized by.

<発明の要点>
液相成長法では、基板ホルダの基板をセットする箇所(基板収納載置凹部)を、上部溶液溜の真下に来るように、つまり基板表面と原料溶液が接触するように基板ホルダを移動させ、周囲にある加熱ヒーターを降温させながらガリウム砒素からなる基板上に半導体層をエピタキシャル成長させている。
<Key points of the invention>
In the liquid phase growth method, the substrate holder is moved so that the position of the substrate holder on which the substrate is set (substrate housing mounting recess) is directly below the upper solution reservoir, that is, the substrate surface and the raw material solution are in contact with each other. A semiconductor layer is epitaxially grown on a substrate made of gallium arsenide while lowering the temperature of a surrounding heater.

ガリウム砒素からなる基板の裏面は、基板ホルダ底部に接しており、高温の状態では、グラファイトからなる基板ホルダの基板収納載置凹部の底部表面にある直径約30μm深さ約10μmの孔から砒素が抜け易い状態にある。   The back surface of the substrate made of gallium arsenide is in contact with the bottom of the substrate holder, and in a high temperature state, arsenic is introduced through a hole having a diameter of about 30 μm and a depth of about 10 μm on the bottom surface of the substrate storage recess of the substrate holder made of graphite. It is easy to come off.

そこで本発明では、基板ホルダの基板収納載置凹部の底部表面に鏡面加工することで、グラファイトの孔を直径約30μm深さ約10μmから、直径約5μm深さ約1μmに小さくし、これにより基板収納載置凹部の底面に接触している基板裏面から砒素が抜けることを防止し、特性不良の少ない発光ダイオードを製造することを可能とする。   Therefore, in the present invention, the surface of the bottom of the substrate storage mounting recess of the substrate holder is mirror-finished to reduce the graphite hole from a diameter of about 30 μm to a depth of about 10 μm to a diameter of about 5 μm and a depth of about 1 μm. Arsenic is prevented from escaping from the back surface of the substrate in contact with the bottom surface of the storage mounting recess, and a light-emitting diode with few characteristic defects can be manufactured.

本発明によれば、グラファイトからなる基板ホルダの基板収納載置凹部の底部表面に鏡面加工を施して、その表面に存在する孔を、例えば直径約30μm深さ約10μmから、直径約5μm深さ約1μmと小さくしているので、これにより基板収納載置凹部の底面に接触している基板裏面から砒素が抜けることを防止することができ、特性不良の少ない発光ダイオードを製造することができる。   According to the present invention, the bottom surface of the substrate housing mounting recess of the substrate holder made of graphite is mirror-finished, and the holes existing on the surface are, for example, from about 30 μm in diameter to about 10 μm in depth to about 5 μm in diameter. Since the thickness is as small as about 1 μm, it is possible to prevent arsenic from escaping from the back surface of the substrate that is in contact with the bottom surface of the substrate storage mounting recess, and a light emitting diode with less characteristic defects can be manufactured.

以下、本発明を図示の実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

本発明の一実施形態例として、図1のような液相成長装置を作製した。   As an embodiment of the present invention, a liquid phase growth apparatus as shown in FIG. 1 was produced.

この液相成長装置は、図2のものと基本的に同じ構成である。すなわち、台座11、基板ホルダ12、原料溶液ホルダ13、キャップホルダ14、の4つのグラファイト製部品からなり、台座11及び原料溶液ホルダ13に対し基板ホルダ12を水平方向に摺動させることができるように構成されている。そして、この相互に摺動する原料溶液ホルダ13と基板ホルダ12のうち、下側の基板ホルダ12には、その摺動面である上面の装置長手方向一端側に、ガリウム砒素からなる基板1を収納載置する凹部からなる基板収納載置凹部16が形成されている。また、上側の原料溶液ホルダ13には、原料溶液7、8、9を入れる3つの原料溶液溜15が、装置の長手方向に順次間隔を置いて形成され、原料溶液ホルダ13の摺動面と反対側の面である上面はキャップホルダ14で気密に蓋されるように構成されている。   This liquid phase growth apparatus has basically the same configuration as that of FIG. That is, it is composed of four graphite parts, the pedestal 11, the substrate holder 12, the raw material solution holder 13, and the cap holder 14, so that the substrate holder 12 can be slid in the horizontal direction with respect to the pedestal 11 and the raw material solution holder 13. It is configured. Of the raw material solution holder 13 and the substrate holder 12 that slide relative to each other, the lower substrate holder 12 is provided with the substrate 1 made of gallium arsenide on one end side in the apparatus longitudinal direction of the upper surface that is the sliding surface. A substrate storage mounting recess 16 is formed which is a recess for storing and mounting. The upper raw material solution holder 13 is formed with three raw material solution reservoirs 15 for containing the raw material solutions 7, 8, and 9 at intervals in the longitudinal direction of the apparatus. The upper surface, which is the opposite surface, is configured to be airtightly covered with the cap holder 14.

しかし、砒素は蒸気圧が高い性質を有するため、このままの構成では、高温にした場合、ガリウム砒素からなる基板の砒素抜けが起きやすい。   However, since arsenic has a high vapor pressure, arsenic removal from a substrate made of gallium arsenic is likely to occur at a high temperature in this configuration.

そこで、従来の場合と異なり、グラファイトからなる基板ホルダの基板収納載置凹部16の底部表面にある孔を、通常の直径約30μm深さ約10μmから、直径約5μm深さ約1μmに小さくする加工つまり鏡面加工16aを施してあり、これにより液相成長中におけるガリウム砒素からなる基板1の裏面からの砒素抜けを防止している。   Therefore, unlike the conventional case, the hole on the bottom surface of the substrate storage mounting recess 16 of the substrate holder made of graphite is reduced from the usual diameter of about 30 μm to a depth of about 10 μm to a diameter of about 5 μm and a depth of about 1 μm. In other words, the mirror finishing 16a is applied to prevent arsenic from coming out from the back surface of the substrate 1 made of gallium arsenide during liquid phase growth.

本発明の実施例の気相成長装置として、グラファイト製部品からなる気相成長装置(図1)を用い、図3に示すシングルヘテロ構造の発光ダイオード用エピタキシャルウェハを試作した。基板ホルダ12には、基板収納載置凹部16の底部表面に鏡面加工16aを施したものを用いた。すなわち、鏡面加工済みの状態で、基板収納載置凹部16の底部表面における孔の直径が5μm、深さが1μmのものを使用した。   As a vapor phase growth apparatus of an example of the present invention, a vapor phase growth apparatus (FIG. 1) made of graphite parts was used, and an epitaxial wafer for a single heterostructure light emitting diode shown in FIG. As the substrate holder 12, a substrate having a mirror finish 16 a on the bottom surface of the substrate storage mounting recess 16 was used. In other words, in the mirror-finished state, a hole having a hole diameter of 5 μm and a depth of 1 μm on the bottom surface of the substrate storage placement recess 16 was used.

ガリウム砒素からなる基板1は、所定の寸法に加工し基板ホルダの所定の箇所(基板収納載置凹部16)にセットし、溶液溜の真下に、セットした基板が来るように基板ホルダを動かすことで、原料溶液を基板と接触させる。原料溶液が基板と接触した後、周囲温度を降温することにより、基板上に半導体層をエピタキシャル成長する。   The substrate 1 made of gallium arsenide is processed to a predetermined size, set in a predetermined location (substrate storage mounting recess 16) of the substrate holder, and the substrate holder is moved so that the set substrate comes directly under the solution reservoir. Then, the raw material solution is brought into contact with the substrate. After the raw material solution comes into contact with the substrate, the semiconductor layer is epitaxially grown on the substrate by lowering the ambient temperature.

すなわち、p型GaAsからなる基板1を基板ホルダ12にセットすると共に、半導体層の原料であるGa、GaAs、Al、Zn、Teを原料溶液ホルダ13にセットし、液相成長装置内の所定の箇所に設置した。水素気流中で上記成長装置を900℃に加熱した。   That is, the substrate 1 made of p-type GaAs is set in the substrate holder 12, and the semiconductor layer raw materials Ga, GaAs, Al, Zn, Te are set in the raw material solution holder 13, and a predetermined amount in the liquid phase growth apparatus is set. Installed at the place. The growth apparatus was heated to 900 ° C. in a hydrogen stream.

3時間保持後、700℃まで1℃/minの割合で降温させた。降温中に上記基板1を順次、p型GaAlAsからなる活性層用の原料溶液8、n型GaAlAsからなるn型クラッド層用の原料溶液9に接触させ、p型GaAlAsからなる活性層3、n型GaAlAsからなるn型クラッド層4を順次液相エピタキシャル成長させ、図3に示すシングルヘテロ構造の発光ダイオード用エピタキシャルウェハを得た。ただし、降温中に上記基板1を順次、p型GaAlAsからなるp型クラッド層用の原料溶液7、p型GaAlAsからなる活性層用の原料溶液8、n型GaAlAsからなるn型クラッド層用の原料溶液9に接触させ、p型GaAlAsからなるp型クラッド層2、p型GaAlAsからなる活性層3、n型GaAlAsからなるn型クラッド層4を順次液相成長させることで、図4に示す発光ダイオード用エピタキシャルウェハを得ることもできる。   After holding for 3 hours, the temperature was lowered to 700 ° C. at a rate of 1 ° C./min. The substrate 1 is sequentially brought into contact with the raw material solution 8 for the active layer made of p-type GaAlAs and the raw material solution 9 for the n-type cladding layer made of n-type GaAlAs while the temperature is lowered, and the active layer 3 made of p-type GaAlAs, n The n-type cladding layer 4 made of n-type GaAlAs was sequentially grown by liquid phase epitaxy to obtain an epitaxial wafer for a light emitting diode having a single heterostructure shown in FIG. However, during the temperature drop, the substrate 1 is sequentially applied to the p-type cladding layer raw material solution 7 made of p-type GaAlAs, the active layer raw material solution 8 made of p-type GaAlAs, and the n-type cladding layer made of n-type GaAlAs. The p-type cladding layer 2 made of p-type GaAlAs, the active layer 3 made of p-type GaAlAs, and the n-type cladding layer 4 made of n-type GaAlAs are brought into contact with the raw material solution 9 in this order, and shown in FIG. An epitaxial wafer for a light emitting diode can also be obtained.

この実施例ではシングルへテロ構造を基板上に積層し、得られたエピタキシャルウェハを用いグルービング法にて評価した。   In this example, a single heterostructure was laminated on a substrate, and the obtained epitaxial wafer was evaluated by a grooving method.

また、比較例の気相成長装置として、基板ホルダ12の基板収納載置凹部16底部の表面を鏡面加工していない部品を用いて、つまり、基板ホルダの底部表面の孔の直径が30μm、深さが10μmのものを使用して、上記と同条件でガリウム砒素からなる基板1にエピタキシャル成長させ、図3の発光ダイオード用エピタキシャルウェハを作製した。そして、得られたエピタキシャルウェハをグルービング法にて評価した。   Further, as a vapor phase growth apparatus of a comparative example, a part whose surface of the bottom of the substrate storage mounting recess 16 of the substrate holder 12 is not mirror-finished is used, that is, the diameter of the hole on the bottom surface of the substrate holder is 30 μm, deep. 3 having a thickness of 10 μm was epitaxially grown on the substrate 1 made of gallium arsenide under the same conditions as described above, and the epitaxial wafer for a light emitting diode shown in FIG. 3 was produced. And the obtained epitaxial wafer was evaluated by the grooving method.

表1に本実施例の気相成長装置と比較例の気相成長装置を用いて成長した場合の不良発生率を示す。   Table 1 shows the defect occurrence rate when growth is performed using the vapor phase growth apparatus of the present embodiment and the vapor phase growth apparatus of the comparative example.

Figure 2006080169
Figure 2006080169

これから明らかな通り、本実施例の気相成長装置で作製したエピタキシャルウェハは、比較例の気相成長装置で成長したエピタキシャルウェハと比較して、動作電圧等の特性が不良である率(不良発生率)が1/10と少ない。これは、基板ホルダの基板収納載置凹部の底部表面を鏡面加工したことにより、ガリウム砒素からなる基板における砒素抜けを防止することができたためである。   As is apparent from this, the epitaxial wafer manufactured by the vapor phase growth apparatus of the present embodiment is more defective in the characteristics such as operating voltage than the epitaxial wafer grown by the vapor phase growth apparatus of the comparative example (defect occurrence). Rate) is as low as 1/10. This is because the bottom surface of the substrate storage placement recess of the substrate holder is mirror-finished, thereby preventing arsenic detachment in the substrate made of gallium arsenide.

上記した実施例の成長装置ではシングルヘテロ構造の発光ダイオード用エピタキシャルウェハの製造例について説明したが、図4の如く、ダブルヘテロ構造の発光ダイオード用エピタキシャルウェハの製造においても本発明の成長装置を用いることができ、同様の作用効果を得ることができる。   In the growth apparatus of the above-described embodiment, an example of manufacturing an epitaxial wafer for light emitting diodes having a single heterostructure has been described. However, as shown in FIG. 4, the growth apparatus of the present invention is also used for manufacturing an epitaxial wafer for light emitting diodes having a double heterostructure. And similar effects can be obtained.

また、本発明の成長装置は、ダブルヘテロ構造のエピタキシャルウェハから基板を除去して作られる裏面反射型の発光ダイオードの製造にも用いることができる。   The growth apparatus of the present invention can also be used for the production of a back-reflection type light emitting diode made by removing a substrate from an epitaxial wafer having a double hetero structure.

本発明の液相成長装置を示した断面図である。It is sectional drawing which showed the liquid phase growth apparatus of this invention. 従来の液相成長装置を示した断面図である。It is sectional drawing which showed the conventional liquid phase growth apparatus. 本発明で製造対象としたシングルヘテロ構造の発光ダイオード用エピタキシャルウェハの断面図である。It is sectional drawing of the epitaxial wafer for light emitting diodes of the single heterostructure made into manufacture object by this invention. 本発明で製造対象としたダブルヘテロ構造の発光ダイオード用エピタキシャルウェハの断面図である。It is sectional drawing of the epitaxial wafer for light emitting diodes of the double hetero structure made into manufacture object by this invention.

符号の説明Explanation of symbols

1 基板
7 (p型クラッド層用の)原料溶液
8 (活性層用の)原料溶液
9 (n型クラッド層用の)原料溶液
12 基板ホルダ
13 原料溶液ホルダ
14 キャップホルダ
15 原料溶液溜
16 基板収納載置凹部
16a 鏡面加工
1 Substrate 7 Raw material solution (for p-type cladding layer) 8 Raw material solution (for active layer) 9 Raw material solution (for n-type cladding layer) 12 Substrate holder 13 Raw material solution holder 14 Cap holder 15 Raw material solution reservoir 16 Substrate storage Mounting recess 16a Mirror finish

Claims (2)

ガリウム砒素からなる基板を収容するための基板収納載置凹部を設けた基板ホルダと、原料溶液溜を摺動方向に2以上有する原料溶液ホルダとを、互いに対向させて相対的に摺動可能とし、原料溶液に前記基板を接触させて前記基板上に化合物半導体からなる半導体層を成長する液相成長装置において、
前記基板収納載置凹部の表面に鏡面加工を施し、前記基板から砒素が抜けることを防止したことを特徴とする液相成長装置。
A substrate holder provided with a substrate storage mounting recess for storing a substrate made of gallium arsenide and a raw material solution holder having two or more raw material solution reservoirs in the sliding direction are made to be able to slide relative to each other. In a liquid phase growth apparatus for growing a semiconductor layer made of a compound semiconductor on the substrate by bringing the substrate into contact with a raw material solution,
A liquid phase growth apparatus characterized in that a mirror finish is applied to the surface of the substrate storage mounting recess to prevent arsenic from escaping from the substrate.
請求項1に記載した液相成長装置において、
前記基板収納載置凹部の表面にある孔の大きさを、前記鏡面加工により直径5μm以下、深さ1μm以下としたことを特徴とする液相成長装置。
In the liquid phase growth apparatus according to claim 1,
The liquid phase growth apparatus characterized in that the size of the hole in the surface of the substrate storing and placing concave portion is 5 μm or less in diameter and 1 μm or less in depth by the mirror finish.
JP2004260372A 2004-09-08 2004-09-08 Liquid phase growing apparatus Pending JP2006080169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004260372A JP2006080169A (en) 2004-09-08 2004-09-08 Liquid phase growing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260372A JP2006080169A (en) 2004-09-08 2004-09-08 Liquid phase growing apparatus

Publications (1)

Publication Number Publication Date
JP2006080169A true JP2006080169A (en) 2006-03-23

Family

ID=36159398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260372A Pending JP2006080169A (en) 2004-09-08 2004-09-08 Liquid phase growing apparatus

Country Status (1)

Country Link
JP (1) JP2006080169A (en)

Similar Documents

Publication Publication Date Title
JP3550070B2 (en) GaN-based compound semiconductor crystal, growth method thereof and semiconductor substrate
JP2008303138A (en) GaN SINGLE-CRYSTAL SUBSTRATE, NITRIDE TYPE SEMICONDUCTOR EPITAXIAL SUBSTRATE AND NITRIDE TYPE SEMICONDUCTOR DEVICE
KR100296094B1 (en) Gallium phosphide green light-emitting device
JP2007251178A (en) Nitride semiconductor single crystal substrate, its manufacturing method, and method of manufacturing vertical structure nitride light emitting element using the same
JP3658756B2 (en) Method for producing compound semiconductor
JP2007246289A (en) Method for manufacturing gallium nitride semiconductor substrate
US4218270A (en) Method of fabricating electroluminescent element utilizing multi-stage epitaxial deposition and substrate removal techniques
JP2006080169A (en) Liquid phase growing apparatus
JPH07326792A (en) Manufacture of light emitting diode
US5571321A (en) Method for producing a gallium phosphide epitaxial wafer
JP2006005074A (en) Method for liquid phase epitaxy
JP2006318960A (en) Liquid phase growing apparatus
TWI405880B (en) Epitaxial substrate and liquid - phase epitaxy growth method
JP2006173338A (en) Manufacturing method of epitaxial wafer for light emitting diode
JPH08335555A (en) Fabrication of epitaxial wafer
JP2005175198A (en) Method and apparatus for liquid phase epitaxial growth
KR20130078984A (en) Method for fabricating gallium nitride substrate
JP2008177286A (en) Method for manufacturing epitaxial wafer, epitaxial wafer and device
JP7133786B2 (en) III-nitride semiconductor and manufacturing method thereof
JP2007161547A (en) Liquid phase growing apparatus, growing tool for liquid phase growing apparatus and liquid phase growing method
KR100691625B1 (en) Method for etching group iii nitride semiconducotr
JPH1065211A (en) Light-emitting diode
JP2009026788A (en) Manufacturing method and apparatus for epitaxial wafer, and the epitaxial water
JP2023145595A (en) Indium phosphide substrate and semiconductor epitaxial wafer
JPH0279422A (en) Liquid phase epitaxial growth device and growth method