JP2008177286A - Method for manufacturing epitaxial wafer, epitaxial wafer and device - Google Patents

Method for manufacturing epitaxial wafer, epitaxial wafer and device Download PDF

Info

Publication number
JP2008177286A
JP2008177286A JP2007008247A JP2007008247A JP2008177286A JP 2008177286 A JP2008177286 A JP 2008177286A JP 2007008247 A JP2007008247 A JP 2007008247A JP 2007008247 A JP2007008247 A JP 2007008247A JP 2008177286 A JP2008177286 A JP 2008177286A
Authority
JP
Japan
Prior art keywords
substrate
epitaxial wafer
solution
holder
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007008247A
Other languages
Japanese (ja)
Inventor
Norio Shimada
紀雄 島田
Teppei Sugawara
鉄平 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007008247A priority Critical patent/JP2008177286A/en
Publication of JP2008177286A publication Critical patent/JP2008177286A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing epitaxial wafer for obtaining a wafer having a uniform in-plane film thickness. <P>SOLUTION: In the method for manufacturing epitaxial wafer wherein solution holders 5 for storing a raw material solution L are provided opposed with each other at the upper part of a substrate holder 3 for storing a substrate 2, and the substrate holder 3 or the solution holder 5 are slid until the substrate 2 is placed in contact with the raw material solution L to permit a semiconductor crystal to grow on the substrate 2, an upper part of the side surface of the substrate 2 is placed in contact with the raw material solution L. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液相エピタキシャル成長法を用いて、基板上に成長させる半導体結晶(エピタキシャル層)の面内膜厚の改善を図ったエピタキシャルウェハの製造方法及びエピタキシャルウェハ並びに装置に関する。   The present invention relates to a method for manufacturing an epitaxial wafer, an epitaxial wafer, and an apparatus for improving the in-plane film thickness of a semiconductor crystal (epitaxial layer) grown on a substrate using a liquid phase epitaxial growth method.

赤色発光ダイオード(赤色LED)は、高輝度化が進んだことにより屋外用ディスプレイ・携帯電話等の需要が拡大した。それに伴い赤色LEDのコンパクト化、安価化が要求されるようになり、1枚のウェハから取得できるチップ数の取得率向上が求められている。チップの取得率は面内膜厚の均一性が大きく影響しているが、液相エピタキシャル成長法を用いてウェハを製造する際、成長治具(基板ホルダー)が原料溶液(メルト)と接触している部分の周辺となるウェハ周縁の膜厚を均一にすることが難しいのが現状である。   With respect to red light emitting diodes (red LEDs), demand for outdoor displays, mobile phones, and the like has expanded due to the progress of higher brightness. Along with this, red LEDs are required to be compact and inexpensive, and an improvement in the acquisition rate of the number of chips that can be acquired from one wafer is required. The uniformity of the in-plane film thickness greatly affects the chip acquisition rate, but when manufacturing wafers using the liquid phase epitaxial growth method, the growth jig (substrate holder) comes into contact with the raw material solution (melt). Currently, it is difficult to make the film thickness around the periphery of the wafer uniform.

なお、この出願の発明に関連する先行技術文献情報としては、次のものがある。   The prior art document information related to the invention of this application includes the following.

特開2006−80169号公報JP 2006-80169 A

従来の液相エピタキシャル成長法による製造方法では、成長治具の上部に対向して溶液溜め部を設け、治具中にあるスライダーの成長基板セット部を、溶液溜め部の真下に来るよう(基板表面と原料溶液が接触するよう)にスライダーを順次移動させ、治具周囲にある加熱ヒータを降温させながら基板上に半導体結晶を成長させている。   In the conventional manufacturing method using the liquid phase epitaxial growth method, a solution reservoir is provided facing the upper portion of the growth jig, and the growth substrate set portion of the slider in the jig is placed directly below the solution reservoir (substrate surface). The semiconductor crystal is grown on the substrate while the slider is sequentially moved so that the raw material solution comes into contact) and the heater around the jig is cooled.

しかしながら、基板セット部と溶液溜め部は同じ幅を有するため、治具と原料溶液が接触している部分の周辺の原料溶液は、表面張力で基板上に落下しにくく、基板と十分に接触しない。   However, since the substrate setting portion and the solution reservoir portion have the same width, the raw material solution around the portion where the jig and the raw material solution are in contact is unlikely to fall on the substrate due to surface tension and does not sufficiently contact the substrate. .

また、治具の冷却がウェハに比べて早いため、ウェハ表面の周縁に成長させたい半導体結晶がウェハ中央より厚く成長してしまう。   In addition, since the jig is cooled faster than the wafer, the semiconductor crystal to be grown on the periphery of the wafer surface grows thicker than the center of the wafer.

そこで、本発明の目的は、面内膜厚の均一なウェハが得られるエピタキシャルウェハの製造方法及びエピタキシャルウェハ並びに装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an epitaxial wafer manufacturing method, an epitaxial wafer and an apparatus capable of obtaining a wafer having a uniform in-plane film thickness.

本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、基板を収納するための基板ホルダーの上部に、原料溶液を収納するための溶液ホルダーを対向して設け、上記基板ホルダーあるいは上記溶液ホルダーをスライドして上記原料溶液に上記基板を接触させ、上記基板上に半導体結晶を成長させるエピタキシャルウェハの製造方法において、上記原料溶液に上記基板側面の上部を接触させるエピタキシャルウェハの製造方法である。   The present invention has been devised to achieve the above object, and the invention of claim 1 is provided with a solution holder for storing the raw material solution facing the upper portion of the substrate holder for storing the substrate. In the method of manufacturing an epitaxial wafer in which the substrate holder or the solution holder is slid to bring the substrate into contact with the raw material solution, and a semiconductor crystal is grown on the substrate, the upper part of the side surface of the substrate is brought into contact with the raw material solution. It is a manufacturing method of an epitaxial wafer.

請求項2の発明は、上記原料溶液に上記基板表面の周囲に位置する上記基板ホルダーを接触させる請求項1記載のエピタキシャルウェハの製造方法である。   A second aspect of the present invention is the epitaxial wafer manufacturing method according to the first aspect, wherein the substrate holder positioned around the substrate surface is brought into contact with the raw material solution.

請求項3の発明は、請求項1または2に記載したエピタキシャルウェハの製造方法を用いて、上記基板上に半導体結晶を成長させて作製したエピタキシャルウェハである。   A third aspect of the present invention is an epitaxial wafer produced by growing a semiconductor crystal on the substrate using the method for producing an epitaxial wafer according to the first or second aspect.

請求項4の発明は、基板を収納するための基板ホルダーの上部に、原料溶液を収納するための溶液ホルダーを対向して設け、上記基板ホルダーあるいは上記溶液ホルダーをスライドして上記原料溶液に上記基板を接触させ、上記基板上に半導体結晶を成長させるエピタキシャルウェハの製造装置において、上記基板ホルダーの基板収納部の周囲に、上記基板側面の上部を露出させるための凹部を設けたエピタキシャルウェハの製造装置である。   In the invention of claim 4, a solution holder for storing a raw material solution is provided on an upper portion of a substrate holder for storing a substrate, and the substrate holder or the solution holder is slid to the raw material solution. In an epitaxial wafer manufacturing apparatus in which a substrate is brought into contact and a semiconductor crystal is grown on the substrate, manufacturing of an epitaxial wafer provided with a recess for exposing an upper portion of the substrate side surface around a substrate storage portion of the substrate holder Device.

請求項5の発明は、上記溶液ホルダーの溶液溜め部の下部を、下方が広くなるようにテーパー状に形成した請求項4記載のエピタキシャルウェハの製造装置である。   A fifth aspect of the present invention is the epitaxial wafer manufacturing apparatus according to the fourth aspect, wherein the lower part of the solution reservoir of the solution holder is formed in a tapered shape so that the lower part is widened.

本発明によれば、面内膜厚の均一なウェハを製造できるという優れた効果を発揮する。   According to the present invention, an excellent effect that a wafer having a uniform in-plane film thickness can be manufactured is exhibited.

まず、本実施の形態に係る製造方法を用いて作製したエピタキシャルウエハの一例を図2で説明する。   First, an example of an epitaxial wafer manufactured using the manufacturing method according to the present embodiment will be described with reference to FIG.

図2に示すように、本実施の形態に係るLED用のエピタキシャルウエハ21は、GaAs基板22上に、複数層のエピタキシャル層(半導体結晶)、すなわちp型GaAlAs層(p−GaAlAs活性層)23、n型GaAlAs層(n−GaAlAsクラッド層)24を順次成長させて形成したシングルへテロ構造のエピタキシャルウェハである。   As shown in FIG. 2, the LED epitaxial wafer 21 according to the present embodiment has a plurality of epitaxial layers (semiconductor crystals), that is, a p-type GaAlAs layer (p-GaAlAs active layer) 23 on a GaAs substrate 22. , An epitaxial wafer having a single heterostructure formed by sequentially growing n-type GaAlAs layers (n-GaAlAs cladding layers) 24.

p型GaAlAs層23は、所望するLEDの発光波長に必要なAl混晶比(例えば、赤色のとき約0.35〜0.4)にする。n型GaAlAs層24は、電子の逆流を防止し、p型GaAlAs層23で発光する光に対して透明な窓になる層である。このため、n型GaAlAs層24は、p型GaAlAs層23よりも大きいAl混晶比(例えば、約0.6〜0.8)にする。また、p型の不純物としては、例えばZnを使用し、n型の不純物としては、例えばTeを使用する。   The p-type GaAlAs layer 23 is made to have an Al mixed crystal ratio (for example, about 0.35 to 0.4 when red) necessary for the desired light emission wavelength of the LED. The n-type GaAlAs layer 24 is a layer that prevents backflow of electrons and becomes a window transparent to the light emitted from the p-type GaAlAs layer 23. For this reason, the n-type GaAlAs layer 24 has an Al mixed crystal ratio (for example, about 0.6 to 0.8) larger than that of the p-type GaAlAs layer 23. As the p-type impurity, for example, Zn is used, and as the n-type impurity, for example, Te is used.

さて、本実施形態に係る製造方法に用いるエピタキシャルウェハの製造装置を図1で説明する。   Now, an epitaxial wafer manufacturing apparatus used in the manufacturing method according to the present embodiment will be described with reference to FIG.

図1は、本発明の好適な実施形態を示すエピタキシャルウェハの製造方法に用いるエピタキシャルウェハの製造装置の縦断面図と、その要部拡大図である。   FIG. 1 is a longitudinal sectional view of an epitaxial wafer manufacturing apparatus used in an epitaxial wafer manufacturing method showing a preferred embodiment of the present invention, and an enlarged view of a main part thereof.

図1に示すように、本実施形態に係るエピタキシャルウェハの製造装置(液相エピタキシャル成長装置、以下装置ともいう)1は、基板2を収納するためのスライド自在な基板ホルダー(成長治具)3と、その基板ホルダー3を載置する台座(溶液受け)4と、基板ホルダー3の上部に対向して設けられ、原料溶液Lを収納するためのスライド自在な溶液ホルダー5とで主に構成される。   As shown in FIG. 1, an epitaxial wafer manufacturing apparatus (liquid phase epitaxial growth apparatus, hereinafter also referred to as an apparatus) 1 according to this embodiment includes a slidable substrate holder (growth jig) 3 for storing a substrate 2. The pedestal (solution receiver) 4 on which the substrate holder 3 is placed and the slidable solution holder 5 that is provided facing the upper portion of the substrate holder 3 and that stores the raw material solution L are mainly configured. .

この装置1は、液相エピタキシャル成長(LPE)法により、基板2上に半導体結晶を成長させてエピタキシャルウェハを製造する装置である。LPE法は、装置内の所定箇所にそれぞれ設置した原料の過飽和溶液(原料溶液)に、基板を順次接触、分離させることで、基板上にエピタキシャル層を成長させて形成する方法である。LPE法は、1)熱平衡に近い成長法なので、エピタキシャル層内に発光を妨げる欠陥が形成されにくい、2)気相法に比べて装置や原料のコストがかからない、などの利点がある。   This apparatus 1 is an apparatus for producing an epitaxial wafer by growing a semiconductor crystal on a substrate 2 by a liquid phase epitaxial growth (LPE) method. The LPE method is a method in which an epitaxial layer is grown and formed on a substrate by sequentially contacting and separating the substrate with a supersaturated solution (raw material solution) of a raw material installed at a predetermined location in the apparatus. Since the LPE method is a growth method close to thermal equilibrium, there is an advantage that defects that hinder light emission are not easily formed in the epitaxial layer, and that the cost of equipment and raw materials is less than that of the vapor phase method.

本実施形態では、基板2として、図2で説明したLED用エピタキシャルウェハ21の製造に用いるGaAs基板22を用いた。   In the present embodiment, the GaAs substrate 22 used for manufacturing the LED epitaxial wafer 21 described with reference to FIG.

基板ホルダー3は、カーボン製のグラファイト治具であり、平板状のスライダー3aと、そのスライダー3aの他端部に設けた操作棒3bとからなる。スライダー3aの一端部の上部には、基板2を収納する基板収納部(基板ホルダー部)6が形成される。   The substrate holder 3 is a carbon graphite jig, and includes a flat slider 3a and an operation rod 3b provided at the other end of the slider 3a. A substrate storage portion (substrate holder portion) 6 for storing the substrate 2 is formed on the upper end of the slider 3a.

基板収納部6は、基板2を収納したとき、基板2表面とスライダー3aの表面の高さが一致するように形成される。基板収納部6に基板2を水平に収納するため、基板収納部6の底面には座繰り加工が施される。この基板ホルダー3は、台座4上に、溶液ホルダー5に対して相対的に移動(図1では左右方向)可能に設けられる。   The substrate storage portion 6 is formed so that the height of the surface of the substrate 2 and the surface of the slider 3a coincide when the substrate 2 is stored. In order to horizontally store the substrate 2 in the substrate storage unit 6, the bottom surface of the substrate storage unit 6 is subjected to countersink processing. The substrate holder 3 is provided on the base 4 so as to be movable relative to the solution holder 5 (in the left-right direction in FIG. 1).

スライダー3aの基板収納部6の周囲には、基板2側面の上部を露出させるための凹部7が設けられる。凹部7は、詳細は図示していないが、平面視でほぼ円環状あるいはほぼ枠状に形成される。凹部7の深さは、基板2の厚さの1/3程度にする。凹部7の幅は、基板2の径あるいは長さの1/3程度にする。   Around the substrate storage portion 6 of the slider 3a, a recess 7 is provided for exposing the upper portion of the side surface of the substrate 2. Although not shown in detail, the recess 7 is formed in a substantially annular shape or a substantially frame shape in plan view. The depth of the recess 7 is set to about 1/3 of the thickness of the substrate 2. The width of the recess 7 is set to about 1/3 of the diameter or length of the substrate 2.

溶液ホルダー5は、半導体結晶の原料となる原料溶液を収納する溶液溜め部8を複数個備える。溶液溜め部8は、基板ホルダー3の移動方向に沿って所定の間隔で設けられる。溶液溜め部8の上部には、溶液溜め部8内を気密に保つキャップホルダー9が設けられる。   The solution holder 5 includes a plurality of solution reservoirs 8 that store raw material solutions that are raw materials for semiconductor crystals. The solution reservoirs 8 are provided at predetermined intervals along the moving direction of the substrate holder 3. A cap holder 9 that keeps the inside of the solution reservoir 8 airtight is provided on the upper portion of the solution reservoir 8.

半導体結晶の原料としては、Ga、GaAs、Al、Zn、Teを使用する。原料溶液Lは、通常、溶液溜め部8に上述した原料(あるいはそれらの化合物)を固体状態でそれぞれセットし、装置1内の所定箇所に基板ホルダー3を設置し、その後、装置1内に設けたヒータで原料(あるいはそれらの化合物)を溶かして液体にすることで得られる。   As raw materials for semiconductor crystals, Ga, GaAs, Al, Zn, and Te are used. In the raw material solution L, the above-described raw materials (or their compounds) are usually set in the solution reservoir 8 in a solid state, the substrate holder 3 is installed at a predetermined location in the apparatus 1, and then provided in the apparatus 1. It is obtained by dissolving raw materials (or their compounds) with a heater to make a liquid.

溶液溜め部8の下部は、下方が広くなるようにテーパー状に形成したテーパー部8tになっている。テーパー部8tの最下端の幅は、基板2の幅よりも広くなるようにする。   The lower part of the solution reservoir 8 is a tapered part 8t formed in a tapered shape so that the lower part becomes wider. The width of the lowermost end of the taper portion 8t is made wider than the width of the substrate 2.

次に、本実施の形態に係るエピタキシャルウエハの製造方法を装置1の動作と共に説明する。   Next, an epitaxial wafer manufacturing method according to the present embodiment will be described together with the operation of the apparatus 1.

まず、溶液ホルダー5の溶液溜め部8に上述した原料をセットし、その原料をヒータで溶かして原料溶液Lを準備する。基板ホルダー3のスライダー3aの基板収納部6に基板2を収納する。   First, the raw material described above is set in the solution reservoir 8 of the solution holder 5, and the raw material solution L is prepared by melting the raw material with a heater. The substrate 2 is accommodated in the substrate accommodating portion 6 of the slider 3 a of the substrate holder 3.

基板ホルダー3(あるいは溶液ホルダー5でもよい)を(図1では左方向)スライドし、1段目(図1では最も左側)の溶液溜め部8と基板2表面の中心が位置する位置まで基板ホルダー3を移動する。原料溶液Lには基板2表面が接触する。   The substrate holder 3 (or the solution holder 5 may be left) is slid (to the left in FIG. 1), and the substrate holder 3 is moved to a position where the first stage (leftmost in FIG. 1) solution reservoir 8 and the center of the surface of the substrate 2 are located. Move 3. The surface of the substrate 2 is in contact with the raw material solution L.

これと同時に、スライダー3aの基板収納部6の周囲に凹部7が設けられているため、基板2側面の上部がスライダー3aから露出し、原料溶液Lには基板2側面の上部が接触する。さらに、溶液溜め部8の下部はテーパー部8tになっているため、原料溶液Lには、基板2表面の全面、基板2表面の周囲に位置する基板ホルダー3のスライダー3aの表面部分も接触する。   At the same time, since the recess 7 is provided around the substrate storage portion 6 of the slider 3a, the upper portion of the side surface of the substrate 2 is exposed from the slider 3a, and the upper portion of the side surface of the substrate 2 contacts the raw material solution L. Furthermore, since the lower portion of the solution reservoir 8 is a tapered portion 8t, the entire surface of the substrate 2 and the surface portion of the slider 3a of the substrate holder 3 located around the surface of the substrate 2 are in contact with the raw material solution L. .

この状態で基板2上に、1段目の溶液溜め部8に収納した原料によって1層目の半導体結晶を成長させる。1層目の半導体結晶を成長させた後、同様にして、基板ホルダー3をスライドし、2段目、3段目の溶液溜め部8と基板2表面の中心が位置する位置まで基板ホルダー3を順次移動し、1層目の半導体結晶上に、2層目、3層目の半導体結晶を順次成長させる。   In this state, a first-layer semiconductor crystal is grown on the substrate 2 using the raw material stored in the first-stage solution reservoir 8. After the growth of the first layer semiconductor crystal, the substrate holder 3 is slid in the same manner, and the substrate holder 3 is moved to the position where the second and third stage solution reservoirs 8 and the center of the surface of the substrate 2 are located. The second semiconductor layer and the third semiconductor crystal are sequentially grown on the first semiconductor crystal.

以上のようにして、例えば、図2に示したようなエピタキシャルウェハ21が得られる。   As described above, for example, the epitaxial wafer 21 as shown in FIG. 2 is obtained.

2層目以降の半導体結晶を成長させる際、基板2の側面にも半導体結晶が成長するが、この半導体結晶は基板厚に比べて十分に薄い薄膜のため、影響はない。   When the semiconductor crystal of the second and subsequent layers is grown, the semiconductor crystal also grows on the side surface of the substrate 2. However, since this semiconductor crystal is a thin film that is sufficiently thinner than the substrate thickness, there is no effect.

また、装置1を長期間使用すると、凹部7が浅くなることもあるが、凹部7が浅くなった場合には、スライダー3aを交換すればよい。   Further, when the device 1 is used for a long time, the concave portion 7 may become shallow, but when the concave portion 7 becomes shallow, the slider 3a may be replaced.

本実施形態の作用を説明する。   The operation of this embodiment will be described.

本実施形態に係る製造方法は、原料溶液Lに、基板2側面の上部、さらには基板2表面の周囲に位置する基板ホルダー3のスライダー3aの表面部分を接触させることで、基板ホルダー3のスライダー3aと基板2側面との接触面積を減らし、さらには基板2表面の全面と原料溶液Lの接触面積を増やしている。   In the manufacturing method according to this embodiment, the slider of the substrate holder 3 is brought into contact with the raw material solution L by contacting the upper portion of the side surface of the substrate 2 and further the surface portion of the slider 3a of the substrate holder 3 positioned around the surface of the substrate 2. The contact area between 3a and the side surface of the substrate 2 is reduced, and further, the contact area between the entire surface of the substrate 2 and the raw material solution L is increased.

すなわち、スライダー3aと原料溶液Lが接触している部分の面積が大きくなるため、基板2表面周辺の原料溶液Lに表面張力がほとんど働かず、基板2上に基板2表面周辺の原料溶液Lが落下しやすく、基板2表面の全面と十分に接触する。   That is, since the area of the portion where the slider 3a and the raw material solution L are in contact with each other increases, the surface tension hardly acts on the raw material solution L around the surface of the substrate 2, and the raw material solution L around the surface of the substrate 2 is formed on the substrate 2. It is easy to fall and fully contacts the entire surface of the substrate 2.

また、一般に基板ホルダーの冷却速度はウェハ(基板)に比べて早いが、本実施形態に係る製造方法では、半導体結晶の成長中、基板2の表面の全面と側面の上部が原料溶液Lと接触しているため、基板ホルダー3の基板収納部6周辺は冷却しにくい。これにより、ウェハ周縁に成長させたい半導体結晶を、ウェハ中央と同じ厚さで成長できる。   In general, the cooling rate of the substrate holder is faster than that of the wafer (substrate). However, in the manufacturing method according to the present embodiment, the entire surface of the substrate 2 and the upper part of the side surface are in contact with the raw material solution L during the growth of the semiconductor crystal. Therefore, it is difficult to cool the periphery of the substrate storage portion 6 of the substrate holder 3. Thereby, the semiconductor crystal to be grown on the wafer periphery can be grown with the same thickness as the wafer center.

したがって、本実施形態に係る製造方法によれば、面内膜厚が均一なエピタキシャルウェハ21を製造できる。   Therefore, according to the manufacturing method according to the present embodiment, the epitaxial wafer 21 having a uniform in-plane film thickness can be manufactured.

本実施形態に係る装置1によれば、基板ホルダー3の基板収納部6の周囲に、基板2側面の上部を露出させるための凹部7を設けているため、原料溶液Lに基板2側面の上部を接触させることができる。さらに、装置1では、溶液溜め部8の下部は、下方が広くなるようにテーパー状に形成したテーパー部8tとなっているため、原料溶液Lに、基板2表面の周囲に位置する基板ホルダー3のスライダー3aの表面部分を接触させることができる。   According to the apparatus 1 according to the present embodiment, the concave portion 7 for exposing the upper portion of the side surface of the substrate 2 is provided around the substrate storage portion 6 of the substrate holder 3. Can be contacted. Further, in the apparatus 1, the lower part of the solution reservoir 8 is a tapered part 8 t formed in a tapered shape so that the lower part is widened, so that the substrate holder 3 positioned around the surface of the substrate 2 is placed in the raw material solution L. The surface portion of the slider 3a can be brought into contact.

これにより、装置1によれば、上述した製造方法を実施でき、面内膜厚が均一なエピタキシャルウェハ21を製造できる。   Thereby, according to the apparatus 1, the manufacturing method mentioned above can be implemented and the epitaxial wafer 21 with a uniform in-plane film thickness can be manufactured.

上記実施の形態では、シングルへテロ構造のエピタキシャルウエハの製造方法について説明したが、本発明はダブルヘテロ構造のエピタキシャルウエハの製造方法にも応用でき、この場合も上述と同じ作用効果が得られる。   In the above-described embodiment, the method for manufacturing an epitaxial wafer having a single hetero structure has been described. However, the present invention can also be applied to a method for manufacturing an epitaxial wafer having a double hetero structure, and in this case, the same effect as described above can be obtained.

LED用のダブルへテロ構造のエピタキシャルウエハとしては、導電性のp型GaAs基板上に、第1導電型クラッド層としてのp型GaAlAsクラッド層、p型GaAlAs活性層、第2導電型クラッド層としてのn型GaAlAsクラッド層を順次成長させて形成したものがある。   As an epitaxial wafer having a double hetero structure for LED, a p-type GaAlAs cladding layer, a p-type GaAlAs active layer, and a second conductivity-type cladding layer as a first conductivity type cladding layer on a conductive p-type GaAs substrate. The n-type GaAlAs cladding layer is formed by sequentially growing.

また、本発明は、裏面反射型のLED用のエピタキシャルウエハの製造方法にも応用できる。このエピタキシャルウエハは、例えば、ダブルヘテロ構造のエピタキシャルウエハからp型GaAs基板を除去して作製される。   The present invention can also be applied to a method for manufacturing an epitaxial wafer for a back-reflection type LED. This epitaxial wafer is produced, for example, by removing a p-type GaAs substrate from an epitaxial wafer having a double hetero structure.

本発明は、LED、特に赤色LED用のエピタキシャルウエハの製造に用いると非常に有用であるが、半導体レーザ(LD)用のエピタキシャルウエハの製造に用いてもよく、この場合にも上述したのと同様の作用効果が得られる。   The present invention is very useful when used in the manufacture of epitaxial wafers for LEDs, particularly red LEDs, but may also be used in the manufacture of epitaxial wafers for semiconductor lasers (LDs), and in this case as described above. Similar effects can be obtained.

エピタキシャル層を構成する化合物半導体としては、上述したものに限らず、InGaPなどの3元混晶系や、GaInPAs、AlGaInAs、AlGaInP、InPAsSbなどの4元混晶系の化合物半導体であってもよい。   The compound semiconductor constituting the epitaxial layer is not limited to the above-described compound semiconductor, and a ternary mixed crystal system such as InGaP or a quaternary mixed crystal compound semiconductor such as GaInPAs, AlGaInAs, AlGaInP, and InPAsSb may be used.

(実施例)
図1のエピタキシャルウェハの製造装置1を用いて、上述した製造方法により、図3に示すようなLED用のエピタキシャルウェハ31を作製した。このエピタキシャルウェハ31は、図2のエピタキシャルウェハ21において、得たいLEDの発光波長に合わせてエピタキシャル層のAlの混晶比を適宜設計したものである。
(Example)
The epitaxial wafer 31 for LED as shown in FIG. 3 was produced by the manufacturing method mentioned above using the epitaxial wafer manufacturing apparatus 1 of FIG. This epitaxial wafer 31 is obtained by appropriately designing the Al mixed crystal ratio of the epitaxial layer in accordance with the emission wavelength of the LED desired to be obtained in the epitaxial wafer 21 of FIG.

すなわち、エピタキシャルウェハ31は、導電性のp型GaAs基板32上に、p型GaAl0.35As層33を20μm、n型GaAl0.60As層34を40μm順次成長させて形成したシングルへテロ構造のエピタキシャルウェハである。p型GaAs基板32としては、10mm×10mm角の基板を用いた。 That is, the epitaxial wafer 31 is an epitaxial wafer having a single hetero structure formed by sequentially growing a p-type GaAl 0.35 As layer 33 on a conductive p-type GaAs substrate 32 by 20 μm and an n-type GaAl 0.60 As layer 34 by 40 μm. It is. As the p-type GaAs substrate 32, a 10 mm × 10 mm square substrate was used.

基板ホルダー3は、示すカーボン製のグラファイト治具を用いた。凹部7は基板2の上部が基板収納部6から1/3突き出すように、また基板収納部6の周囲を3mmの幅で凹ませるように加工した。溶液溜め部8の下部の溶液側に長さ5mm、角度30°のテーパー部8tを設けた。   The substrate holder 3 used was a carbon graphite jig shown. The concave portion 7 was processed so that the upper portion of the substrate 2 protruded 1/3 from the substrate storage portion 6 and the periphery of the substrate storage portion 6 was recessed with a width of 3 mm. A tapered portion 8t having a length of 5 mm and an angle of 30 ° was provided on the solution side below the solution reservoir 8.

基板収納部6に基板32を収納して保持した基板ホルダー3を装置1内の所定の箇所に設置し、水素気流中で装置1を900℃に加熱して、3時間保持後、700℃まで1℃/minの割合で降温させた。   The substrate holder 3 holding and holding the substrate 32 in the substrate storage unit 6 is installed at a predetermined location in the apparatus 1, the apparatus 1 is heated to 900 ° C. in a hydrogen stream, held for 3 hours, and then up to 700 ° C. The temperature was lowered at a rate of 1 ° C./min.

基板32は、各段の溶液溜め部8の真下に来るようにスライダー3aを動かすことで、半導体結晶の成長中に原料溶液Lと接触させる。原料溶液Lが基板32と接触した後、周囲温度を降温することにより、基板32上にエピタキシャル層を成長させ、エピタキシャルウェハ31を作製した。   The substrate 32 is brought into contact with the raw material solution L during the growth of the semiconductor crystal by moving the slider 3a so as to be directly below the solution reservoir 8 at each stage. After the raw material solution L came into contact with the substrate 32, the epitaxial layer was grown on the substrate 32 by lowering the ambient temperature, and the epitaxial wafer 31 was produced.

得られたエピタキシャルウェハ31を用い、面内の膜厚(基板32を含む)を顕微鏡(×1000倍)で測定し、均一性を評価した。   Using the obtained epitaxial wafer 31, the in-plane film thickness (including the substrate 32) was measured with a microscope (x1000), and the uniformity was evaluated.

(比較例)
比較用として、基板ホルダーおよび溶液溜め部を加工していない慣用の液相エピタキシャル成長装置を用いて、基板32上に実施例と同様の方法でエピタキシャル層の成長を行い、そのエピタキシャルウェハの面内の膜厚(基板含む)を顕微鏡(×1000倍)で測定し、均一性を評価した。
(Comparative example)
For comparison, an epitaxial layer is grown on the substrate 32 in the same manner as in the embodiment using a conventional liquid phase epitaxial growth apparatus in which the substrate holder and the solution reservoir are not processed. The film thickness (including the substrate) was measured with a microscope (× 1000 times), and the uniformity was evaluated.

表1に作製した実施例のエピタキシャルウェハ31と、比較例のエピタキシャルウェハの評価結果を示す。   Table 1 shows the evaluation results of the epitaxial wafer 31 of the example manufactured and the epitaxial wafer of the comparative example.

Figure 2008177286
Figure 2008177286

表1に示すように、実施例のウェハ31と、比較例のウェハとを測定した。その結果、実施例のウェハ31は、ウェハ端部の一辺から4mm内側の位置から面内膜厚が均一になり(残りの3辺の結果も同じ)、比較例と比べて外側に2mm分、面内膜厚の均一性がよくなった。   As shown in Table 1, the wafer 31 of the example and the wafer of the comparative example were measured. As a result, in the wafer 31 of the example, the in-plane film thickness is uniform from a position 4 mm inside from one side of the wafer edge (the same result for the remaining three sides), and 2 mm outward from the comparative example, The uniformity of the in-plane film thickness was improved.

つまり、基板32として10mm×10mm角の基板を用いたので、実施例のウェハ31は、比較例のウェハと比べて、面内膜厚が均一な部分の面積が2.25倍も増えたことがわかる。   That is, since a 10 mm × 10 mm square substrate was used as the substrate 32, the area of the portion having a uniform in-plane film thickness increased 2.25 times in the wafer 31 of the example compared to the wafer of the comparative example. I understand.

実施例では、p型の基板32上に、p型の活性層、n型のクラッド層を順次形成したp/n構造のエピタキシャルウエハ31の例で説明したが、本発明は、n型の基板上に、n型の活性層、p型のクラッド層を順次形成したn/p構造のエピタキシャルウエハにも応用できる。   In the embodiment, the example of the epitaxial wafer 31 having the p / n structure in which the p-type active layer and the n-type cladding layer are sequentially formed on the p-type substrate 32 has been described. However, the present invention relates to the n-type substrate. Further, it can be applied to an epitaxial wafer having an n / p structure in which an n-type active layer and a p-type cladding layer are sequentially formed.

本発明の好適な実施形態を示すエピタキシャルウェハの製造方法に用いるエピタキシャルウェハの製造装置の縦断面図と、その要部拡大図である。It is the longitudinal cross-sectional view of the manufacturing apparatus of the epitaxial wafer used for the manufacturing method of the epitaxial wafer which shows suitable embodiment of this invention, and its principal part enlarged view. 本実施形態に係る製造方法を用いて作製したエピタキシャルウェハの一例を示す断面図である。It is sectional drawing which shows an example of the epitaxial wafer produced using the manufacturing method which concerns on this embodiment. 本実施形態に係る製造方法を用いて作製したエピタキシャルウェハの一例を示す断面図である。It is sectional drawing which shows an example of the epitaxial wafer produced using the manufacturing method which concerns on this embodiment.

符号の説明Explanation of symbols

1 エピタキシャルウェハ製造装置
2 基板
3 基板ホルダー
5 溶液ホルダー
6 基板収納部
7 凹部
8 溶液溜め部
8t テーパー部
DESCRIPTION OF SYMBOLS 1 Epitaxial wafer manufacturing apparatus 2 Substrate 3 Substrate holder 5 Solution holder 6 Substrate storage part 7 Recess 8 Solution reservoir part 8t Taper part

Claims (5)

基板を収納するための基板ホルダーの上部に、原料溶液を収納するための溶液ホルダーを対向して設け、上記基板ホルダーあるいは上記溶液ホルダーをスライドして上記原料溶液に上記基板を接触させ、上記基板上に半導体結晶を成長させるエピタキシャルウェハの製造方法において、上記原料溶液に上記基板側面の上部を接触させることを特徴とするエピタキシャルウェハの製造方法。   A solution holder for storing a raw material solution is provided on an upper part of a substrate holder for storing a substrate, and the substrate holder or the solution holder is slid to bring the substrate into contact with the raw material solution. An epitaxial wafer manufacturing method for growing a semiconductor crystal thereon, the method comprising bringing the upper part of the side surface of the substrate into contact with the raw material solution. 上記原料溶液に上記基板表面の周囲に位置する上記基板ホルダーを接触させる請求項1記載のエピタキシャルウェハの製造方法。   The method for producing an epitaxial wafer according to claim 1, wherein the substrate holder located around the substrate surface is brought into contact with the raw material solution. 請求項1または2に記載したエピタキシャルウェハの製造方法を用いて、上記基板上に半導体結晶を成長させて作製したことを特徴とするエピタキシャルウェハ。   An epitaxial wafer produced by growing a semiconductor crystal on the substrate using the method for producing an epitaxial wafer according to claim 1. 基板を収納するための基板ホルダーの上部に、原料溶液を収納するための溶液ホルダーを対向して設け、上記基板ホルダーあるいは上記溶液ホルダーをスライドして上記原料溶液に上記基板を接触させ、上記基板上に半導体結晶を成長させるエピタキシャルウェハの製造装置において、上記基板ホルダーの基板収納部の周囲に、上記基板側面の上部を露出させるための凹部を設けたことを特徴とするエピタキシャルウェハの製造装置。   A solution holder for storing a raw material solution is provided on an upper part of a substrate holder for storing a substrate, and the substrate holder or the solution holder is slid to bring the substrate into contact with the raw material solution. An epitaxial wafer manufacturing apparatus for growing a semiconductor crystal thereon, wherein a recess for exposing an upper portion of a side surface of the substrate is provided around a substrate storage portion of the substrate holder. 上記溶液ホルダーの溶液溜め部の下部を、下方が広くなるようにテーパー状に形成した請求項4記載のエピタキシャルウェハの製造装置。   The epitaxial wafer manufacturing apparatus according to claim 4, wherein a lower portion of the solution reservoir portion of the solution holder is formed in a tapered shape so that a lower portion is widened.
JP2007008247A 2007-01-17 2007-01-17 Method for manufacturing epitaxial wafer, epitaxial wafer and device Pending JP2008177286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008247A JP2008177286A (en) 2007-01-17 2007-01-17 Method for manufacturing epitaxial wafer, epitaxial wafer and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008247A JP2008177286A (en) 2007-01-17 2007-01-17 Method for manufacturing epitaxial wafer, epitaxial wafer and device

Publications (1)

Publication Number Publication Date
JP2008177286A true JP2008177286A (en) 2008-07-31

Family

ID=39704107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008247A Pending JP2008177286A (en) 2007-01-17 2007-01-17 Method for manufacturing epitaxial wafer, epitaxial wafer and device

Country Status (1)

Country Link
JP (1) JP2008177286A (en)

Similar Documents

Publication Publication Date Title
JP4611103B2 (en) Method for producing β-Ga2O3 crystal
US8878189B2 (en) Group III nitride semiconductor growth substrate, group III nitride semiconductor epitaxial substrate, group III nitride semiconductor element and group III nitride semiconductor free-standing substrate, and method of producing the same
US7261775B2 (en) Methods of growing a group III nitride crystal
CN101473454B (en) ZnO-based semiconductor element
JP3143040B2 (en) Epitaxial wafer and method for manufacturing the same
JP2008177286A (en) Method for manufacturing epitaxial wafer, epitaxial wafer and device
JPH08335555A (en) Fabrication of epitaxial wafer
JP2009212112A (en) Epitaxial wafer
JP2006005074A (en) Method for liquid phase epitaxy
JP2008004616A (en) Method and apparatus of manufacturing epitaxial wafer and epitaxial wafer
JP2008135647A (en) Epitaxial wafer and method for manufacturing the same
JP7137539B2 (en) Manufacturing method of nitride semiconductor light emitting device
JPH1065211A (en) Light-emitting diode
JP2006173338A (en) Manufacturing method of epitaxial wafer for light emitting diode
JP2009026788A (en) Manufacturing method and apparatus for epitaxial wafer, and the epitaxial water
JP2006080169A (en) Liquid phase growing apparatus
JP2006318960A (en) Liquid phase growing apparatus
JP2010161294A (en) Manufacturing method and apparatus for epitaxial wafer for light-emitting diode
JP2006216812A (en) Liquid-phase-epitaxial growth method and epitaxial wafer obtained thereby
JP2006190786A (en) Liquid phase epitaxial growth apparatus
JP5862472B2 (en) Epitaxial wafer manufacturing method and epitaxial wafer
JP2006128279A (en) Method and device of liquid phase growth
JP5631952B2 (en) Substrate manufacturing method
JP2015164162A (en) semiconductor laminated structure and semiconductor element
JP5672261B2 (en) Gallium nitride crystal