JPH0379425B2 - - Google Patents

Info

Publication number
JPH0379425B2
JPH0379425B2 JP58096923A JP9692383A JPH0379425B2 JP H0379425 B2 JPH0379425 B2 JP H0379425B2 JP 58096923 A JP58096923 A JP 58096923A JP 9692383 A JP9692383 A JP 9692383A JP H0379425 B2 JPH0379425 B2 JP H0379425B2
Authority
JP
Japan
Prior art keywords
steel
corrosion resistance
amount
corrosion
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58096923A
Other languages
Japanese (ja)
Other versions
JPS59222560A (en
Inventor
Kazuma Oda
Mitsuaki Nishikawa
Takayoshi Kamyo
Takayoshi Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP9692383A priority Critical patent/JPS59222560A/en
Publication of JPS59222560A publication Critical patent/JPS59222560A/en
Publication of JPH0379425B2 publication Critical patent/JPH0379425B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は含硫化物または含硫化物塩化物熱水に
対してすぐれた耐食性を有するオーステナイトス
テンレス鋼に関する。 一般に温泉水は種々の溶解成分を多量に含有し
他の上水道水、中水道水等の生活用水や、河川水
の工業用水などに比べ腐食性の強い水質であり、
中でも硫化物や、塩化物を含む温泉水はその腐食
性はさらに強く、配管類や取扱い機器に損傷が多
く起つている。 温泉水の配管系統には、従来、井戸用の吸上管
や、配湯管用の石綿管、ポリ塩化ビニル管、亜鉛
めつき鋼管などが使用されているが、これらの材
料は機械的強度が低かつたり、耐食性が劣悪であ
る等の難点があり、耐久年数が短かいために、実
用されているものの交換頻度が極めて高い現状に
ある。 近年この難点を克服するために、従来の配管材
より価格的に割高であるが、工業用配管、水道用
給水配管、給湯配管として実積のあるSUS 304
ステンレス鋼の管材が使用され始め、次第に普及
しつつある。 しかしながら、温泉水は前述のように水道水や
工業用水に比べて格段に腐食性が強く、中でも硫
化物、塩化物を含む泉質では、SUS 304は隙間
腐食や孔食などの局部腐食を起こし易く、温泉水
に対してはその適用範囲が著しく限定されてい
る。 このような環境において孔食、隙間腐食などの
耐局部腐食性のすぐれたステンレス鋼は含Mo
(2%以上)の高Cr鋼または含Mo(2%以上)の
高Cr−Ni鋼であり、これらの鋼種は使用可能と
考えられるが、SUS 304よりは著しく高価で温
泉用配管材として実用性に乏しい。 このような観点から、本発明者らは温泉水に代
表される広範囲の含硫化物または含硫化物塩化物
熱水に対して耐食性を有し、しかも実用配管材と
してSUS 304並の価格のステンレス鋼について
種々研究を行つた結果、腐食性の強い硫化物、塩
化物を含有する温泉環境下ですぐれた耐食性を有
する温泉用ステンレス鋼を開発した。 本発明者らはSUS 304オーステナイト鋼のS
を極低にして、Tiおよび/またはNbとMoを少
量複合添加することにより、硫化物と塩化物の存
在する環境で耐孔食性ならびに耐隙間腐食性が著
しく改善されることを見出した。 即ち、本発明によれば、Cr:16〜20%、Ni:
6〜15%を含み、Si:1.0%以下、Mn:2.0
%、0.002%≦S≦0.005%、Ti:C%×4+0.1%
〜0.5%またはNb:C%×8+0.1%〜0.7%また
はTi+Nb:C%×8+0.1%〜0.7%を複合で含
有し、残部Feおよび不可避的不純物からなる耐
硫化または含硫化物塩化物熱水用オーステナイト
ステンレス鋼。 本発明鋼の成分限定理由は次の通りである。 C:耐食性の面から、SUS 304に含まれる程度
でよいが、C量に基づいてTiとNbの添加量が
決定されるので、C量が多いとTi、Nbの添加
量も多くなるためには、C量は0.05%以下にし
た。 Si:Siは脱酸材として溶湯に添加されるものが残
留するもので、通常SUS 304と同程度の1%
以下とした。 Mn:Mnは熱間加工性を良好にする元素である
が、1.0%以上添加しても添加量に見合う改善
効果はないが2%までは害がないので2%以下
とする。(2%を越えると耐食性を害する。) Cr:Crは鋼の耐孔食性、耐隙間腐食性などの耐
局部腐食性を改善するためには不可欠な元素で
あるが、多すぎると価格上昇を招き、また16%
未満では本発明の目的とする耐食性が発揮され
得ないので適量範囲を16.0%〜20.0%に限定し
た。 Ni:は鋼をオーステナイト組織にして耐食性を
向上させるのに必須の元素であり、その量はフ
エライト生成元素との関係で定まり、上に限定
したCr量に対しては6.0〜15.0%となる。上限
を越えて添加しても単に価格の上昇を招くのみ
である。 s:Sは耐局部腐食性に対して有実な元素である
ので可及的に低いことが望ましいが、本発明の
目的とする耐食性を発揮するためには0.005%
以下の極微量にすることが必須条件である。低
減させることが困難なS含有量は、0.002%未
満にする必要がない。 Mo:Moは耐孔食性、耐隙間腐食性の向上に必
須の元素であり、添加量の増加とともに耐食性
は向上するが、高価な元素である価格上昇を招
き、本発明鋼の特徴が損なわれる。顕著な効果
を示し、しかも経済的な範囲として0.2%以上
1.0%未満とした。特に本発明においてはNiを
含むオーステナイト組織でMoとTiあるいは
MoとNbを複合添加することによつて両者の相
乗効果を狙うものであり、少量のMoの添加に
より、硫化物、塩化物に対する耐食性を著しく
向上させたものであり、他の成分とのバランス
およびコストを考慮して0.2%〜1.0%未満の範
囲で充分に目的を達成する。 Ti:Tiは硫化物と塩化物溶液の耐食性を向上さ
せるのに有効な元素であるとともに、鋼中のC
をTi炭化物として固定し粒界腐食を防ぐ効果
がある。本発明においては、C%×4+0.1%
以上添加する必要がある。しかしTiが多量に
過ぎると表面庇が発生し易くなり、0.5%以下
が好ましい範囲である。 Nb:NbはTiと同様に耐食性向上と鋼中のCを
Nb炭化物に固定し、粒界腐食性を防ぐ効果が
ある。本発明においてはC%×8+0.1%以上
添加する必要があるがNbが多量に過ぎると加
工性や溶接性が悪くなるので、好ましい範囲と
して上限を0.7%とした。Tiとの複合添加の場
合もC%×8+0.1%以上で0.7%までが好まし
い範囲である。
The present invention relates to an austenitic stainless steel having excellent corrosion resistance against sulfide-containing or sulfide-containing chloride hot water. In general, hot spring water contains a large amount of various dissolved components and is more corrosive than other domestic water such as tap water or gray water, or industrial river water.
Among them, hot spring water containing sulfides and chlorides is even more corrosive and often causes damage to piping and handling equipment. Hot spring water piping systems have traditionally used suction pipes for wells, asbestos pipes for hot water distribution pipes, polyvinyl chloride pipes, galvanized steel pipes, etc., but these materials have poor mechanical strength. They have drawbacks such as low strength and poor corrosion resistance, and their durability is short, so even those that are in practical use are replaced extremely frequently. In recent years, in order to overcome this difficulty, SUS 304, which is more expensive than conventional piping materials, has been used for industrial piping, water supply piping, and hot water supply piping.
Stainless steel tubing has begun to be used and is becoming increasingly popular. However, as mentioned above, hot spring water is much more corrosive than tap water or industrial water, and in springs that contain sulfides and chlorides, SUS 304 can suffer from localized corrosion such as crevice corrosion and pitting corrosion. However, the scope of its application to hot spring water is extremely limited. In such environments, stainless steel with excellent resistance to localized corrosion such as pitting and crevice corrosion is
(2% or more) high Cr steel or Mo containing (2% or more) high Cr-Ni steel. Although these steel types are considered usable, they are significantly more expensive than SUS 304 and are not practical as piping materials for hot springs. lacking in sex. From this point of view, the present inventors have developed a stainless steel material that has corrosion resistance against a wide range of sulfide-containing or sulfide-containing chloride hot water, such as hot spring water, and is priced at the same level as SUS 304 as a practical piping material. As a result of various research on steel, we have developed a stainless steel for hot springs that has excellent corrosion resistance in hot spring environments containing highly corrosive sulfides and chlorides. The inventors have developed SUS 304 austenitic steel.
It has been found that pitting corrosion resistance and crevice corrosion resistance can be significantly improved in an environment where sulfides and chlorides are present by minimizing the amount of Ti and/or Nb and Mo by adding a small amount of Ti and/or Nb in combination. That is, according to the present invention, Cr: 16-20%, Ni:
Contains 6-15%, Si: 1.0% or less, Mn: 2.0
%, 0.002%≦S≦0.005%, Ti:C%×4+0.1%
~0.5% or Nb: C% x 8 + 0.1% ~ 0.7% or Ti + Nb: C% x 8 + 0.1% ~ 0.7% in combination, with the balance consisting of Fe and unavoidable impurities. Austenitic stainless steel for hot water applications. The reasons for limiting the composition of the steel of the present invention are as follows. C: From the viewpoint of corrosion resistance, it is sufficient to use the amount contained in SUS 304, but since the amount of Ti and Nb added is determined based on the amount of C, the amount of Ti and Nb added will also increase if the amount of C is large. The amount of C was set to 0.05% or less. Si: Si is a residual substance added to molten metal as a deoxidizing agent, and usually has a concentration of 1%, about the same as SUS 304.
The following was made. Mn: Mn is an element that improves hot workability, but even if it is added in an amount of 1.0% or more, there is no improvement effect commensurate with the amount added, but up to 2% is harmless, so it should be kept at 2% or less. (If it exceeds 2%, corrosion resistance will be impaired.) Cr: Cr is an essential element for improving local corrosion resistance such as pitting corrosion resistance and crevice corrosion resistance of steel, but if it is in too much, the price will increase. Invitation, another 16%
If the amount is less than that, the corrosion resistance aimed at by the present invention cannot be achieved, so the appropriate amount range is limited to 16.0% to 20.0%. Ni: is an essential element for making steel into an austenitic structure and improving corrosion resistance, and its amount is determined in relation to the ferrite-forming element, and is 6.0 to 15.0% with respect to the Cr amount limited above. Adding more than the upper limit will only increase the price. s: S is an element that has a substantial effect on local corrosion resistance, so it is desirable that it be as low as possible, but in order to exhibit the corrosion resistance that is the objective of the present invention, it is 0.005%.
It is essential that the amount be kept in the following extremely small amount. The S content, which is difficult to reduce, does not need to be less than 0.002%. Mo: Mo is an essential element for improving pitting corrosion resistance and crevice corrosion resistance, and as the amount added increases, corrosion resistance improves, but as it is an expensive element, the price increases and the characteristics of the steel of the invention are impaired. . Showing a remarkable effect, and moreover, within an economical range of 0.2% or more
It was set to less than 1.0%. In particular, in the present invention, in an austenitic structure containing Ni, Mo and Ti or
By adding Mo and Nb in combination, we aim for a synergistic effect between the two, and by adding a small amount of Mo, corrosion resistance against sulfides and chlorides is significantly improved, and the balance with other components is In consideration of cost, the target is sufficiently achieved within the range of 0.2% to less than 1.0%. Ti: Ti is an effective element for improving the corrosion resistance of sulfide and chloride solutions, and also
It has the effect of fixing Ti as carbide and preventing intergranular corrosion. In the present invention, C%×4+0.1%
It is necessary to add more than that. However, if the amount of Ti is too large, surface eaves are likely to occur, so the preferable range is 0.5% or less. Nb: Like Ti, Nb improves corrosion resistance and absorbs C in steel.
It is fixed in Nb carbide and has the effect of preventing intergranular corrosion. In the present invention, it is necessary to add C%×8+0.1% or more, but too much Nb deteriorates workability and weldability, so the upper limit is set to 0.7% as a preferable range. In the case of composite addition with Ti, the preferable range is C%×8+0.1% or more up to 0.7%.

【表】 以下本発明を実施例について例示する。 第1表は試験に供した本発明鋼と従来鋼と比較
鋼の化学組成を示したものである。供試鋼中、
A、B、Cは従来鋼であり、D〜Lは比較鋼であ
り、M〜Rは本発明鋼である。 比較鋼および本発明鋼は常法によつて溶製し
た。脱硫はCaO系スラグとAlを添加する方法を
採つた。Alの代りにCa、Siでもよく、またREM
の添加によつても脱硫は可能である。溶銑の場合
にはCaC2で処理してもよい。 これらの鋼を常法により板厚2mmの冷延鋼板と
し、これから10mm×10mmの試験片を製作し、耐孔
食性試験に供した。 200ppmCl-、200ppmS2-を含む80℃の熱水溶液
中で孔食電位を測定した結果を第1〜3図に示
す。 第1図は試料A、K、LについてのS含有量と
孔食電位の関係を示す。曲線イに見られるよう
に、S含有量が0.005%以下になると孔食電位は
急激に上昇する。 第2図はTi、Nb、の含有量と孔食電位の関係
を示す。図中曲線ロは試料A、B、D、Eによつ
てTiを効果を示したものであり、曲線ハは試料
A、C、F、GによつてNbの効果を示したもの
である。この図に見られるように、Ti、Nbは0.1
%までの耐孔食性改善の効果が著しく、0.5〜0.7
%でその効果は飽和する。 第3図はTiおよび/またはNbとMoの複合添
加を孔食電位との関係で示す。図中の曲線ニ,ホ
は試料E、M、NおよびRについての試験結果を
表わすものであり、Ti+MoおよびTi+Nb+Mo
系を示す。ヘは試料G、O、Pについての試験結
果を表わすものでNb+Mo系を、曲線トは試料
A、H、I、Jについての試験結果を表わすもの
でありMo単独系を示す。この図に見られるよう
に、本発明合金の範囲内では、従来鋼や比較鋼よ
りも孔食電位は著しく貴になり耐孔食性は格段に
優れている。 第4図は本発明を含む種々のSUS 304タイプ
の鋼の硫化物と塩化物を種々の濃度で含む溶液中
での耐隙間腐食性域を示したものである。隙間腐
食試験は上記のようにして得た板厚2mmの29×31
mmと15×31mm大小2枚の鋼板を重ね合せた隙間形
成試片を80℃で10日間浸漬して行なつた。評価は
試験前後の重量差(腐食減量)によつたが、図中
の曲線は試験の結果、腐食減量有無の限界を示
す。ハツチングを附した側が非腐食域である。本
発明鋼は比較鋼や従来鋼よりも耐隙間腐食性域は
高濃度側に広くなつており、硫化物と塩化物を含
む溶液中の耐食性が格段にすぐれている。 以上説明したように、本発明鋼は18%Cr−9
%Niのオーステナイト鋼のS含有量を0.005%以
下の極低にした上で、少量のTiとMoあるいは
NbのMoさらにはTi+NbにMoを複合添加する
ことによる相乗効果によつて硫化物と塩化物を含
む環境で特にすぐれた耐食性を有するSUS 304
並価格の鋼を提供するものである。また鋼中の炭
素を特定した適量倍量のTiおよびNbでもつて固
定しているので、溶接時の熱影響に起因する粒界
腐食を防止する利点がある。 かくして本発明鋼は温泉水のみならず汚泥処
理、地熱発電、石油精製等の硫化物もしくは硫化
物と塩化物を含む環境において、取扱う機器の装
置材料および配管材料として有利に使用すること
が出来る。
[Table] The present invention will be illustrated below with reference to Examples. Table 1 shows the chemical compositions of the inventive steel, conventional steel, and comparative steel that were tested. In the test steel,
A, B, and C are conventional steels, D to L are comparative steels, and M to R are inventive steels. The comparative steel and the steel of the present invention were produced by conventional methods. Desulfurization was carried out by adding CaO-based slag and Al. Ca, Si may be used instead of Al, and REM
Desulfurization is also possible by adding . In the case of hot metal, it may be treated with CaC2 . These steels were made into cold-rolled steel sheets with a thickness of 2 mm using a conventional method, and test pieces of 10 mm x 10 mm were prepared from the sheets and subjected to a pitting corrosion resistance test. Figures 1 to 3 show the results of measuring the pitting potential in a hot aqueous solution at 80°C containing 200 ppm Cl - and 200 ppm S 2 - . FIG. 1 shows the relationship between S content and pitting potential for samples A, K, and L. As seen in curve A, when the S content becomes 0.005% or less, the pitting corrosion potential increases rapidly. Figure 2 shows the relationship between the contents of Ti and Nb and the pitting corrosion potential. Curve B in the figure shows the effect of Ti in samples A, B, D, and E, and curve C shows the effect of Nb in samples A, C, F, and G. As seen in this figure, Ti and Nb are 0.1
The effect of improving pitting corrosion resistance up to 0.5-0.7% is remarkable.
%, the effect is saturated. Figure 3 shows the combined addition of Ti and/or Nb and Mo in relation to pitting potential. Curves D and H in the figure represent test results for samples E, M, N and R, and Ti+Mo and Ti+Nb+Mo.
Show the system. Curve F represents the test results for samples G, O, and P, and represents the Nb+Mo system, and curve G represents the test results for samples A, H, I, and J, and represents the Mo single system. As seen in this figure, within the range of the alloy of the present invention, the pitting corrosion potential is significantly nobler than that of the conventional steel and comparative steel, and the pitting corrosion resistance is significantly superior. FIG. 4 shows the crevice corrosion resistance zone of various SUS 304 type steels, including the present invention, in solutions containing various concentrations of sulfides and chlorides. The crevice corrosion test was performed on a 29×31 plate with a thickness of 2 mm obtained as above.
A gap-forming specimen made by stacking two steel plates of different sizes, 15 x 31 mm and 15 x 31 mm, was immersed at 80°C for 10 days. The evaluation was based on the weight difference (corrosion loss) before and after the test, and the curve in the figure shows the limit of the presence or absence of corrosion weight loss as a result of the test. The side with hatching is the non-corrosion area. The steel of the present invention has a crevice corrosion resistance range wider on the high concentration side than comparative steels and conventional steels, and has significantly superior corrosion resistance in solutions containing sulfides and chlorides. As explained above, the steel of the present invention has 18% Cr-9
%Ni, the S content of the austenitic steel is extremely low, below 0.005%, and a small amount of Ti and Mo or
SUS 304 has particularly excellent corrosion resistance in environments containing sulfides and chlorides due to the synergistic effect of Mo in Nb and the combined addition of Mo to Ti + Nb.
It provides steel at average prices. Furthermore, since the carbon in the steel is fixed with a specified amount of Ti and Nb, it has the advantage of preventing intergranular corrosion caused by thermal effects during welding. Thus, the steel of the present invention can be advantageously used as equipment materials and piping materials for equipment handling not only hot spring water but also environments containing sulfides or sulfides and chlorides, such as in sludge treatment, geothermal power generation, oil refining, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSUS 304タイプの鋼におけるS含量
と孔食電位の関係を示すグラフである。第2図は
SUS 304タイプの鋼におけるTiまたはNbの含量
と孔食電位の関係を示すグラフである。第3図は
SUS 304タイプの鋼の孔食電位に対するTiおよ
びまたはNbとMoの複合添加のグラフである。第
4図は本発明鋼を含むSUS 304タイプの鋼の隙
間腐食に及ぼす温水中の硫化物と塩化物の濃度の
影響を示すグラフである。
FIG. 1 is a graph showing the relationship between S content and pitting potential in SUS 304 type steel. Figure 2 is
1 is a graph showing the relationship between Ti or Nb content and pitting potential in SUS 304 type steel. Figure 3 is
FIG. 2 is a graph of the combined addition of Ti and/or Nb and Mo against the pitting corrosion potential of SUS 304 type steel. FIG. 4 is a graph showing the influence of the concentration of sulfides and chlorides in hot water on crevice corrosion of SUS 304 type steel, including the steel of the present invention.

Claims (1)

【特許請求の範囲】 1 Cr:16〜20%、Ni:6〜15%を含み、C:
≦0.05%、Si:<1.0%、Mn:≦2.0%、S:
0.002%≦〜≦0.005%で、Ti:(C%×4+0.1%)
〜0.5%、Mo:0.2%〜1.0%未満を複合で含有し、
残部Feおよび不可避的不純物からなることを特
徴とする耐含硫化物または含硫化物塩化物熱水用
オーステナイトステンレス鋼。 2 Cr:16〜20%、Ni:6〜15%を含み、C:
≦0.05%、Si:<1.0%、Mn:≦2.0%、S:
0.002%≦〜≦0.005%で、Nb:(C%×8+0.1
%)〜0.7%、Mo:0.2%〜1.0%未満を複合で含
有し、残部Feおよび不可避的不純物からなるこ
とを特徴とする耐含硫化物または含硫化物塩化物
熱水用オーステナイトステンレス鋼。 3 Cr:16〜20%、Ni:6〜15%を含み、C:
≦0.05%、Si:<1.0%、Mn:≦2.0%、S:
0.002%≦〜≦0.005%で、Ti+Nb:(C%×8+
0.1%)〜0.7%、Mo:0.2%〜1.0%未満を複合で
含有し、残部Feおよび不可避的不純物からなる
ことを特徴とする耐含硫化物または含硫化物塩化
物熱水用オーステナイトステンレス鋼。
[Claims] 1 Contains Cr: 16-20%, Ni: 6-15%, C:
≦0.05%, Si: <1.0%, Mn: ≦2.0%, S:
0.002%≦~≦0.005%, Ti: (C%×4+0.1%)
Contains ~0.5%, Mo: 0.2% to less than 1.0% in composite,
An austenitic stainless steel for use in sulfide-containing or sulfide-containing chloride hot water, characterized in that the remainder consists of Fe and unavoidable impurities. 2 Contains Cr: 16-20%, Ni: 6-15%, C:
≦0.05%, Si: <1.0%, Mn: ≦2.0%, S:
0.002%≦~≦0.005%, Nb: (C%×8+0.1
%) to 0.7%, Mo: 0.2% to less than 1.0% as a composite, and the balance consists of Fe and inevitable impurities. 3 Contains Cr: 16-20%, Ni: 6-15%, C:
≦0.05%, Si: <1.0%, Mn: ≦2.0%, S:
0.002%≦~≦0.005%, Ti+Nb: (C%×8+
Austenitic stainless steel for sulfide-resistant or sulfide-containing chloride hot water applications, characterized by containing a composite of 0.1%) to 0.7%, Mo: 0.2% to less than 1.0%, and the balance consisting of Fe and inevitable impurities. .
JP9692383A 1983-06-02 1983-06-02 Austenitic stainless steel having resistance to hot water containing s Granted JPS59222560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9692383A JPS59222560A (en) 1983-06-02 1983-06-02 Austenitic stainless steel having resistance to hot water containing s

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9692383A JPS59222560A (en) 1983-06-02 1983-06-02 Austenitic stainless steel having resistance to hot water containing s

Publications (2)

Publication Number Publication Date
JPS59222560A JPS59222560A (en) 1984-12-14
JPH0379425B2 true JPH0379425B2 (en) 1991-12-18

Family

ID=14177870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9692383A Granted JPS59222560A (en) 1983-06-02 1983-06-02 Austenitic stainless steel having resistance to hot water containing s

Country Status (1)

Country Link
JP (1) JPS59222560A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199653A (en) * 1984-10-22 1986-05-17 Kubota Ltd Electrically conductive roll

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871360A (en) * 1981-10-23 1983-04-28 Nippon Steel Corp Manufacture of austenitic stainless steel with superior corrosion resistance and workability and its plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871360A (en) * 1981-10-23 1983-04-28 Nippon Steel Corp Manufacture of austenitic stainless steel with superior corrosion resistance and workability and its plate

Also Published As

Publication number Publication date
JPS59222560A (en) 1984-12-14

Similar Documents

Publication Publication Date Title
CA1091477A (en) Austenitic stainless steel
JP6809414B2 (en) Duplex stainless steel sheet with excellent corrosion resistance and hydrogen brittleness
JP4325421B2 (en) Seawater resistant
WO1999009231A1 (en) Austenitic stainless steel excellent in resistance to sulfuric acid corrosion and workability
JP4868917B2 (en) Steel material for crude oil tank bottom plate with excellent corrosion resistance
JPH04214843A (en) Austenite stainless steel
KR930003603B1 (en) Machines or machine parts made of austenitic cast iron having resistance to stress corrosion cracking
GB1564243A (en) Austenitic stainless steel
KR850001766B1 (en) Phosphirous containing seawater-resistance steel of improved weldability
JPH0379425B2 (en)
JPS5915977B2 (en) Seamless steel for pipes with excellent corrosion resistance
US4547338A (en) Fe-Ni-Cr corrosion resistant alloy
JPH10237601A (en) Neutral chloride corrosion resistant austenitic stainless steel
JP2756545B2 (en) Austenitic stainless steel with excellent corrosion resistance in hot water
JPS629661B2 (en)
JPS60165363A (en) Highly corrosion resistant and high yield strength two- phase stainless steel
JP4201370B2 (en) Stainless steel for sewage treatment equipment
JP2668116B2 (en) Austenitic stainless steel with excellent corrosion resistance in hot water
JPH05302150A (en) Duplex stainless steel excellent in hydrogen sulfide corrosion resistance
JPH021902B2 (en)
JPS61136662A (en) Austenitic stainless steel having superior resistance to stress corrosion cracking
JP6791012B2 (en) Duplex stainless steel with excellent corrosion resistance and hydrogen brittleness
JP6791011B2 (en) Duplex stainless steel with excellent corrosion resistance and hydrogen brittleness
JPS6187855A (en) Stainless steel having superior corrosion resistance and hot workability
JPS6012419B2 (en) Corrosion-resistant structural steel for seawater desalination plants by flash distillation