JPH0380184A - Method for growing crystal - Google Patents

Method for growing crystal

Info

Publication number
JPH0380184A
JPH0380184A JP21650889A JP21650889A JPH0380184A JP H0380184 A JPH0380184 A JP H0380184A JP 21650889 A JP21650889 A JP 21650889A JP 21650889 A JP21650889 A JP 21650889A JP H0380184 A JPH0380184 A JP H0380184A
Authority
JP
Japan
Prior art keywords
crystal
growth
dislocation
dislocations
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21650889A
Other languages
Japanese (ja)
Other versions
JPH0818899B2 (en
Inventor
Haruhiko Ono
春彦 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21650889A priority Critical patent/JPH0818899B2/en
Publication of JPH0380184A publication Critical patent/JPH0380184A/en
Publication of JPH0818899B2 publication Critical patent/JPH0818899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To substantially remove the axial dislocation propagating from a seed crystal and to obtain the semiconductor crystal having no crystal defects by specifying the bearings of the seed crystal at the time of growth of the semiconductor crystal by a melt pulling-up method. CONSTITUTION:The energy is minimized in the direction where the dislocation of + or -a/2[110] and + or -a/2[110] Burgers vector (b) coincides with the growth axis and, therefore, the dislocation propagates with the crystal growth and the axial dislocation is obtd. if the crystal growth direction is [001] as shown in Fig. The energy is minimized and the axial dislocation is obtd. in the direction where the dislocation of + or -a/2[101] and + or -a/2[101] Burgers vector (b) coincides with the growth axis if the growth direction is [101]. It is readable from Fig. that all the dislocations part furthest from the growth axis when the growth axis is inclined by about 14 deg. from [001], i.e., [104]. The axial dislocation is substantially removed in this way by setting the bearing of the seed crystal at <410>. The semiconductor crystal having no crystal defects is thus grown.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、融液引き上げ法による結晶育成方法に関し、
特に結晶欠陥が種結晶から育成中の半導体結晶に伝播し
ない育成方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a crystal growth method using a melt pulling method.
In particular, the present invention relates to a growth method that prevents crystal defects from propagating from a seed crystal to a growing semiconductor crystal.

(従来の技術) SiやGaAs等の半導体ウェーハは、一般にるつぼ内
の融液中に種結晶を付けて回転しながら引き上げる融液
引き上げ法よより育成している。従来、この方法で育成
した半導体結晶中には、多数の転移が残存することが知
られている。Si結晶においては、現在、完全に無転位
の結晶を得る技術が確立しているが、GaAsやInP
等の化合物半導体中には104から105cm ”の濃
度の転移が残存する。このうち熱応力により滑り転位は
、不純物を添加することによってその発生を低減できる
が、種結晶から成長方向に真直ぐ伝播する転移(軸上転
位)は完全に除去できない。軸上転位を除去する方法と
して従来様々な方法が試みられている。たとえば、ネッ
キングにより転位を結晶の外部へ逃がす方法があるが、
中心部の軸上転移は残り、本質的な解決にならない。ま
た、クワモトとホームズ(ジャーナルオブクリスタルグ
ローズ(J、 of Crystal Growth)
第91巻、1988年、567頁)は一般的なく001
>引き上げの他に<111>や<441>引き上げを行
ったが、軸上転位は存在すること報告している。
(Prior Art) Semiconductor wafers such as Si and GaAs are generally grown by a melt pulling method in which a seed crystal is attached to a melt in a crucible and pulled up while rotating. Conventionally, it has been known that a large number of dislocations remain in semiconductor crystals grown by this method. Currently, the technology to obtain completely dislocation-free Si crystals has been established, but GaAs and InP
Dislocations with a concentration of 104 to 105 cm remain in compound semiconductors such as 104 to 105 cm. Among these, the occurrence of slip dislocations due to thermal stress can be reduced by adding impurities, but they propagate straight from the seed crystal in the growth direction. Dislocations (on-axis dislocations) cannot be completely removed. Various methods have been tried to remove axial dislocations. For example, there is a method of escaping dislocations to the outside of the crystal by necking.
The axial displacement in the center remains and is not an essential solution. Also, Kuwamoto and Holmes (J, of Crystal Growth)
Volume 91, 1988, p. 567) is generally not 001
In addition to <111> and <441> pulling, it has been reported that axial dislocations still exist.

(発明が解決しようとする課題) 上述した従来の結晶育成方法では、種結晶から成長方向
に真直ぐに伝播する軸上転位を完全に除去できないとい
う欠点があった。
(Problems to be Solved by the Invention) The conventional crystal growth method described above has a drawback in that axial dislocations that propagate straight from the seed crystal in the growth direction cannot be completely removed.

本発明は、このような従来の問題点を解決した半導体結
晶の育成方法を提供することを目的とする。
An object of the present invention is to provide a method for growing semiconductor crystals that solves these conventional problems.

(課題を解決するための手段) 本発明は、融液引き上げ法による半導体結晶の育成方法
であり、種結晶の方位を<410>とすることを特徴と
している。
(Means for Solving the Problems) The present invention is a method for growing a semiconductor crystal by a melt pulling method, and is characterized in that the orientation of the seed crystal is <410>.

また、本発明は、< 001 >と<101>との間の
範囲の任意方向に種結晶の方位を定め、その設定した方
位に対して最も適当な長さのネッキングを行うことを特
徴としている。
Furthermore, the present invention is characterized in that the orientation of the seed crystal is set in an arbitrary direction within the range between <001> and <101>, and necking is performed to the most appropriate length for the set orientation. .

(実施例) 次に、本発明について図面を参照して説明する。(Example) Next, the present invention will be explained with reference to the drawings.

一般的な法則として、結晶成長に伴って伝播して行く転
位は、その転位のエネルギーが最小になるような方向に
伸びる。それで、半導体結晶のようなダイヤモンド型構
造のすべり系に対し上の法則を適用し、任意の成長方向
に対して任意の方向を持つ転位のエネルギーを計算し、
それらが最小になる位置を求めた。第1図は、6種類の
それぞれのバーガースベクトルを持つ転位について、そ
れらの転位のエネルギーが最小になる位置を示している
。横軸は成長方向で、[001]からの離角として示し
ている。縦軸はエネルギーが最小となる転位線の方向で
、成長方向ならの離角として示している。第1図によれ
ば、成長方向が[001]の場合、バーガースベクトル
bが±a/2[110]と±a/2[110]の転位は
成長軸と一致した方向でエネルギー最小となり、したが
って、結晶成長と共に伝播し軸上転位となる。また、成
長方向が[101]の場合には、バーガースベクトルb
が±a/2[101]と±a/2[101]の転位が成
長軸と一致した方向でエネルギー最小となり、軸上転位
となる。すべての転位が成長軸から最も遠ざかるのは、
成長軸を[001]から約14度傾けた場合、すなわち
、[104]であることが第1図から読み取れる。
As a general rule, dislocations that propagate as the crystal grows grow in the direction that minimizes the energy of the dislocations. Therefore, by applying the above law to a slip system with a diamond-type structure such as a semiconductor crystal, we can calculate the energy of a dislocation having an arbitrary direction with respect to an arbitrary growth direction.
We found the position where they are minimum. FIG. 1 shows the position where the energy of each of six types of dislocations having Burgers vectors is minimum. The horizontal axis is the growth direction, which is shown as an elongation angle from [001]. The vertical axis is the direction of the dislocation line where the energy is minimum, and is shown as an elongation from the growth direction. According to Fig. 1, when the growth direction is [001], dislocations with Burgers vector b of ±a/2[110] and ±a/2[110] have the minimum energy in the direction that coincides with the growth axis, so , propagates as the crystal grows and becomes an axial dislocation. Moreover, when the growth direction is [101], Burgers vector b
The dislocations of ±a/2[101] and ±a/2[101] have the minimum energy in the direction that coincides with the growth axis, and become on-axis dislocations. The furthest distance of all dislocations from the growth axis is
It can be seen from FIG. 1 that when the growth axis is tilted approximately 14 degrees from [001], that is, [104].

以上のように、種結晶の方位を<410>とすることに
より、軸上転位を本質的に除去し、結晶欠陥の無い半導
体結晶を育成できる。
As described above, by setting the orientation of the seed crystal to <410>, it is possible to essentially eliminate axial dislocations and grow a semiconductor crystal free of crystal defects.

また、[001]と[101]との間の範囲の任意方向
に種結晶の方位を定めると、最も成長軸に近い転位でも
結晶の成長軸からある角度をもって伝播する。
Furthermore, if the seed crystal is oriented in any direction between [001] and [101], even the dislocation closest to the growth axis propagates at a certain angle from the crystal growth axis.

その角度をAとすると、種結晶の直径がDの時、D/1
anAだけの長さのネッキングを行えばすべての転位は
完全に除去することができる。例えば成長方向を[10
2]とすると、最も成長軸に近い転位は第1図によれば
バーガースベクトルbが士a/2[101]の転位であ
り、転位の伝播方向は約9度と読みとれる。
If the angle is A, then when the diameter of the seed crystal is D, D/1
All dislocations can be completely removed by necking with a length of anA. For example, if the growth direction is [10
2], then the dislocation closest to the growth axis is a dislocation with a Burgers vector b of x a/2 [101] according to FIG. 1, and the propagation direction of the dislocation can be read as approximately 9 degrees.

種結晶の直径りはふつう2〜3mmなので、D/1an
A = 3/jan9°=19(mm)だけの長さネッ
キングすれば、種結晶からの転位をすべて除去できる。
The diameter of the seed crystal is usually 2 to 3 mm, so D/1an
All dislocations from the seed crystal can be removed by necking for a length of A=3/jan9°=19 (mm).

以上のように、<001>と<101>との間の範囲の
任意方向に種結晶の方位を定め、その設定した方位に対
して最も適当な長さのネッキングを行うことにより、軸
上転位を本質的に除去し、結晶欠陥の無い半導体結晶を
育成できる。
As described above, by setting the orientation of the seed crystal in an arbitrary direction within the range between <001> and <101>, and performing necking to the most appropriate length for the set orientation, axial dislocations can be can be essentially removed, and semiconductor crystals without crystal defects can be grown.

(発明の効果) 以上説明したように、本発明によれば融液引き上げ法に
より育成する半導体結晶中に種結晶から伝播する軸上転
位を本質的に除去し、結晶欠陥の無い半導体結晶を育成
できる。
(Effects of the Invention) As explained above, according to the present invention, axial dislocations propagated from a seed crystal are essentially removed in a semiconductor crystal grown by a melt pulling method, and a semiconductor crystal free of crystal defects is grown. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、転位の伝播方向と結晶の成長方向との関係を
示す図である。
FIG. 1 is a diagram showing the relationship between the propagation direction of dislocations and the direction of crystal growth.

Claims (2)

【特許請求の範囲】[Claims] (1)融液引き上げ法による半導体結晶の育成において
、種結晶の方位を<410>とすることを特徴とする結
晶育成方法。
(1) A method for growing a semiconductor crystal by a melt pulling method, characterized in that the orientation of the seed crystal is <410>.
(2)融液引き上げ法による半導体結晶の育成において
、<001>と<101>との間の範囲に任意方向に種
結晶の方位を定め、その設定した方位に対して最も適当
な長さのネッキングを行うことを特徴とする結晶育成方
法。
(2) In growing semiconductor crystals by the melt pulling method, set the orientation of the seed crystal in an arbitrary direction in the range between <001> and <101>, and choose the most appropriate length for the set orientation. A crystal growth method characterized by necking.
JP21650889A 1989-08-22 1989-08-22 Crystal growth method Expired - Lifetime JPH0818899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21650889A JPH0818899B2 (en) 1989-08-22 1989-08-22 Crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21650889A JPH0818899B2 (en) 1989-08-22 1989-08-22 Crystal growth method

Publications (2)

Publication Number Publication Date
JPH0380184A true JPH0380184A (en) 1991-04-04
JPH0818899B2 JPH0818899B2 (en) 1996-02-28

Family

ID=16689528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21650889A Expired - Lifetime JPH0818899B2 (en) 1989-08-22 1989-08-22 Crystal growth method

Country Status (1)

Country Link
JP (1) JPH0818899B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003089697A1 (en) * 2002-04-19 2003-10-30 Komatsu Denshi Kinzoku Kabushiki Kaisha Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
DE102008026784A1 (en) 2008-06-04 2009-12-10 Siltronic Ag Epitaxial silicon wafer with <110> crystal orientation and process for its preparation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003089697A1 (en) * 2002-04-19 2003-10-30 Komatsu Denshi Kinzoku Kabushiki Kaisha Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
US7226506B2 (en) 2002-04-19 2007-06-05 Sumco Techxiv Corporation Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
DE102008026784A1 (en) 2008-06-04 2009-12-10 Siltronic Ag Epitaxial silicon wafer with <110> crystal orientation and process for its preparation
US8133318B2 (en) 2008-06-04 2012-03-13 Siltronic Ag Epitaxially coated silicon wafer with 110 orientation and method for producing it

Also Published As

Publication number Publication date
JPH0818899B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
WO2000000674A3 (en) Process for growth of defect free silicon crystals of arbitrarily large diameters
KR970001617A (en) Dislocation Removal Method in Silicon Single Crystal Neck
GB2059932A (en) Solidification processes
JP3841863B2 (en) Method of pulling silicon single crystal
EP1498516B8 (en) Single crystal silicon producing method, single crystal silicon wafer and ingot produced thereby
JP5056122B2 (en) Method for producing silicon single crystal
JPH107487A (en) Production of single semiconductor crystal by magnetic field impression
JP2848067B2 (en) Seed crystal of silicon single crystal
JPH0380184A (en) Method for growing crystal
US5769941A (en) Method of forming semiconductor material
JPH06298588A (en) Production of compound semiconductor single crystal by vertical type boat method
JP2001240493A (en) Manufacturing method of non-dislocational, single crystal silicon
JP2525300B2 (en) Method for producing silicon single crystal
JPH04104988A (en) Growth of single crystal
JPH10130100A (en) Apparatus for production of semiconductor single crystal and its production
MY133116A (en) Process for preparing defect free silicon crystals which allows for variability in process conditions
JP3141975B2 (en) Method for growing doped silicon single crystal
Taishi et al. Behavior of dislocations due to thermal shock in B-doped Si seed in Czochralski Si crystal growth
JPS6259598A (en) Indium phosphide single crystal and production thereof
JPH0380183A (en) Method for growing single crystal of pare earth silicate
JPS61242983A (en) Production of semiconductor single crystal rod
JPH09110575A (en) Crucible for producing single crystal and production of single crystal
KR950007598B1 (en) Method for decreasing dislocation of gaas single crystal by vertical temperature gradient
JPS5912639B2 (en) crystal growth method
JPS63210097A (en) Production of compound semiconductor