WO2013035775A1 - Ferritic stainless steel of exceptional corrosion resistance and processability - Google Patents

Ferritic stainless steel of exceptional corrosion resistance and processability Download PDF

Info

Publication number
WO2013035775A1
WO2013035775A1 PCT/JP2012/072709 JP2012072709W WO2013035775A1 WO 2013035775 A1 WO2013035775 A1 WO 2013035775A1 JP 2012072709 W JP2012072709 W JP 2012072709W WO 2013035775 A1 WO2013035775 A1 WO 2013035775A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
test
corrosion
less
weight loss
Prior art date
Application number
PCT/JP2012/072709
Other languages
French (fr)
Japanese (ja)
Inventor
佑一 田村
透 松橋
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to JP2013532638A priority Critical patent/JP6097693B2/en
Publication of WO2013035775A1 publication Critical patent/WO2013035775A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Definitions

  • the present invention relates to a ferritic stainless steel excellent in corrosion resistance and workability that can be suitably used for a member exposed to an environment where chloride exists at a low pH such as a secondary heat exchanger.
  • the exhaust gas generated by the combustion of various fossil fuels includes SOx and NOx derived from fuel and air. These components react with oxygen and water vapor in the atmosphere to produce H 2 SO 4 , HNO 3, etc., and are wet deposited in cloud water or dry deposited in the atmosphere as an aerosol. This is considered to be the mechanism of acid rain.
  • Acid rain is rain having a pH of about 5.6 or less, and contains about 10 ppm of SO 4 2 ⁇ ions and NO 3 ⁇ ions, respectively.
  • acid rain has a lower pH and contains more SO 4 2 ⁇ ions and NO 3 ⁇ ions.
  • chloride derived from sea salt or the like is contained in an amount of several ppm to 100 ppm. If rainwater of such a component adheres, the pH is lowered and the concentration is increased by drying, resulting in a severe corrosive environment. However, such an acid rain environment is a mild corrosive environment as compared with an environment where a heat exchanger in which exhaust gas is directly condensed is exposed.
  • a heat exchanger is a device that supplies heat, which is obtained by burning various fuels, to a medium mainly composed of water, and is used in various fields from a steam generator for nuclear power generation to a hot water heater for general households.
  • a heat exchanger is built in a gas or oil water heater in a general household in order to turn the water into hot water by the combustion heat.
  • this heat exchanger has been made of copper that can be easily processed into a fin structure and has excellent thermal conductivity in order to increase thermal efficiency.
  • CO 2 reduction is also required for water heaters.
  • a latent heat recovery type water heater that further utilizes the heat of the conventional exhaust gas has been developed for the purpose of further improving the thermal efficiency.
  • This water heater further uses the heat of the exhaust gas which burned the gas after passing through the conventional heat exchanger (primary heat exchanger) and oil. For this reason, it has another heat exchanger (secondary heat exchanger).
  • the exhaust gas after passing through the primary heat exchanger is about 150-200 ° C. and contains a large amount of water vapor.
  • the secondary heat exchanger the total heat efficiency is improved to 95% or more by recovering not only direct heat but also condensation heat in which water vapor becomes water droplets, that is, latent heat.
  • Patent Document 1 An example of the structure of this latent heat recovery type hot water heater is disclosed in Patent Document 1, for example.
  • the condensed water generated in the secondary heat exchanger is generated from exhaust gas obtained by burning hydrocarbon-based raw materials such as city gas, LPG, and petroleum.
  • the condensed water is a weakly acidic aqueous solution having a pH of about 3 or less, including nitrate ions and sulfate ions derived from its exhaust gas components and the like.
  • a solution having a low pH conventionally used copper (corrosion at a pH of 6.5 or less) cannot be used.
  • Other ordinary steels (corrosion when the pH is about 7 or less) and aluminum (corrosion when the pH is about 3 or less) corrode in the environment exposed to the condensed water.
  • a stainless steel having excellent corrosion resistance in a weakly acidic region is currently selected as a secondary heat exchanger material.
  • SUS316L (18Cr-10Ni-2Mo), which is an austenitic stainless steel having excellent corrosion resistance, is selected. ) Is mainly adopted. SUS316L satisfies the corrosion resistance necessary for a secondary heat exchanger member applied to a latent heat recovery type water heater.
  • the raw material contains a large amount of Ni and Mo which are expensive and have very unstable price stability.
  • the latent heat recovery type water heater is expected to be widely spread to the general public as a trump card for CO 2 reduction. In order to realize this, further cost reduction of materials and good workability are strongly demanded.
  • SUS316L which is a secondary heat exchanger material
  • SUS316L can also corrode in areas such as the coast where sea salt particles are likely to fly, which is one of the factors that hinder the corrosion resistance of stainless steel. Sex cannot be denied.
  • stress corrosion cracking which is one of the weak points of austenitic stainless steel, may occur.
  • Patent Documents 2 to 6 propose ferritic stainless steel as a heat exchanger material having corrosion resistance against sulfur-containing gas.
  • Mo is added together with Nb or Ti, thereby suppressing a decrease in corrosion resistance and improving high-temperature strength.
  • brazing and moldability are improved by reducing the contents of Si and Al.
  • Patent Document 3 discloses a ferritic stainless steel that exhibits durability in a high temperature steam environment in an environment to which a heat exchanger is exposed.
  • the components are adjusted so as to satisfy a specific relational expression derived from the contents of Cr, Mo, Si, and Al and the intended use temperature.
  • the assumed temperature is 300 to 1000 ° C., and a material to be used in an environment much higher than the latent heat recovery type hot water heater targeted by the present invention is defined.
  • Patent Document 4 discloses a ferritic stainless steel excellent in brazeability, characterized in that the contents of Ti and Al are reduced.
  • Patent Document 5 discloses ferritic stainless steel suitable as a heat exchanger member used for brazing. In this ferritic stainless steel, the components are adjusted so that the A value calculated from the contents of Nb, C, and N is 0.1 or more.
  • Nb is an essential element in order to prevent the crystal grains from becoming coarse during the heat treatment in brazing, there is no indication for improving the corrosion resistance.
  • Patent Document 6 discloses a ferritic stainless steel material for brazing and a heat exchanger member.
  • the area ratio occupied by recrystallized grains is specified, but there is no indication for improving corrosion resistance.
  • the heat exchange pipe of the secondary heat exchanger needs to be bent, and a flexible pipe is also used in some products. For this reason, favorable workability is required for the heat exchanger member.
  • conventionally used austenitic stainless steel has sufficient workability
  • ferritic stainless steel is inferior in workability compared to austenitic stainless steel. For this reason, a material excellent in workability is particularly demanded.
  • JP 2002-106970 A JP 7-292446 A JP 2003-328088 A JP 2009-174046 A JP 2009-299182 A JP 2010-285683 A
  • an object of the present invention is to provide a ferritic stainless steel that is inexpensive, excellent in corrosion resistance, has good workability, and can be suitably used in the above environment.
  • the present inventors evaluated the corrosion resistance of various stainless steels in such an environment. As a result, it has been clarified that the corrosion resistance is particularly excellent when the contents of Cr, Al, and Ti are large and particularly when they are concentrated on the surface of the passive film. Moreover, the following matters were found from the evaluation of the generated corrosion starting point.
  • studies have been made on materials having excellent corrosion resistance in a corrosive environment where chlorides exist at low pH.
  • the present invention is a ferritic stainless steel having the following characteristics, excellent corrosion resistance even in an environment where chloride is present at low pH, and good workability.
  • an aqueous solution containing a pH of 4.5 and containing 10 ppm nitrate ions, 10 ppm sulfate ions, and 5 ppm chloride ions is used as the simulated solution, and a gap imparting test piece is used in the aqueous solution.
  • a gap imparting test piece is used in the aqueous solution.
  • the average corrosion weight loss measured by a corrosion test using a simulated liquid of condensed water of combustion exhaust gas is 1.0 mg / cm 2 or less. Excellent ferritic stainless steel.
  • an aqueous solution having a pH of 2.5 and containing 100 ppm nitrate ions, 10 ppm sulfate ions, and 100 ppm chloride ions is used as the simulated solution, and a gap imparting test piece is placed in the aqueous solution. 10 cycles of the wet and dry repeated test that is semi-immersed and held at 80 ° C. for 24 hours, the amount of decrease in mass after the dry and wet repeated test is measured, and the average corrosion weight loss is obtained.
  • this ferritic stainless steel has excellent corrosion resistance and good workability in an environment where chloride exists at low pH such as acid rain. Further, unlike austenitic stainless steel, this ferritic stainless steel does not contain a large amount of expensive Ni or Mo. In particular, according to a preferred embodiment of the present invention, it exhibits excellent corrosion resistance as a material for equipment exposed to a condensed water environment of combustion gas using hydrocarbons such as LNG and petroleum as fuel, such as a water heater. It becomes possible.
  • % means “mass%”.
  • the inventors have made extensive developments in order to provide a ferritic stainless steel that exhibits excellent corrosion resistance in an environment where chlorides are present at low pH and has good workability. As a result, the following matters were discovered.
  • the average corrosion weight loss was smaller than the average corrosion weight loss of austenitic stainless steel.
  • the elongation value was measured by a tensile test. As a result, when Cr, Si, Cu, Mo, and Ni were contained, the elongation value decreased and the workability deteriorated.
  • a corrosion test corrosion resistance evaluation method simulating an acid rain environment will be described.
  • three test pieces 1 having a size of 25 ⁇ 50 mm were prepared as shown in FIG.
  • a glass / metal gap was given to the test piece 1 as follows.
  • a hole 9 having a diameter of 6 mm was formed in a substantially central portion of the test piece 1.
  • test piece 1 Before starting the test, the entire surface of the test piece 1 was wet-polished with # 400 emery paper, and immediately using a Teflon (registered trademark) bolt 2, a Teflon (registered trademark) nut 3, and a titanium washer 5, Test piece 1 was sandwiched between two glass plates 4. Thus, a glass / metal gap was imparted to the test piece 1.
  • test piece 1 was placed in a beaker 7 as shown in FIG. 1A, 50 ml of acid rain simulated liquid 8 was filled, and the test piece 1 was semi-immersed.
  • the beaker 7 was placed in a 50 ° C. warm bath and held for 24 hours. During this time, the simulation liquid 8 was dried and concentrated.
  • a stainless steel sample (test piece 1) was taken out from the dried and concentrated simulated liquid 8, and lightly washed with distilled water. Then, the newly washed beaker 7 was filled again with the test solution (acid rain simulated solution 8). Subsequently, the stainless steel sample (test piece 1) was again semi-immersed and held at 50 ° C. for 24 hours.
  • test piece 1 was submerged in the simulated solution 8 and then held at 50 ° C. for 24 hours was repeated 10 times (wet and dry repetition test). Note that the set temperature of 50 ° C. simulates a temperature that is considered to be relatively high in a corrosion target object installed outdoors where acid rain falls.
  • the weight loss of the corrosion was determined by subtracting the mass of the test piece 1 after the test from the mass of the test piece 1 before the test measured in advance. Each of the three test pieces 1 was subjected to the same wet and dry repeated test to determine the corrosion weight loss. And the average value (average corrosion weight loss) of corrosion weight loss was calculated
  • test material 20 steel types having the composition shown in Table 1 were used.
  • the balance is iron and inevitable impurities.
  • symbol * of Table 1 shows that it is austenitic stainless steel (steel No. B9, B10).
  • the results of this test are shown in Table 2 and FIG.
  • stainless steel having an average corrosion weight loss of more than 0.4 mg / cm 2 it was judged that rust flowed out of the gap and the appearance was impaired. This stainless steel was judged to be inferior in corrosion resistance, and plotted in FIG. 2 with black circles ( ⁇ ). Further, stainless steel having an average corrosion weight loss of 0.4 mg / cm 2 or less was determined to be excellent in corrosion resistance, and plotted with white circles ( ⁇ ) in FIG.
  • the Si-containing test material was confirmed to deposit Si oxide mainly at the gas-liquid interface. It was also confirmed that corrosion occurred in the vicinity of the Si oxide precipitate. The reason why the corrosion occurred is considered to be that the clearance generated between the precipitate and the specimen was the starting point of the corrosion and the clearance corrosion was promoted. At this time, it is presumed that the corrosion is further accelerated by the presence of Cu 2+ in the environment.
  • the average corrosion weight loss exceeded 0.4 mg / cm 2 even when the formulas (A) and (B) were satisfied. This is considered to be because the passive film is unstable in the general-purpose austenitic stainless steel compared to the ferritic stainless steel. Further, austenitic stainless steel has a larger amount of water-soluble inclusions such as MnS than ferritic stainless steel. For this reason, the dissolution rate of acid rain in the simulated liquid is large, and this is also presumed to be one of the causes of large corrosion weight loss.
  • the value of Cr + 10Ti + 10Al on the left side of the formula (A) is more desirably 17 or more, and further desirably 18 or more.
  • the value of Si + Cu on the left side of the formula (B) is more preferably 0.90 or less, and even more preferably 0.70 or less.
  • the secondary heat exchanger is fed with 150 to 200 ° C. exhaust gas from the primary heat exchanger when in use, and returns to room temperature when stopped. In this way, the environment of 150 to 200 ° C. and the environment of room temperature are repeated. Further, compared to the acid rain environment, the concentration of nitrate ions NO 3 ⁇ and sulfate ions SO 4 2 ⁇ is higher because the exhaust gas is exposed to condensed water generated by direct condensation.
  • the composition of the condensed water simulated liquid simulates condensed water generated from LNG combustion exhaust gas.
  • Cl - ions the actual chloride ion concentration in the condensed water is a few ppm.
  • the chloride ion concentration was set high, assuming operating conditions in a highly corrosive environment such as the beach environment.
  • test pieces 1 having a size of 25 ⁇ 50 mm were prepared as shown in FIG. Since the secondary heat exchanger has a complicated structure, crevice corrosion is a particular concern. Therefore, in this test, in order to cause crevice corrosion intentionally, a glass / metal gap was given to the test piece 1 as follows. A hole 9 having a diameter of 6 mm was formed in a substantially central portion of the test piece 1. Before starting the test, the entire surface of the test piece 1 was wet-polished with # 400 emery paper, and immediately using a Teflon (registered trademark) bolt 2, a Teflon (registered trademark) nut 3, and a titanium washer 5, Test piece 1 was sandwiched between two glass plates 4. Thus, a glass / metal gap was imparted to the test piece 1.
  • test piece 1 was placed in a beaker 7 as shown in FIG. 1A, filled with 50 ml of simulated liquid 8 of condensed water of combustion exhaust gas, and the test piece 1 was semi-immersed.
  • This beaker 7 was placed in a warm bath at 80 ° C. and held for 24 hours. During this time, the simulated liquid 8 was concentrated by drying and completely dried.
  • a completely dried stainless steel sample (test piece 1) was taken out and gently washed with distilled water. Then, the newly cleaned beaker 7 was filled again with the test solution (combustion exhaust gas condensed water simulation solution 8). Subsequently, the stainless steel sample (test piece 1) was again half-immersed and held at 80 ° C. for 24 hours.
  • the test piece 1 was half-immersed in the simulated solution 8 and then held at 80 ° C. for 24 hours was repeated 10 times (wet and dry repetition test).
  • the reason for setting the temperature to 80 ° C. is shown below.
  • the temperature of the exhaust gas is 150 to 200 ° C.
  • the temperature decreases due to the generation of condensed water.
  • it is considered that the actual member temperature is further lowered by contact with the generated condensed water. For this reason, it was set to 80 degreeC aiming at comparatively high temperature in order to accelerate corrosion and lower than 100 degreeC.
  • the weight loss of the corrosion was determined by subtracting the mass of the test piece 1 after the test from the mass of the test piece 1 before the test measured in advance. Each of the three test pieces 1 was subjected to the same wet and dry repeated test to determine the corrosion weight loss. And the average value (average corrosion weight loss) of corrosion weight loss was calculated
  • the Si-containing test material was confirmed to deposit Si oxide mainly at the gas-liquid interface. It was also confirmed that corrosion occurred in the vicinity of the Si oxide precipitate. The reason why the corrosion occurred is considered to be that the clearance generated between the precipitate and the specimen was the starting point of the corrosion and the clearance corrosion was promoted. At this time, it is presumed that the corrosion is further accelerated by the presence of Cu 2+ in the environment.
  • the value of Cr + 10Ti + 10Al on the left side of the formula (A) is more desirably 17 or more, and further desirably 18 or more. Further, the value of Si + Cu on the left side of the formula (B ′) is more preferably less than 0.35, and still more preferably less than 0.20.
  • Cr is the most important element in securing the corrosion resistance of stainless steel. At least 13% Cr is required to maintain passivity. Increasing the Cr content improves corrosion resistance, but decreases workability and manufacturability. For this reason, the upper limit of the Cr amount is set to 22.5%.
  • the Cr content is desirably 14.5 to 22.0%, and more desirably 16.0 to 20.0%.
  • Ti generally fixes C and N in a welded portion of ferritic stainless steel, thereby suppressing intergranular corrosion and improving workability. For this reason, Ti is a very important element. Furthermore, in the corrosive environment targeted in this embodiment, Ti is an important element in terms of corrosion resistance. Ti has a very strong affinity for oxygen. Therefore, the present inventor has found the following matters. Ti forms a stainless steel surface film together with Cr in the corrosive environment targeted in the present embodiment containing nitrate ions. For this reason, Ti is very effective in suppressing the occurrence of pitting corrosion. In order to form a film or to fix C and N using Ti as a stabilizing element, an amount of Ti more than four times the total amount of C and N (C + N) is required. However, since excessive addition causes surface flaws during production, the range of Ti content is 0.05 to 0.3%, and more preferably 0.08 to 0.2%.
  • Al is important as a deoxidizing element, and also has an effect of controlling the composition of nonmetallic inclusions and refining the structure. Furthermore, in the corrosive environment targeted in this embodiment, Al is an important element in terms of corrosion resistance. Al, like Ti, has a very strong affinity for oxygen. However, the present inventor has found the following matters. Al forms a stainless steel surface film together with Cr in the corrosive environment targeted in the present embodiment containing nitrate ions. For this reason, Al is very effective in suppressing the occurrence of pitting corrosion. However, excessive addition leads to coarsening of non-metallic inclusions, which may be a starting point for product wrinkling. Therefore, the lower limit value of the Al amount is 0.01%, and the upper limit value of the Al amount is 0.20%. The amount of Al is more desirably 0.03% to 0.10%.
  • Cu is included as an inevitable impurity from the raw material in an amount of 0.01% or more.
  • Cu is not desirable because it promotes corrosion. The reason is presumed that, as described above, once corrosion starts, the eluted Cu ions promote the cathode reaction. Therefore, the smaller the amount of Cu, the better. Therefore, the range of the Cu amount is set to 0.5% or less. The amount of Cu is more desirably 0.25% or less.
  • Si is an element inevitably mixed as a deoxidizer. In general, Si is also effective for corrosion resistance and oxidation resistance. However, in the environment targeted by this embodiment, Si has an action of promoting the progress of corrosion. Furthermore, excessive addition reduces workability and manufacturability. Therefore, the upper limit of Si content is 0.60%. The amount of Si is more desirably less than 0.2%. Further, since extremely reducing causes an increase in cost, the Si amount is desirably 0.05% or more.
  • Ni is not essential, but suppresses the active dissolution rate. However, excessive addition reduces workability and not only makes the ferrite structure unstable, but also worsens the cost. For this reason, the amount of Ni is made less than 0.35%.
  • the amount of Ni is desirably 0.05% or more and less than 0.25%.
  • Mo is not essential, it is contained in an amount of 0.01% or more as an inevitable impurity from the raw material. In general, Mo is said to enhance the recovery effect of the passive film. However, in the environment targeted by this embodiment, the contribution to the corrosion resistance improvement is small. On the other hand, Mo reduces workability and costs. Therefore, since it is desirable that the amount of Mo is small, the range of the amount of Mo is set to less than 0.30%. The amount of Mo is desirably 0.20% or less, and even more desirably 0.10% or less.
  • C has an effect of suppressing strength increase and coarsening of crystal grains due to a combination with a stabilizing element.
  • C decreases the intergranular corrosion resistance and workability of the weld.
  • the upper limit of the C content is 0.030%. Since excessive reduction deteriorates the refining cost, the C amount is more preferably 0.002 to 0.020%.
  • the N like C, reduces the intergranular corrosion resistance and workability, so it is necessary to reduce the N content. For this reason, the upper limit of the N amount is set to 0.030%. However, since excessive reduction deteriorates the refining cost, the N amount is more preferably 0.002 to 0.020%.
  • Mn is an important element as a deoxidizing element. However, when Mn is added excessively, it becomes easy to produce MnS which becomes a starting point of corrosion, and the ferrite structure is destabilized. Therefore, the Mn content is set to 0.01 to 0.5%. The amount of Mn is more desirably 0.05 to 0.3%.
  • the P content is 0.05% or less.
  • the amount of P is more preferably 0.001 to 0.04%.
  • the S content is 0.01% or less.
  • the S amount is more preferably 0.0001 to 0.006%.
  • Nb fixes C and N similarly to Ti, suppresses intergranular corrosion of the welded portion, and improves workability. For this reason, Nb is a very important element. For this purpose, it is desirable that the Nb amount be 8 times or more the total amount of C and N (C + N). However, excessive addition reduces workability, so when Nb is added, the Nb content is preferably 0.05 to 0.5%. The amount of Nb is more preferably 0.1 to 0.3%.
  • Sn can be added as necessary to ensure flow rust resistance.
  • Sn is an important element for suppressing the corrosion rate.
  • the amount of Sn is more desirably 0.05 to 0.5%.
  • B is a grain boundary strengthening element effective for improving secondary work brittleness, and can be added as necessary.
  • excessive addition causes solid solution strengthening of ferrite and causes a decrease in ductility.
  • the lower limit of the B amount is 0.0001%
  • the upper limit of the B amount is 0.003%.
  • the amount of B is more preferably 0.0002 to 0.0020%.
  • V improves weather resistance and crevice corrosion resistance. If V is added instead of Cr and Mo, excellent workability can be obtained, so V can be added as necessary. However, excessive addition of V reduces workability and also saturates the effect of improving corrosion resistance. For this reason, the lower limit of the V amount is 0.03%, and the upper limit of the V amount is 1.0%. The amount of V is more desirably 0.05 to 0.50%.
  • This steel plate was subjected to heat treatment (final annealing) for 1 minute at a temperature of 900 to 1000 ° C. based on each recrystallization behavior.
  • the heat processing temperature was 1100 degreeC.
  • test solution simulating a relatively mild corrosive environment contained 10 ppm nitrate ions, 10 ppm sulfate ions, and 5 ppm chloride ions, and had a pH of 4.5.
  • test pieces 1 having a size of 25 ⁇ 50 mm were prepared as shown in FIG.
  • a glass / metal gap was given to the test piece 1 as follows.
  • a hole 9 having a diameter of 6 mm was formed in a substantially central portion of the test piece 1.
  • test piece 1 Before starting the test, the entire surface of the test piece 1 was wet-polished with # 400 emery paper, and immediately using a Teflon (registered trademark) bolt 2, a Teflon (registered trademark) nut 3, and a titanium washer 5, Test piece 1 was sandwiched between two glass plates 4. Thus, a glass / metal gap was imparted to the test piece 1.
  • test piece 1 was placed in a beaker 7 as shown in FIG. 1A, filled with 50 ml of acid rain simulation solution 8 and semi-immersed.
  • the beaker 7 was placed in a 50 ° C. warm bath and held for 24 hours.
  • a stainless steel sample (test piece 1) was taken out from the dried and concentrated simulated liquid, and lightly washed with distilled water.
  • the newly washed beaker 7 was filled again with the test solution (acid rain simulated solution 8).
  • the stainless steel sample (test piece 1) was again semi-immersed and held at 50 ° C. for 24 hours.
  • the test piece 1 was half-immersed in the simulated solution and then held at 50 ° C. for 24 hours was repeated 10 times (wet and dry repetition test).
  • the weight loss of the corrosion was determined by subtracting the mass of the test piece 1 after the test from the mass of the test piece 1 before the test measured in advance. Each of the three test pieces 1 was subjected to the same wet and dry repeated test to determine the corrosion weight loss. And the average value (average corrosion weight loss) of corrosion weight loss was calculated
  • Test solution (simulated liquid of combustion exhaust gas condensate) 8 that simulates a severe corrosive environment contains 100 ppm nitrate ions (NO 3 ⁇ ), 10 ppm sulfate ions (SO 4 2 ⁇ ), and 100 ppm chloride ions (Cl ⁇ ). The pH was adjusted to 2.5.
  • test pieces 1 having a size of 25 ⁇ 50 mm were prepared as shown in FIG.
  • a corrosion test was conducted in the same manner as the test using the acid rain simulated liquid except that the condensed water simulated liquid was used and the holding temperature was 80 ° C., and the average corrosion weight loss was determined. The average weight loss obtained was listed in the “Corrosion weight loss 2” column of Tables 5 and 6.
  • a tensile test was performed under the same conditions as described above. A material whose surface was polished after cold rolling, annealing, and pickling was processed into a shape defined in IS13B, and a test piece was produced. Using this test piece, a tensile test was performed. The test results obtained are shown in Tables 5 and 6.
  • A1 to A25 are examples of the present invention.
  • B1 to B13 are comparative examples. Numerical values that deviate from the range defined in the present embodiment are highlighted with an underline.
  • Tables 5 and 6 and FIG. 4 show the results of the wet and dry repeated test using the simulated acid rain solution on the test piece 1 provided with the clearance.
  • No. A1 to A25 contain components in amounts within the ranges defined in this embodiment, and satisfy the following formulas (A) and (B). In all cases, the average corrosion weight loss was 0.4 mg / cm 2 or less.
  • Tables 5 and 6 and FIG. 5 show the results of repeated wet and dry tests on the test piece 1 provided with the clearance using a simulated liquid of condensed water generated from the combustion exhaust gas.
  • No. A1 to A20 contain components in amounts within the ranges defined in the present embodiment, and satisfy the following formulas (A) and (B ′). In all cases, the average corrosion weight loss was 1.0 mg / cm 2 or less.
  • B ′) Formula: Si + Cu ⁇ 0.5
  • the average corrosion weight loss is as small as 0.7 mg / cm 2 .
  • the average corrosion weight loss is 0.5 mg / cm 2 or less, and the corrosion resistance The results are very good.
  • the average corrosion weight loss exceeded 1.0 mg / cm 2 .
  • the corrosion resistance means corrosion resistance in a corrosive environment caused by acid rain or a corrosive environment caused by condensed water generated from combustion exhaust gas in the secondary heat exchanger.
  • This embodiment can be applied to materials used outdoors in areas where there is a lot of damage due to acid rain. Specifically, various heat exchangers, outdoor exterior materials in acid rain environments, building materials, roofing materials, outdoor equipment, water and hot water storage tanks, home appliances, bathtubs, kitchen equipment, and other general outdoor and indoor applications It is applicable to. Moreover, it is applicable to the material for heat exchangers, especially the material for secondary heat exchangers of the latent heat recovery type water heater. Specifically, it can be applied not only to cases and partition plates but also to materials that require workability such as heat exchange pipes. Further, the secondary heat exchanger material is exposed not only to the combustion exhaust gas of hydrocarbon fuel but also to a low pH solution containing a large amount of nitrate ions and sulfate ions. In this state, drying and drying are repeated. This embodiment can also be applied to materials exposed to such an environment.
  • Test specimen 2 Teflon (registered trademark) bolt 3 Teflon (registered trademark) nut 4 Glass plate 5 Titanium washer 7 Beaker 8 Simulated liquid (simulated liquid of acid rain or condensed water of combustion exhaust gas) 9 holes

Abstract

This ferritic stainless steel contains 0.030% or less of C, 0.030% or less of N, 0.60% or less of Si, 0.01-0.5% of Mn, 0.05% or less of P, 0.01% or less of S, 13-22.5% of Cr, less than 0.35% of Ni, 0.05-0.30% of Ti, 0.01-0.2% of Al, 0.5% or less of Cu, and less than 0.30% of Mo (percentages given with respect to weight); Fe and inevitable impurities constitute the balance. The stainless steel complies with formulae (A) and (B). (A): Cr+10Ti+10Al≥15; (B): Si+Cu≤1.1 (Cr, Ti, Al, Si, and Cu refer to amounts of the corresponding element contained in the steel (wt%)).

Description

耐食性及び加工性に優れるフェライト系ステンレス鋼Ferritic stainless steel with excellent corrosion resistance and workability
 本発明は、二次熱交換器のような低pHで塩化物が存在する環境に曝される部材に好適に用いることが可能な耐食性および加工性に優れたフェライト系ステンレス鋼に関する。
 本願は、2011年9月6日に、日本に出願された特願2011-193915号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a ferritic stainless steel excellent in corrosion resistance and workability that can be suitably used for a member exposed to an environment where chloride exists at a low pH such as a secondary heat exchanger.
This application claims priority based on Japanese Patent Application No. 2011-193915 filed in Japan on September 6, 2011, the contents of which are incorporated herein by reference.
 様々な化石燃料の燃焼によって発生する排気ガス中には、燃料・大気由来のSOxやNOxが含まれる。これらの成分は、大気中の酸素や水蒸気と反応して、HSOやHNO等を生じ、雲水中に湿性沈着するか、またはエアロゾルとして大気中に乾性沈着する。これが、酸性雨の発生メカニズムとされている。酸性雨はpHが5.6以下程度の雨であり、SO 2-イオンやNO イオンをそれぞれ約10ppmずつ含む。特に、工業地帯や火山ガスの発生地域においては、酸性雨は、より低pHでSO 2-イオンやNO イオンを多く含む。さらに海塩等に由来する塩化物を数ppm~100ppmの量で含む可能性がある。このような成分の雨水が付着すると、乾燥によって低pH化と濃化が進み、厳しい腐食環境となる。しかし、このような酸性雨環境は、直接排ガスが凝縮するような熱交換器が曝される環境と比較すると、マイルドな腐食環境である。 The exhaust gas generated by the combustion of various fossil fuels includes SOx and NOx derived from fuel and air. These components react with oxygen and water vapor in the atmosphere to produce H 2 SO 4 , HNO 3, etc., and are wet deposited in cloud water or dry deposited in the atmosphere as an aerosol. This is considered to be the mechanism of acid rain. Acid rain is rain having a pH of about 5.6 or less, and contains about 10 ppm of SO 4 2− ions and NO 3 ions, respectively. In particular, in industrial zones and areas where volcanic gas is generated, acid rain has a lower pH and contains more SO 4 2− ions and NO 3 ions. Furthermore, there is a possibility that chloride derived from sea salt or the like is contained in an amount of several ppm to 100 ppm. If rainwater of such a component adheres, the pH is lowered and the concentration is increased by drying, resulting in a severe corrosive environment. However, such an acid rain environment is a mild corrosive environment as compared with an environment where a heat exchanger in which exhaust gas is directly condensed is exposed.
 熱交換器は、様々な燃料を燃焼させた熱を、水を主とした媒体に与える装置であり、原子力発電の蒸気発生器から一般家庭の給湯器まで様々な分野で用いられている。このうち、一般家庭のガスまたは石油給湯器にも、その燃焼熱で水をお湯にするために熱交換器が内蔵されている。この熱交換器は、従来、熱効率を上げるために、フィン構造などへの加工が容易でかつ熱伝導性に優れる銅が用いられてきている。しかしながら近年の環境問題により、CO削減が給湯器にも求められている。このため、更なる熱効率向上を目的に、従来の排出ガスの熱をさらに利用する潜熱回収型給湯器が開発された。この給湯器は、従来の熱交換器(一次熱交換器)を通過した後のガスや石油を燃焼させた排気ガスの熱をさらに利用する。このため、もうひとつ熱交換器(二次熱交換器)を有している。一次熱交換器を通過した後の排気ガスは、約150~200℃であり、多量の水蒸気を含んでいる。このため、二次熱交換器では、直接的な熱だけでなく、水蒸気が水滴となる凝縮熱、つまり潜熱を回収することでトータルの熱効率を95%以上まで向上させている。この潜熱回収型給湯器の構造の一例が、例えば特許文献1に開示されている。 A heat exchanger is a device that supplies heat, which is obtained by burning various fuels, to a medium mainly composed of water, and is used in various fields from a steam generator for nuclear power generation to a hot water heater for general households. Among these, a heat exchanger is built in a gas or oil water heater in a general household in order to turn the water into hot water by the combustion heat. Conventionally, this heat exchanger has been made of copper that can be easily processed into a fin structure and has excellent thermal conductivity in order to increase thermal efficiency. However, due to recent environmental problems, CO 2 reduction is also required for water heaters. For this reason, a latent heat recovery type water heater that further utilizes the heat of the conventional exhaust gas has been developed for the purpose of further improving the thermal efficiency. This water heater further uses the heat of the exhaust gas which burned the gas after passing through the conventional heat exchanger (primary heat exchanger) and oil. For this reason, it has another heat exchanger (secondary heat exchanger). The exhaust gas after passing through the primary heat exchanger is about 150-200 ° C. and contains a large amount of water vapor. For this reason, in the secondary heat exchanger, the total heat efficiency is improved to 95% or more by recovering not only direct heat but also condensation heat in which water vapor becomes water droplets, that is, latent heat. An example of the structure of this latent heat recovery type hot water heater is disclosed in Patent Document 1, for example.
 ここで、二次熱交換器で発生する凝縮水は、都市ガスやLPG、石油などの炭化水素系の原料を燃焼させた排気ガス中から生成する。このため、凝縮水は、その排気ガス成分等に由来して硝酸イオンや硫酸イオンを含み、pHが約3以下の弱酸性水溶液となる。このpHが低い溶液では、従来用いられていた銅(pHが6.5以下で腐食)は用いることができない。その他の普通鋼(pHが約7以下で腐食)やアルミニウム(pHが約3以下で腐食)でも、上記凝縮水に曝される環境では腐食する。そのため、二次熱交換器用材料としては、弱酸性域での耐食性に優れるステンレス鋼が現在選定されており、汎用ステンレス鋼の中でも、より耐食性に優れるオーステナイト系ステンレス鋼のSUS316L(18Cr-10Ni-2Mo)が主に採用されている。SUS316Lは、潜熱回収型給湯器へ適用される二次熱交換器部材に必要な耐食性を満たしている。しかし、その原料には、価格が高価でかつ価格安定性が非常に不安定なNi,Moを多量に含んでいる。潜熱回収型給湯器は、CO削減の切り札として広く一般への普及が期待されており、これを実現させるには、材料の更なるコストダウンと良好な加工性が強く要望されている。二次熱交換器材料であるSUS316Lにおいても、当然、より低コストの代替材料の提案が期待されている。また、一般的な使用環境では耐食性の問題はないとされるが、ステンレス鋼の耐食性を阻害する要因のひとつである海塩粒子が飛来しやすい海岸近辺等の地域では、SUS316Lでも腐食を生じる可能性は否めない。この場合、SUS316Lでは、オーステナイト系ステンレス鋼の弱点の一つである応力腐食割れが発生する可能性がある。 Here, the condensed water generated in the secondary heat exchanger is generated from exhaust gas obtained by burning hydrocarbon-based raw materials such as city gas, LPG, and petroleum. For this reason, the condensed water is a weakly acidic aqueous solution having a pH of about 3 or less, including nitrate ions and sulfate ions derived from its exhaust gas components and the like. In a solution having a low pH, conventionally used copper (corrosion at a pH of 6.5 or less) cannot be used. Other ordinary steels (corrosion when the pH is about 7 or less) and aluminum (corrosion when the pH is about 3 or less) corrode in the environment exposed to the condensed water. Therefore, a stainless steel having excellent corrosion resistance in a weakly acidic region is currently selected as a secondary heat exchanger material. Among general-purpose stainless steels, SUS316L (18Cr-10Ni-2Mo), which is an austenitic stainless steel having excellent corrosion resistance, is selected. ) Is mainly adopted. SUS316L satisfies the corrosion resistance necessary for a secondary heat exchanger member applied to a latent heat recovery type water heater. However, the raw material contains a large amount of Ni and Mo which are expensive and have very unstable price stability. The latent heat recovery type water heater is expected to be widely spread to the general public as a trump card for CO 2 reduction. In order to realize this, further cost reduction of materials and good workability are strongly demanded. In SUS316L, which is a secondary heat exchanger material, it is naturally expected to propose a lower cost alternative material. Also, although there is no problem of corrosion resistance in a general usage environment, SUS316L can also corrode in areas such as the coast where sea salt particles are likely to fly, which is one of the factors that hinder the corrosion resistance of stainless steel. Sex cannot be denied. In this case, in SUS316L, stress corrosion cracking, which is one of the weak points of austenitic stainless steel, may occur.
 オーステナイト系ステンレス鋼を適用する際に発生するこのような問題を解決するため、近年、二次熱交換器部材にフェライト系ステンレス鋼を適用する試みが行われてきている(特許文献2~6)。
 特許文献2は、硫黄含有ガスに対する耐食性を有する熱交換器材料として、フェライト系ステンレス鋼を提案している。このフェライト系ステンレス鋼では、NbあるいはTiと共にMoが添加され、これにより、耐食性の低下が抑制され、かつ高温強度の向上が図られている。また、SiおよびAlの含有量の低減によって、ろう付け性および成形性の向上を図っている。
In order to solve such problems that occur when austenitic stainless steel is applied, attempts to apply ferritic stainless steel to secondary heat exchanger members have been made in recent years (Patent Documents 2 to 6). .
Patent Document 2 proposes ferritic stainless steel as a heat exchanger material having corrosion resistance against sulfur-containing gas. In this ferritic stainless steel, Mo is added together with Nb or Ti, thereby suppressing a decrease in corrosion resistance and improving high-temperature strength. In addition, brazing and moldability are improved by reducing the contents of Si and Al.
 特許文献3は、熱交換器が曝される環境における高温の水蒸気環境での耐久性を発揮するフェライト系ステンレス鋼を開示している。このフェライト系ステンレス鋼では、Cr,Mo,Si,及びAlの含有量と使用予定温度から導き出される特定の関係式を満たすように、成分が調整されている。しかし、Al添加量が多いため、材料が非常に硬く脆くなる問題がある。また想定される温度は300~1000℃であり、本発明が対象とする潜熱回収型給湯器よりも非常に高温の環境で使用される材料が規定されている。 Patent Document 3 discloses a ferritic stainless steel that exhibits durability in a high temperature steam environment in an environment to which a heat exchanger is exposed. In this ferritic stainless steel, the components are adjusted so as to satisfy a specific relational expression derived from the contents of Cr, Mo, Si, and Al and the intended use temperature. However, since the amount of Al added is large, there is a problem that the material becomes very hard and brittle. Further, the assumed temperature is 300 to 1000 ° C., and a material to be used in an environment much higher than the latent heat recovery type hot water heater targeted by the present invention is defined.
 特許文献4は、Ti及びAlの含有量が低減されたことを特徴とするろう付け性に優れたフェライト系ステンレス鋼を開示している。
 特許文献5は、ろう付けに供される熱交換器部材として好適なフェライト系ステンレス鋼を開示している。このフェライト系ステンレス鋼では、Nb,C,及びNの含有量から算出されるA値が0.1以上となるように成分が調整されている。ただし、ろう付けにおける熱処理時に結晶粒が粗大化することを防止するために、Nbを必須元素としているが、耐食性向上への指摘はない。
Patent Document 4 discloses a ferritic stainless steel excellent in brazeability, characterized in that the contents of Ti and Al are reduced.
Patent Document 5 discloses ferritic stainless steel suitable as a heat exchanger member used for brazing. In this ferritic stainless steel, the components are adjusted so that the A value calculated from the contents of Nb, C, and N is 0.1 or more. However, although Nb is an essential element in order to prevent the crystal grains from becoming coarse during the heat treatment in brazing, there is no indication for improving the corrosion resistance.
 特許文献6は、ろう付け用フェライト系ステンレス鋼材および熱交換器部材を開示している。高温ろう付け時の粗粒化を防止するために、再結晶粒の占める面積率を規定しているが、耐食性向上への指摘はない。
 また、二次熱交換器の熱交換パイプには曲げ加工が必要であり、一部の製品ではフレキシブルパイプも利用されている。このため、熱交換器部材には、良好な加工性が要求される。従来用いられているオーステナイト系ステンレス鋼は、十分な加工性を有しているが、フェライト系ステンレス鋼はオーステナイト系ステンレス鋼に比し加工性に劣る。このため、特に加工性に優れた材料が求められている。
Patent Document 6 discloses a ferritic stainless steel material for brazing and a heat exchanger member. In order to prevent coarsening during high temperature brazing, the area ratio occupied by recrystallized grains is specified, but there is no indication for improving corrosion resistance.
Further, the heat exchange pipe of the secondary heat exchanger needs to be bent, and a flexible pipe is also used in some products. For this reason, favorable workability is required for the heat exchanger member. Although conventionally used austenitic stainless steel has sufficient workability, ferritic stainless steel is inferior in workability compared to austenitic stainless steel. For this reason, a material excellent in workability is particularly demanded.
 従来知見では、低pHで塩化物が存在する環境における耐食性と加工性のいずれにも言及する先行技術はなく、このような環境において好適に使用できるフェライト系ステンレス鋼が十分に開示されているとは言えない状況であった。 According to conventional knowledge, there is no prior art that mentions both corrosion resistance and workability in an environment where chloride exists at low pH, and ferritic stainless steel that can be suitably used in such an environment is sufficiently disclosed. It was a situation that could not be said.
特開2002-106970号公報JP 2002-106970 A 特開平7-292446号公報JP 7-292446 A 特開2003-328088号公報JP 2003-328088 A 特開2009-174046号公報JP 2009-174046 A 特開2009-299182号公報JP 2009-299182 A 特開2010-285683号公報JP 2010-285683 A
 本発明は、このような事情に鑑み、安価で耐食性に優れ、なおかつ良好な加工性を有し、上記環境において好適に用いることができるフェライト系ステンレス鋼を提供することを目的とする。 In view of such circumstances, an object of the present invention is to provide a ferritic stainless steel that is inexpensive, excellent in corrosion resistance, has good workability, and can be suitably used in the above environment.
 本発明者らは、上記課題を解決するため、このような環境での各種ステンレス鋼の耐食性を評価した。その結果、Cr,Al,およびTiの含有量が多く、特にそれらが不働態皮膜表面に濃縮している場合、特に耐食性が優れることを明らかにした。
 また発生した腐食起点の評価から、以下の事項を知見した。
(a)Cu及びSiの含有量を低減することによって、対象とする環境における耐食性が向上する。
(b)さらに、Mo及びNiの含有量を低減することによって、加工性が向上する。
 本発明は、このような二次熱交換器内を対象として、低pHで塩化物が存在する腐食環境における耐食性に優れた材料の検討を鋭意行ってきた。その結果、対象とする環境における耐食性および加工性に優れるフェライト系ステンレス鋼を開発した。
 即ち本発明は、以下の特徴を有し、低pHで塩化物が存在する環境においても耐食性に優れ、かつ良好な加工性を有するフェライト系ステンレス鋼である。
In order to solve the above problems, the present inventors evaluated the corrosion resistance of various stainless steels in such an environment. As a result, it has been clarified that the corrosion resistance is particularly excellent when the contents of Cr, Al, and Ti are large and particularly when they are concentrated on the surface of the passive film.
Moreover, the following matters were found from the evaluation of the generated corrosion starting point.
(A) By reducing the contents of Cu and Si, the corrosion resistance in the target environment is improved.
(B) Furthermore, the workability is improved by reducing the contents of Mo and Ni.
In the present invention, for the inside of such a secondary heat exchanger, studies have been made on materials having excellent corrosion resistance in a corrosive environment where chlorides exist at low pH. As a result, we have developed a ferritic stainless steel with excellent corrosion resistance and workability in the target environment.
That is, the present invention is a ferritic stainless steel having the following characteristics, excellent corrosion resistance even in an environment where chloride is present at low pH, and good workability.
 (1)質量%で、C:0.030%以下、N:0.030%以下、Si:0.60%以下、Mn:0.01~0.5%、P:0.05%以下、S:0.01%以下、Cr:13~22.5%、Ni:0.35%未満、Ti:0.05~0.30%、Al:0.01~0.2%、Cu:0.5%以下、及びMo:0.30%未満を含有し、残部はFeおよび不可避的不純物であり、且つ下記の(A)式及び(B)式を満たすことを特徴とする耐食性及び加工性に優れるフェライト系ステンレス鋼である。
 (A)式:Cr+10Ti+10Al≧15
 (B)式:Si+Cu≦1.1
 (ただし、式中のCr,Ti,Al,Si,Cuは、それぞれの元素の含有量(質量%)を意味する。)
 (2)さらに、Nb:0.05~0.50%を含有することを特徴とする前記(1)に記載の耐食性及び加工性に優れるフェライト系ステンレス鋼。
 (3)さらに、Sn:0.005~1.0%を含有することを特徴とする前記(1)又は(2)に記載の耐食性及び加工性に優れるフェライト系ステンレス鋼。
 (4)さらに、B:0.0001~0.003%、及びV:0.03~1.0%のうち、いずれか一方又は両方を含有することを特徴とする前記(1)~(3)のいずれかに記載の耐食性及び加工性に優れるフェライト系ステンレス鋼。
 (5)前記(B)式の代わりに下記の(B’)式を満たすことを特徴とする前記(1)~(4)のいずれかに記載の耐食性及び加工性に優れるフェライト系ステンレス鋼。
 (B’)式:Si+Cu≦0.5
 (ただし、式中のSi,Cuは、それぞれの元素の含有量(質量%)を意味する。)
 (6)酸性雨の模擬液を用いた腐食試験によって測定される平均腐食減量が0.4mg/cm以下であることを特徴とする前記(1)~(5)のいずれかに記載の耐食性及び加工性に優れるフェライト系ステンレス鋼。
 前記腐食試験では、前記模擬液として、pHが4.5であり、かつ10ppmの硝酸イオン、10ppmの硫酸イオン、及び5ppmの塩化物イオンを含有する水溶液を用い、前記水溶液中にすきま付与試験片を半浸漬させ、50℃に24時間保持する乾湿繰り返し試験を10サイクル実施し、前記乾湿繰り返し試験後の質量の減少量を測定し、前記平均腐食減量を得る。
 (7)燃焼排ガスの凝縮水の模擬液を用いた腐食試験によって測定される平均腐食減量が1.0mg/cm以下であることを特徴とする前記(6)に記載の耐食性及び加工性に優れるフェライト系ステンレス鋼。
 前記腐食試験では、前記模擬液として、pHが2.5であり、かつ100ppmの硝酸イオン、10ppmの硫酸イオン、100ppmの塩化物イオンを含有する水溶液を用い、前記水溶液中にすきま付与試験片を半浸漬させ、80℃に24時間保持する乾湿繰り返し試験を10サイクル実施し、前記乾湿繰り返し試験後の質量の減少量を測定し、前記平均腐食減量を得る。
(1) By mass%, C: 0.030% or less, N: 0.030% or less, Si: 0.60% or less, Mn: 0.01 to 0.5%, P: 0.05% or less, S: 0.01% or less, Cr: 13 to 22.5%, Ni: less than 0.35%, Ti: 0.05 to 0.30%, Al: 0.01 to 0.2%, Cu: 0 .5% or less, and Mo: less than 0.30%, the balance being Fe and inevitable impurities, and satisfying the following formulas (A) and (B): It is a ferritic stainless steel with excellent resistance.
(A) Formula: Cr + 10Ti + 10Al ≧ 15
(B) Formula: Si + Cu ≦ 1.1
(However, Cr, Ti, Al, Si, and Cu in the formula mean the content (mass%) of each element.)
(2) The ferritic stainless steel having excellent corrosion resistance and workability as described in (1) above, further comprising Nb: 0.05 to 0.50%.
(3) The ferritic stainless steel having excellent corrosion resistance and workability as described in (1) or (2) above, further comprising Sn: 0.005 to 1.0%.
(4) Further, any one or both of B: 0.0001 to 0.003% and V: 0.03 to 1.0% are contained, (1) to (3 ) Ferritic stainless steel having excellent corrosion resistance and workability.
(5) The ferritic stainless steel having excellent corrosion resistance and workability according to any one of (1) to (4), wherein the following formula (B ′) is satisfied instead of the formula (B):
(B ′) Formula: Si + Cu ≦ 0.5
(However, Si and Cu in the formula mean the content (mass%) of each element.)
(6) The corrosion resistance according to any one of (1) to (5) above, wherein an average corrosion weight loss measured by a corrosion test using a simulated acid rain solution is 0.4 mg / cm 2 or less. Ferritic stainless steel with excellent workability.
In the corrosion test, an aqueous solution containing a pH of 4.5 and containing 10 ppm nitrate ions, 10 ppm sulfate ions, and 5 ppm chloride ions is used as the simulated solution, and a gap imparting test piece is used in the aqueous solution. Is subjected to 10 cycles of the wet and dry repeated test that is held at 50 ° C. for 24 hours, and the amount of decrease in mass after the dry and wet repeated test is measured to obtain the average corrosion weight loss.
(7) The average corrosion weight loss measured by a corrosion test using a simulated liquid of condensed water of combustion exhaust gas is 1.0 mg / cm 2 or less. Excellent ferritic stainless steel.
In the corrosion test, an aqueous solution having a pH of 2.5 and containing 100 ppm nitrate ions, 10 ppm sulfate ions, and 100 ppm chloride ions is used as the simulated solution, and a gap imparting test piece is placed in the aqueous solution. 10 cycles of the wet and dry repeated test that is semi-immersed and held at 80 ° C. for 24 hours, the amount of decrease in mass after the dry and wet repeated test is measured, and the average corrosion weight loss is obtained.
 本発明の態様によれば、例えば酸性雨のような低pHで塩化物が存在する環境において耐食性に優れ、なおかつ良好な加工性を有するフェライト系ステンレス鋼を提供することが可能である。また、このフェライト系ステンレス鋼は、オーステナイト系ステンレス鋼とは異なり、高価なNiやMoを多量に含有しない。特に本発明の好適な態様によれば、給湯器などのように、LNGや石油等の炭化水素を燃料とした燃焼ガスの凝縮水環境に曝される機器の材料としても優れた耐食性を発揮することが可能となる。 According to the embodiment of the present invention, it is possible to provide a ferritic stainless steel having excellent corrosion resistance and good workability in an environment where chloride exists at low pH such as acid rain. Further, unlike austenitic stainless steel, this ferritic stainless steel does not contain a large amount of expensive Ni or Mo. In particular, according to a preferred embodiment of the present invention, it exhibits excellent corrosion resistance as a material for equipment exposed to a condensed water environment of combustion gas using hydrocarbons such as LNG and petroleum as fuel, such as a water heater. It becomes possible.
耐食性の評価方法について説明する図であり、(a)は試料の設置状況を示し、(b)は試験に供したサンプルの形状を示し、(c)はC-C矢視断面図を示す。It is a figure explaining the evaluation method of corrosion resistance, (a) shows the installation condition of a sample, (b) shows the shape of the sample used for the test, (c) shows CC sectional view taken on the line. 酸性雨の模擬液による腐食試験にて測定された平均腐食減量と、成分元素との関係を示す図である。It is a figure which shows the relationship between the average corrosion weight loss measured by the corrosion test by the acid rain simulated liquid, and a component element. 燃焼排ガスの凝縮水の模擬液による腐食試験にて測定された平均腐食減量と、成分元素との関係を示す図である。It is a figure which shows the relationship between the average corrosion weight loss measured by the corrosion test with the simulation liquid of the condensed water of combustion exhaust gas, and a component element. 実施例及び比較例の結果において、酸性雨の模擬液による腐食試験にて測定された平均腐食減量と、成分元素との関係を示す図である。In the result of an Example and a comparative example, it is a figure which shows the relationship between the average corrosion weight loss measured by the corrosion test by the simulated liquid of acid rain, and a component element. 実施例及び比較例の結果において、燃焼排ガスの凝縮水の模擬液による腐食試験にて測定された平均腐食減量と、成分元素との関係を示す図である。In the result of an Example and a comparative example, it is a figure which shows the relationship between the average corrosion weight loss measured by the corrosion test with the simulation liquid of the condensed water of combustion exhaust gas, and a component element.
 以下、特に断らない限り、「%」は「質量%」を意味する。
 発明者らは、低pHで塩化物が存在する環境において優れた耐食性を示し、なおかつ良好な加工性を有するフェライト系ステンレス鋼を提供するため、鋭意開発を行った。その結果、以下の事項を知見した。
Hereinafter, unless otherwise specified, “%” means “mass%”.
The inventors have made extensive developments in order to provide a ferritic stainless steel that exhibits excellent corrosion resistance in an environment where chlorides are present at low pH and has good workability. As a result, the following matters were discovered.
(1)酸性雨が降る環境を模擬した乾湿繰り返し試験を行い、すきま付与試験片の平均腐食減量を測定した。その結果、以下の(A)式及び(B)式を満たすフェライト系ステンレス鋼では、平均腐食減量が0.4mg/cm以下であった。
 (A)式:Cr+10Ti+10Al≧15
 (B)式:Si+Cu≦1.1
(2)(A)式の左辺の値が同等のフェライト系ステンレス鋼とオーステナイト系ステンレス鋼の結果を比較すると、酸性雨の環境では、フェライト系ステンレス鋼の平均腐食減量が、オーステナイト系ステンレス鋼の平均腐食減量よりも小さくなった。
(3)燃焼排ガスにより発生する凝縮水の環境を模擬した乾湿繰り返し試験を行い、すきま付与試験片の平均腐食減量を測定した。その結果、以下の(A)式及び(B’)式を満たすフェライト系ステンレス鋼では、平均腐食減量が1.0mg/cm以下であった。
 (A)式:Cr+10Ti+10Al≧15
 (B’)式:Si+Cu≦0.5
(4)上記(2)同様に、(A)式の左辺の値が同等のフェライト系ステンレス鋼とオーステナイト系ステンレス鋼の結果を比較すると、燃焼排ガスの凝縮水の環境でも、フェライト系ステンレス鋼の平均腐食減量が、オーステナイト系ステンレス鋼の平均腐食減量よりも小さくなった。
(5)加工性を評価するために、引張試験により伸び値を測定した。その結果、Cr,Si,Cu,Mo,およびNiを含有すると、伸び値は減少し、加工性が低下した。
(1) A wet and dry repeated test simulating an environment in which acid rain falls was performed, and the average corrosion weight loss of the gap imparted test piece was measured. As a result, in the ferritic stainless steel satisfying the following formulas (A) and (B), the average corrosion weight loss was 0.4 mg / cm 2 or less.
(A) Formula: Cr + 10Ti + 10Al ≧ 15
(B) Formula: Si + Cu ≦ 1.1
(2) Comparing the results of ferritic stainless steel and austenitic stainless steel with the same value on the left side of equation (A), the average corrosion weight loss of ferritic stainless steel is less than that of austenitic stainless steel in an acid rain environment. It became smaller than average corrosion weight loss.
(3) A dry and wet repeated test simulating the environment of the condensed water generated by the combustion exhaust gas was performed, and the average corrosion weight loss of the gap imparted test piece was measured. As a result, in the ferritic stainless steel satisfying the following formulas (A) and (B ′), the average corrosion weight loss was 1.0 mg / cm 2 or less.
(A) Formula: Cr + 10Ti + 10Al ≧ 15
(B ′) Formula: Si + Cu ≦ 0.5
(4) Similarly to the above (2), when comparing the results of ferritic stainless steel and austenitic stainless steel having the same value on the left side of the formula (A), the ferritic stainless steel can be used in the condensed water environment of the combustion exhaust gas. The average corrosion weight loss was smaller than the average corrosion weight loss of austenitic stainless steel.
(5) In order to evaluate workability, the elongation value was measured by a tensile test. As a result, when Cr, Si, Cu, Mo, and Ni were contained, the elongation value decreased and the workability deteriorated.
 まず、酸性雨の環境を模擬した腐食試験(耐食性の評価方法)について説明する。
 酸性雨の模擬液として、pH=4.5、硝酸イオン10ppm、硫酸イオン10ppm、塩化物イオン5ppmを含有する試験溶液を、試薬を用いて調製した。
 各種ステンレス鋼(供試材)のそれぞれについて、図1(b)に示すように25×50mmの寸法を有する試験片1を3枚用意した。本試験では、すきま腐食を評価するため、以下のように試験片1にガラス/金属のすきまを付与した。試験片1の略中央部にφ6mmの穴9を穿った。試験開始前に試験片1の全面を#400エメリー紙にて湿式研磨処理を行い、速やかにテフロン(登録商標)製ボルト2、テフロン(登録商標)製ナット3、チタン製ワッシャー5を用いて、2枚のガラス板4の間に試験片1を挟み込んだ。以上により、試験片1にガラス/金属のすきまを付与した。
First, a corrosion test (corrosion resistance evaluation method) simulating an acid rain environment will be described.
A test solution containing pH = 4.5, nitrate ion 10 ppm, sulfate ion 10 ppm, and chloride ion 5 ppm was prepared using a reagent as a simulated acid rain solution.
For each of the various stainless steels (test materials), three test pieces 1 having a size of 25 × 50 mm were prepared as shown in FIG. In this test, in order to evaluate crevice corrosion, a glass / metal gap was given to the test piece 1 as follows. A hole 9 having a diameter of 6 mm was formed in a substantially central portion of the test piece 1. Before starting the test, the entire surface of the test piece 1 was wet-polished with # 400 emery paper, and immediately using a Teflon (registered trademark) bolt 2, a Teflon (registered trademark) nut 3, and a titanium washer 5, Test piece 1 was sandwiched between two glass plates 4. Thus, a glass / metal gap was imparted to the test piece 1.
 この試験片1を図1(a)に示すようなビーカー7に設置し、酸性雨の模擬液8を50ml満たし、試験片1を半浸漬させた。このビーカー7を50℃の温浴に入れ24時間保持した。この間、模擬液8は乾燥濃縮した。次いで、乾燥濃縮した模擬液8中からステンレス鋼サンプル(試験片1)を取りだし、軽く蒸留水で洗浄した。次いで、新たに洗浄したビーカー7に試験溶液(酸性雨の模擬液8)を再度満たした。次いで、ステンレス鋼サンプル(試験片1)を再び半浸漬させ、50℃で24時間保持した。試験片1を模擬液8に半浸漬させ、次いで50℃で24時間保持することを10回繰り返した(乾湿繰返し試験)。
 なお、50℃の設定温度は、酸性雨が降る屋外に設置されている腐食対象物において、比較的高いと考えられる温度を模擬したものである。
The test piece 1 was placed in a beaker 7 as shown in FIG. 1A, 50 ml of acid rain simulated liquid 8 was filled, and the test piece 1 was semi-immersed. The beaker 7 was placed in a 50 ° C. warm bath and held for 24 hours. During this time, the simulation liquid 8 was dried and concentrated. Next, a stainless steel sample (test piece 1) was taken out from the dried and concentrated simulated liquid 8, and lightly washed with distilled water. Then, the newly washed beaker 7 was filled again with the test solution (acid rain simulated solution 8). Subsequently, the stainless steel sample (test piece 1) was again semi-immersed and held at 50 ° C. for 24 hours. The test piece 1 was submerged in the simulated solution 8 and then held at 50 ° C. for 24 hours was repeated 10 times (wet and dry repetition test).
Note that the set temperature of 50 ° C. simulates a temperature that is considered to be relatively high in a corrosion target object installed outdoors where acid rain falls.
 10サイクル経過後に、試験片1のさびを落とし、質量を電子天秤で測定した。予め測定した試験前の試験片1の質量から試験後の試験片1の質量を差し引いて、腐食減量を求めた。
 3枚の試験片1のそれぞれに対して、同様の乾湿繰返し試験を行い、腐食減量を求めた。そして、腐食減量の平均値(平均腐食減量)を求めた。
After 10 cycles, the rust of the test piece 1 was removed, and the mass was measured with an electronic balance. The weight loss of the corrosion was determined by subtracting the mass of the test piece 1 after the test from the mass of the test piece 1 before the test measured in advance.
Each of the three test pieces 1 was subjected to the same wet and dry repeated test to determine the corrosion weight loss. And the average value (average corrosion weight loss) of corrosion weight loss was calculated | required.
 供試材として、表1に示した組成を有する20鋼種を用いた。なお、表1に記載の組成において、残部は、鉄及び不可避不純物である。また表1に記載の符号*は、オーステナイト系ステンレス鋼(鋼No.B9,B10)であることを示す。
 この試験の結果を表2,図2に示す。平均腐食減量が0.4mg/cmを超えるステンレス鋼では、すきまの外へ流れさびが発生し外観が損なわれると判断した。このステンレス鋼は、耐食性に劣ると判定し、図2に黒丸(●)でプロットした。また、平均腐食減量が0.4mg/cm以下のステンレス鋼は、耐食性に優れると判定し、図2に白丸(○)でプロットした。
As the test material, 20 steel types having the composition shown in Table 1 were used. In the composition shown in Table 1, the balance is iron and inevitable impurities. Moreover, the code | symbol * of Table 1 shows that it is austenitic stainless steel (steel No. B9, B10).
The results of this test are shown in Table 2 and FIG. In stainless steel having an average corrosion weight loss of more than 0.4 mg / cm 2 , it was judged that rust flowed out of the gap and the appearance was impaired. This stainless steel was judged to be inferior in corrosion resistance, and plotted in FIG. 2 with black circles (●). Further, stainless steel having an average corrosion weight loss of 0.4 mg / cm 2 or less was determined to be excellent in corrosion resistance, and plotted with white circles (◯) in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 Crを含有するフェライト系ステンレス鋼をベースとし、Cr,Al,又はTiの含有量を増やした場合、いずれの場合も平均腐食減量が改善されることを見出した。そして、Cr含有量を増加したことによる効果を1としたとき、AlとTiの含有量を増加したことによる効果は、それぞれ10程度であること(Crによる効果の10倍程度)がわかった。
 また、SiとCuの両者がフェライト系ステンレス鋼の平均腐食減量を増加させることを見出した。このSiとCuの寄与率がほぼ等しいことも判明した。
It has been found that when the content of Cr, Al, or Ti is increased based on a ferritic stainless steel containing Cr, the average corrosion weight loss is improved in any case. And when the effect by having increased Cr content was set to 1, the effect by having increased content of Al and Ti was each about 10 (about 10 times the effect by Cr).
It has also been found that both Si and Cu increase the average corrosion weight loss of ferritic stainless steel. It has also been found that the contribution ratios of Si and Cu are almost equal.
 そこで、Cr+10Ti+10Al及びSi+Cuという2つのパラメータによって、すきま付与試験片の平均腐食減量がどのような影響を受けるのかについて評価を行った。
 その結果、表2および図2に示すように、以下の(A)式及び(B)式を満たすフェライト系ステンレス鋼では、平均腐食減量は0.4mg/cm以下を示した。
 (A)式:Cr+10Ti+10Al≧15
 (B)式:Si+Cu≦1.1
 なお、(A)式を満たしていても、(B)式を満たさない場合には、平均腐食減量は0.4mg/cmを超える結果となった。
 一方、鋼No.B9,B10のように、オーステナイト系ステンレス鋼では、(A)式及び(B)式を満たしていても、平均腐食減量が0.4mg/cmを超える結果となった。これは、オーステナイト系ステンレス鋼の不動態皮膜がフェライト系ステンレス鋼の不動態皮膜よりも不安定であるためであると考えられる。
Therefore, an evaluation was made as to how the average corrosion weight loss of the gap-applied test piece is affected by the two parameters Cr + 10Ti + 10Al and Si + Cu.
As a result, as shown in Table 2 and FIG. 2, in the ferritic stainless steel satisfying the following formulas (A) and (B), the average weight loss was 0.4 mg / cm 2 or less.
(A) Formula: Cr + 10Ti + 10Al ≧ 15
(B) Formula: Si + Cu ≦ 1.1
Even if the formula (A) was satisfied, the average corrosion weight loss exceeded 0.4 mg / cm 2 when the formula (B) was not satisfied.
On the other hand, Steel No. As in B9 and B10, in the austenitic stainless steel, the average corrosion weight loss exceeded 0.4 mg / cm 2 even when the formulas (A) and (B) were satisfied. This is presumably because the passive film of austenitic stainless steel is more unstable than the passive film of ferritic stainless steel.
 このように、低pHで塩化物イオンが所定の比率以上で存在する溶液中で、乾湿が繰り返される環境では、以下の(A)式及び(B)式を満たすフェライト系ステンレス鋼が優れた耐食性を有することが明らかとなった。
 (A)式:Cr+10Ti+10Al≧15
 (B)式:Si+Cu≦1.1
 ここで、式中のCr,Ti,Al,Si,Cuは、それぞれの元素の含有量(質量%)を意味する。
In this way, in an environment where chloride ions are present at a predetermined ratio or higher at a low pH, in an environment where drying and wetting are repeated, ferritic stainless steel satisfying the following formulas (A) and (B) has excellent corrosion resistance. It became clear to have.
(A) Formula: Cr + 10Ti + 10Al ≧ 15
(B) Formula: Si + Cu ≦ 1.1
Here, Cr, Ti, Al, Si, and Cu in the formula mean the content (% by mass) of each element.
 Cr+10Ti+10Al≧15((A)式)を満たすとき、本試験条件におけるすきま付与試験片の平均腐食減量が少なくなる理由は以下のように考えられる。
 本試験で平均腐食減量が0.4mg/cm以下のサンプルについて、試験後の不働態皮膜をAESで分析した。その結果、表面皮膜には、Crと共に、AlとTiが濃縮していることが確認された。乾湿繰り返し試験において、硝酸イオンの還元反応により、表面皮膜中にAlとTiが濃縮・酸化されて、耐食性が向上したと推定される。このことから、本試験環境における平均腐食減量が結果的にCr+10Ti+10Alで示される指標で表されたと考えられる。
When Cr + 10Ti + 10Al ≧ 15 (formula (A)) is satisfied, the reason why the average corrosion weight loss of the gap-applied test piece under the test conditions is considered as follows.
In the test, the passive film after the test was analyzed by AES for samples having an average weight loss of 0.4 mg / cm 2 or less. As a result, it was confirmed that Al and Ti were concentrated together with Cr on the surface film. In the wet and dry test, it is presumed that Al and Ti are concentrated and oxidized in the surface film due to the reduction reaction of nitrate ions, thereby improving the corrosion resistance. From this, it is considered that the average corrosion weight loss in the test environment was expressed as an index indicated by Cr + 10Ti + 10Al as a result.
 Si+Cu≦1.1((B)式)を満たすとき、平均腐食減量が少なくなる理由は、以下のように考えられる。
 Cuは、通常、活性溶解速度を低下させて耐食性を高める元素であるが、いったん腐食が生じた場合には鋼中のCuが溶出する。特に本試験環境のような酸化剤となる硝酸イオンが多い環境においては、溶出したCuイオンがCu2+となる。このCu2+が酸化剤となってカソード反応を促進し、これにより、腐食速度が増大し、腐食深さが深くなると推定される。
 上記の試験液(模擬液)中においてすきま付与試験片で乾湿繰り返し試験を実施した場合、Siを含有した供試材では、気液界面を中心にSi酸化物の析出が確認された。また、このSi酸化物の析出物の近傍で腐食が生じていることが確認された。腐食が生じた理由は、析出物と供試材との間に生じたすきまが腐食の起点となり、すきま腐食が促進したためであると考えられる。さらにこのとき環境にCu2+が存在することで、より腐食が加速されると推定される。
The reason why the average corrosion weight loss decreases when satisfying Si + Cu ≦ 1.1 (formula (B)) is considered as follows.
Cu is an element that usually increases the corrosion resistance by reducing the active dissolution rate. However, once corrosion occurs, Cu in the steel is eluted. In particular, in an environment where there are many nitrate ions serving as an oxidizing agent, such as in the test environment, the eluted Cu ions become Cu 2+ . It is presumed that this Cu 2+ becomes an oxidizing agent to promote the cathode reaction, thereby increasing the corrosion rate and increasing the corrosion depth.
In the test liquid (simulated liquid), when the wet and dry repeated test was performed with the gap-applied test piece, the Si-containing test material was confirmed to deposit Si oxide mainly at the gas-liquid interface. It was also confirmed that corrosion occurred in the vicinity of the Si oxide precipitate. The reason why the corrosion occurred is considered to be that the clearance generated between the precipitate and the specimen was the starting point of the corrosion and the clearance corrosion was promoted. At this time, it is presumed that the corrosion is further accelerated by the presence of Cu 2+ in the environment.
 なお、前述したように、オーステナイト系ステンレス鋼では、(A)式及び(B)式を満たしていても、平均腐食減量は0.4mg/cmを超える結果となった。これは汎用オーステナイト系ステンレス鋼では、フェライト系ステンレス鋼に比べ、不動態皮膜が不安定であるためであると考えられる。
 さらにオーステナイト系ステンレス鋼は、MnS等の水溶性介在物の量がフェライト系ステンレス鋼よりも多い。このため、酸性雨の模擬液中での溶解速度が大きく、このことも腐食減量が大きい原因の1つと推定される。
As described above, in the austenitic stainless steel, the average corrosion weight loss exceeded 0.4 mg / cm 2 even when the formulas (A) and (B) were satisfied. This is considered to be because the passive film is unstable in the general-purpose austenitic stainless steel compared to the ferritic stainless steel.
Further, austenitic stainless steel has a larger amount of water-soluble inclusions such as MnS than ferritic stainless steel. For this reason, the dissolution rate of acid rain in the simulated liquid is large, and this is also presumed to be one of the causes of large corrosion weight loss.
 (A)式の左辺のCr+10Ti+10Alの値は、より望ましくは17以上であり、更に望ましくは18以上である。また(B)式の左辺のSi+Cuの値は、より望ましくは0.90以下であり、更に望ましくは0.70以下である。 The value of Cr + 10Ti + 10Al on the left side of the formula (A) is more desirably 17 or more, and further desirably 18 or more. In addition, the value of Si + Cu on the left side of the formula (B) is more preferably 0.90 or less, and even more preferably 0.70 or less.
 次に、より厳しい腐食環境である燃焼排ガスから生じる凝縮水における耐食性を評価した。
 先に説明したとおり、一般的なLNGや石油の燃焼排ガスから生じる凝縮水は、硝酸イオン、硫酸イオンを含有し、pH=3以下の酸性を示す。また、二次熱交換器には、その使用時に一次熱交換器から150~200℃の排ガスが送り込まれ、停止時には室温に戻る。このように150~200℃の環境と室温の環境とが繰り返される。
 また、酸性雨環境と比較すると、排ガスが直接凝縮して生じる凝縮水に晒されるため、硝酸イオンNO や硫酸イオンSO 2-の濃度が高い。このため凝縮水の模擬液として、pH=2.5、硝酸イオン100ppm、硫酸イオン10ppm、塩化物イオン(Cl)100ppmを含有する試験溶液を、試薬を用いて調整した。
 凝縮水の模擬液の組成は、LNGの燃焼排ガスより発生する凝縮水を模擬したものである。Clイオンについては、実際の凝縮水中の塩化物イオン濃度は数ppmである。しかし、海浜環境等の腐食性の高い環境での運転状況を想定して、塩化物イオン濃度を高く設定した。
Next, the corrosion resistance in the condensed water produced from combustion exhaust gas which is a more severe corrosive environment was evaluated.
As described above, condensed water produced from general LNG and petroleum combustion exhaust gas contains nitrate ions and sulfate ions, and exhibits an acidity of pH = 3 or less. The secondary heat exchanger is fed with 150 to 200 ° C. exhaust gas from the primary heat exchanger when in use, and returns to room temperature when stopped. In this way, the environment of 150 to 200 ° C. and the environment of room temperature are repeated.
Further, compared to the acid rain environment, the concentration of nitrate ions NO 3 and sulfate ions SO 4 2− is higher because the exhaust gas is exposed to condensed water generated by direct condensation. Therefore, a test solution containing pH = 2.5, nitrate ion 100 ppm, sulfate ion 10 ppm, and chloride ion (Cl ) 100 ppm was prepared using a reagent as a simulated condensed water solution.
The composition of the condensed water simulated liquid simulates condensed water generated from LNG combustion exhaust gas. For Cl - ions, the actual chloride ion concentration in the condensed water is a few ppm. However, the chloride ion concentration was set high, assuming operating conditions in a highly corrosive environment such as the beach environment.
 各種ステンレス鋼(供試材)のそれぞれについて、図1(b)に示すように25×50mmの寸法を有する試験片1を3枚用意した。二次熱交換器は構造が複雑であるため、特にすきま腐食が危惧されている。そこで、本試験では、すきま腐食を意図的に起こすため、以下のように試験片1にガラス/金属すきまを付与した。試験片1の略中央部にφ6mmの穴9を穿った。試験開始前に試験片1の全面を#400エメリー紙にて湿式研磨処理を行い、速やかにテフロン(登録商標)製ボルト2、テフロン(登録商標)製ナット3、チタン製ワッシャー5を用いて、2枚のガラス板4の間に試験片1を挟み込んだ。以上により、試験片1にガラス/金属のすきまを付与した。 For each of various stainless steels (test materials), three test pieces 1 having a size of 25 × 50 mm were prepared as shown in FIG. Since the secondary heat exchanger has a complicated structure, crevice corrosion is a particular concern. Therefore, in this test, in order to cause crevice corrosion intentionally, a glass / metal gap was given to the test piece 1 as follows. A hole 9 having a diameter of 6 mm was formed in a substantially central portion of the test piece 1. Before starting the test, the entire surface of the test piece 1 was wet-polished with # 400 emery paper, and immediately using a Teflon (registered trademark) bolt 2, a Teflon (registered trademark) nut 3, and a titanium washer 5, Test piece 1 was sandwiched between two glass plates 4. Thus, a glass / metal gap was imparted to the test piece 1.
 この試験片1を図1(a)に示すようなビーカー7に設置し、燃焼排ガスの凝縮水の模擬液8を50ml満たし、試験片1を半浸漬させた。このビーカー7を80℃の温浴に入れ24時間保持した。この間、模擬液8は乾燥濃縮し、完全に乾燥した。次いで、完全乾燥したステンレス鋼サンプル(試験片1)を取りだし、軽く蒸留水で洗浄した。次いで、新たに洗浄したビーカー7に試験溶液(燃焼排ガスの凝縮水模擬液8)を再度満たした。次いで、ステンレス鋼サンプル(試験片1)を再び半浸漬させ、80℃で24時間保持した。試験片1を模擬液8に半浸漬させ、次いで80℃で24時間保持することを10回繰り返した(乾湿繰返し試験)。
 なお、温度を80℃に設定した理由を以下に示す。排ガスの温度は150~200℃である。しかし、凝縮水が発生することで温度は低下する。また発生した凝縮水と接することで実際の部材温度は更に低温になると考えられる。このため、100℃より低くかつ腐食を加速させるために比較的高温を狙い、80℃に設定した。
The test piece 1 was placed in a beaker 7 as shown in FIG. 1A, filled with 50 ml of simulated liquid 8 of condensed water of combustion exhaust gas, and the test piece 1 was semi-immersed. This beaker 7 was placed in a warm bath at 80 ° C. and held for 24 hours. During this time, the simulated liquid 8 was concentrated by drying and completely dried. Next, a completely dried stainless steel sample (test piece 1) was taken out and gently washed with distilled water. Then, the newly cleaned beaker 7 was filled again with the test solution (combustion exhaust gas condensed water simulation solution 8). Subsequently, the stainless steel sample (test piece 1) was again half-immersed and held at 80 ° C. for 24 hours. The test piece 1 was half-immersed in the simulated solution 8 and then held at 80 ° C. for 24 hours was repeated 10 times (wet and dry repetition test).
The reason for setting the temperature to 80 ° C. is shown below. The temperature of the exhaust gas is 150 to 200 ° C. However, the temperature decreases due to the generation of condensed water. Further, it is considered that the actual member temperature is further lowered by contact with the generated condensed water. For this reason, it was set to 80 degreeC aiming at comparatively high temperature in order to accelerate corrosion and lower than 100 degreeC.
 10サイクル経過後に、試験片1のさびを落とし、質量を電子天秤で測定した。予め測定した試験前の試験片1の質量から試験後の試験片1の質量を差し引いて、腐食減量を求めた。
 3枚の試験片1のそれぞれに対して、同様の乾湿繰返し試験を行い、腐食減量を求めた。そして、腐食減量の平均値(平均腐食減量)を求めた。
After 10 cycles, the rust of the test piece 1 was removed, and the mass was measured with an electronic balance. The weight loss of the corrosion was determined by subtracting the mass of the test piece 1 after the test from the mass of the test piece 1 before the test measured in advance.
Each of the three test pieces 1 was subjected to the same wet and dry repeated test to determine the corrosion weight loss. And the average value (average corrosion weight loss) of corrosion weight loss was calculated | required.
 供試材として、表1に示した組成を有する20鋼種を用いた。
 この試験の結果を表2及び図3に示す。平均腐食減量が1.0mg/cmを超えるステンレス鋼では、長期的にはすきま部で穴あきまで達すると判断した。このステンレス鋼は、耐食性に劣ると判定し、図3に黒丸(●)でプロットした。また、平均腐食減量が1.0mg/cm以下のステンレス鋼は、耐食性に優れると判定し、図3に白丸(○)でプロットした。
As the test material, 20 steel types having the composition shown in Table 1 were used.
The results of this test are shown in Table 2 and FIG. In stainless steel having an average corrosion weight loss of more than 1.0 mg / cm 2 , it was judged that it reached the perforation at the clearance in the long term. This stainless steel was judged to be inferior in corrosion resistance, and plotted in FIG. 3 with black circles (●). Further, stainless steel having an average corrosion weight loss of 1.0 mg / cm 2 or less was determined to be excellent in corrosion resistance, and plotted in FIG. 3 with white circles (◯).
 Crを含有するフェライト系ステンレス鋼をベースとし、Cr,Al,又はTiの含有量を増やした場合、いずれの場合も平均腐食減量が改善されることを見出した。そして、Cr含有量を増加したことによる効果を1としたとき、AlとTiの含有量を増加したことによる効果は、それぞれ10程度であること(Crによる効果の10倍程度)がわかった。
 また、SiとCuの両者がフェライト系ステンレス鋼の平均腐食減量を増加させることを見出した。このSiとCuの寄与率がほぼ等しいことも判明した。
It has been found that when the content of Cr, Al, or Ti is increased based on a ferritic stainless steel containing Cr, the average corrosion weight loss is improved in any case. And when the effect by having increased Cr content was set to 1, the effect by having increased content of Al and Ti was each about 10 (about 10 times the effect by Cr).
It has also been found that both Si and Cu increase the average corrosion weight loss of ferritic stainless steel. It has also been found that the contribution ratios of Si and Cu are almost equal.
 そこで、Cr+10Ti+10Al及びSi+Cuという2つのパラメータによって、すきま付与試験片の平均腐食減量がどのような影響を受けるのかについて評価を行った。
 その結果、表2および図3に示すように、(A)式及び(B’)式を満たすフェライト系ステンレス鋼では、平均腐食減量は1.0mg/cm以下を示した。
 (A)式:Cr+10Ti+10Al≧15
 (B’)式:Si+Cu≦0.5
 なお、(A)式を満たしていても、(B’)式を満たさない場合には、平均腐食減量は1.0mg/cmを超える結果となった。
 一方、汎用のオーステナイト系ステンレス鋼は、(A)式を満たすが、(B’)式を満たさない。このため、平均腐食減量が1.0mg/cmを超える結果となった。
Therefore, an evaluation was made as to how the average corrosion weight loss of the gap-applied test piece is affected by the two parameters Cr + 10Ti + 10Al and Si + Cu.
As a result, as shown in Table 2 and FIG. 3, in the ferritic stainless steel satisfying the formulas (A) and (B ′), the average corrosion weight loss was 1.0 mg / cm 2 or less.
(A) Formula: Cr + 10Ti + 10Al ≧ 15
(B ′) Formula: Si + Cu ≦ 0.5
Even if the formula (A) was satisfied, the average corrosion weight loss exceeded 1.0 mg / cm 2 when the formula (B ′) was not satisfied.
On the other hand, general-purpose austenitic stainless steel satisfies the formula (A) but does not satisfy the formula (B ′). Therefore, the average corrosion weight loss exceeded 1.0 mg / cm 2 .
 このように、低pHで硝酸イオンと硫酸イオンが所定の比率以上で存在する溶液中で、乾湿が繰り返される環境では、以下の(A)式及び(B’)式を満たすフェライト系ステンレス鋼が優れた耐食性を有することが明らかとなった。
 (A)式:Cr+10Ti+10Al≧15
 (B’)式:Si+Cu≦0.5
 ここで、式中のCr,Ti,Al,Si,Cuは、それぞれの元素の含有量(質量%)を意味する。
Thus, in an environment where nitrate and sulfate ions are present at a predetermined ratio or more at a low pH, in an environment where drying and wetting are repeated, a ferritic stainless steel satisfying the following expressions (A) and (B ′) is obtained. It was revealed that it has excellent corrosion resistance.
(A) Formula: Cr + 10Ti + 10Al ≧ 15
(B ′) Formula: Si + Cu ≦ 0.5
Here, Cr, Ti, Al, Si, and Cu in the formula mean the content (% by mass) of each element.
 Cr+10Ti+10Al≧15((A)式)を満たすとき、本試験条件におけるすきま付与試験片の平均腐食減量が少なくなる理由は以下のように考えられる。
 本試験で平均腐食減量が1.0mg/cm以下のサンプルについて、試験後の不働態皮膜をAESで分析した。その結果、表面皮膜には、Crと共に、AlとTiが濃縮していることが確認された。乾湿繰り返し試験においては、硝酸イオンの還元反応により、表面皮膜中にAlとTiが濃縮・酸化されて、耐食性が向上したと推定される。このことから、本試験環境における平均腐食減量が結果的にCr+10Ti+10Alで示される指標で表されたと考えられる。
When Cr + 10Ti + 10Al ≧ 15 (formula (A)) is satisfied, the reason why the average corrosion weight loss of the gap-applied test piece under the test conditions is considered as follows.
In this test, the passive film after the test was analyzed by AES for samples having an average weight loss of 1.0 mg / cm 2 or less. As a result, it was confirmed that Al and Ti were concentrated together with Cr on the surface film. In the wet and dry repeated test, it is estimated that Al and Ti were concentrated and oxidized in the surface film due to the reduction reaction of nitrate ions, thereby improving the corrosion resistance. From this, it is considered that the average corrosion weight loss in the test environment was expressed as an index indicated by Cr + 10Ti + 10Al as a result.
 Si+Cu≦0.5((B’)式)を満たすとき、平均腐食減量が少なくなる理由は、以下のように考えられる。
 Cuは、通常、活性溶解速度を低下させて耐食性を高める元素であるが、いったん腐食が生じた場合には鋼中のCuが溶出する。特に本試験環境のような酸化剤となる硝酸イオンが多い環境においては、溶出したCuイオンがCu2+となる。このCu2+が酸化剤となってカソード反応を促進し、これにより、腐食速度を増大し、腐食深さが深くなると推定される。
 上記の試験液(模擬液)中においてすきま付与試験片で乾湿繰り返し試験を実施した場合、Siを含有した供試材では、気液界面を中心にSi酸化物の析出が確認された。また、このSi酸化物の析出物の近傍で腐食が生じていることが確認された。腐食が生じた理由は、析出物と供試材との間に生じたすきまが腐食の起点となり、すきま腐食が促進したためであると考えられる。さらにこのとき環境にCu2+が存在することで、より腐食が加速されると推定される。
The reason why the average corrosion weight loss decreases when Si + Cu ≦ 0.5 (formula (B ′)) is considered as follows.
Cu is an element that usually increases the corrosion resistance by reducing the active dissolution rate. However, once corrosion occurs, Cu in the steel is eluted. In particular, in an environment where there are many nitrate ions serving as an oxidizing agent, such as in the test environment, the eluted Cu ions become Cu 2+ . It is presumed that this Cu 2+ becomes an oxidizing agent to promote the cathode reaction, thereby increasing the corrosion rate and increasing the corrosion depth.
In the test liquid (simulated liquid), when the wet and dry repeated test was performed with the gap-applied test piece, the Si-containing test material was confirmed to deposit Si oxide mainly at the gas-liquid interface. It was also confirmed that corrosion occurred in the vicinity of the Si oxide precipitate. The reason why the corrosion occurred is considered to be that the clearance generated between the precipitate and the specimen was the starting point of the corrosion and the clearance corrosion was promoted. At this time, it is presumed that the corrosion is further accelerated by the presence of Cu 2+ in the environment.
 なお、前述したように、オーステナイト系ステンレス鋼でも、Cr+10Ti+10Al((A)式)を満たしていても、平均腐食減量は1.0mg/cmを超える結果となった。汎用オーステナイト系ステンレス鋼では、その製鋼条件により、SiやCuの含有量が必然的に高くなっており、Si+Cuの値が0.5以下とならないものが殆どである。このため、平均腐食減量が大きくなると考えられる。
 さらにオーステナイト系ステンレス鋼は、MnS等の水溶性介在物の量がフェライト系ステンレス鋼よりも多い。このため、凝縮液の模擬液中での溶解速度が大きく、このことも腐食減量が大きい原因の1つと推定される。
As described above, even when austenitic stainless steel satisfies Cr + 10Ti + 10Al (formula (A)), the average corrosion weight loss exceeded 1.0 mg / cm 2 . In general-purpose austenitic stainless steel, the contents of Si and Cu are inevitably high due to the steelmaking conditions, and most of the values of Si + Cu do not become 0.5 or less. For this reason, it is thought that average corrosion weight loss becomes large.
Further, austenitic stainless steel has a larger amount of water-soluble inclusions such as MnS than ferritic stainless steel. For this reason, the dissolution rate of the condensate in the simulated liquid is large, and this is also presumed to be one of the causes of large corrosion weight loss.
 (A)式の左辺のCr+10Ti+10Alの値は、より望ましくは17以上であり、更に望ましくは18以上である。また(B’)式の左辺のSi+Cuの値は、より望ましくは0.35未満であり、更に望ましくは0.20未満である。 The value of Cr + 10Ti + 10Al on the left side of the formula (A) is more desirably 17 or more, and further desirably 18 or more. Further, the value of Si + Cu on the left side of the formula (B ′) is more preferably less than 0.35, and still more preferably less than 0.20.
 また、熱交換器のパイプなどの形状が複雑な用途にも対応するために、伸び値は高い方が望ましい。そこで、冷延、焼鈍、及び酸洗の後に表面が研磨された材料をJIS13号Bに規定される形状に加工し、試験片を作製した。この試験片を用いて、引張試験を実施した。
 この試験の結果において、伸び値が32%以上のステンレス鋼は、加工性が良好であると判定した。得られた結果を表2に示す。CuおよびSiも、ステンレス鋼の引張強度を上げるため、Si+Cuの値が1.1以下であることが必要である。さらに、NiおよびMoも、引張強度を上げるため、Mo,Niの含有量も低い方が望ましい。なお、伸び値は、より望ましくは34%以上である。
Moreover, in order to cope with applications where the shape of a heat exchanger pipe or the like is complicated, a higher elongation value is desirable. Therefore, a material whose surface was polished after cold rolling, annealing, and pickling was processed into a shape specified in JIS No. 13B to prepare a test piece. Using this test piece, a tensile test was performed.
In the results of this test, stainless steel having an elongation value of 32% or more was determined to have good workability. The obtained results are shown in Table 2. Cu and Si also need to have a value of Si + Cu of 1.1 or less in order to increase the tensile strength of stainless steel. Furthermore, since Ni and Mo also raise the tensile strength, it is desirable that the contents of Mo and Ni are also low. The elongation value is more desirably 34% or more.
 上記組成の詳細な規定について、以下に説明する。
 Crは、ステンレス鋼の耐食性を確保する上で最も重要な元素である。不動態を維持するのに、少なくとも13%のCrは必要である。Cr量を増加させると、耐食性が向上するが、加工性、製造性が低下する。このため、Cr量の上限を22.5%とする。Cr量は、望ましくは14.5~22.0%であり、より望ましくは16.0~20.0%である。
The detailed definition of the composition will be described below.
Cr is the most important element in securing the corrosion resistance of stainless steel. At least 13% Cr is required to maintain passivity. Increasing the Cr content improves corrosion resistance, but decreases workability and manufacturability. For this reason, the upper limit of the Cr amount is set to 22.5%. The Cr content is desirably 14.5 to 22.0%, and more desirably 16.0 to 20.0%.
 Tiは、一般にはフェライト系ステンレス鋼の溶接部においてC,Nを固定することで、粒界腐食を抑制させ、加工性を向上させる。このため、Tiは非常に重要な元素である。更に本実施形態にて対象とする腐食環境においては、Tiは、耐食性上、重要な元素である。Tiは、酸素との親和力が非常に強い。そこで、本発明者は、以下の事項を知見した。
 Tiは、硝酸イオンを含む本実施形態にて対象とする腐食環境では、Crとともにステンレス鋼の表面被膜を形成する。このため、Tiは、孔食発生を抑制するのに非常に有効である。
 皮膜を形成させたり、Tiを安定化元素として用いC,Nを固定させるためには、CとNの合計量(C+N)の4倍以上のTi量が必要である。しかしながら過剰な添加は製造時の表面疵の原因となるため、Ti量の範囲を0.05~0.3%とし、より望ましくは0.08~0.2%とする。
Ti generally fixes C and N in a welded portion of ferritic stainless steel, thereby suppressing intergranular corrosion and improving workability. For this reason, Ti is a very important element. Furthermore, in the corrosive environment targeted in this embodiment, Ti is an important element in terms of corrosion resistance. Ti has a very strong affinity for oxygen. Therefore, the present inventor has found the following matters.
Ti forms a stainless steel surface film together with Cr in the corrosive environment targeted in the present embodiment containing nitrate ions. For this reason, Ti is very effective in suppressing the occurrence of pitting corrosion.
In order to form a film or to fix C and N using Ti as a stabilizing element, an amount of Ti more than four times the total amount of C and N (C + N) is required. However, since excessive addition causes surface flaws during production, the range of Ti content is 0.05 to 0.3%, and more preferably 0.08 to 0.2%.
 Alは、脱酸元素として重要であり、また非金属介在物の組成を制御し組織を微細化する効果も有する。更に、本実施形態にて対象とする腐食環境においては、Alは、耐食性上、重要な元素である。Alは、Tiと同様に酸素との親和力が非常に強い。しかし、本発明者は、以下の事項を知見した。
 Alは、硝酸イオンを含む本実施形態にて対象とする腐食環境では、Crとともにステンレス鋼の表面被膜を形成する。このため、Alは、孔食発生を抑制するのに非常に有効である。
 しかし、過剰に添加すると非金属介在物の粗大化を招き、製品の疵発生の起点になる恐れもある。そのため、Al量の下限値を0.01%とし、Al量の上限値を0.20%とする。Al量は、より望ましくは0.03%~0.10%である。
Al is important as a deoxidizing element, and also has an effect of controlling the composition of nonmetallic inclusions and refining the structure. Furthermore, in the corrosive environment targeted in this embodiment, Al is an important element in terms of corrosion resistance. Al, like Ti, has a very strong affinity for oxygen. However, the present inventor has found the following matters.
Al forms a stainless steel surface film together with Cr in the corrosive environment targeted in the present embodiment containing nitrate ions. For this reason, Al is very effective in suppressing the occurrence of pitting corrosion.
However, excessive addition leads to coarsening of non-metallic inclusions, which may be a starting point for product wrinkling. Therefore, the lower limit value of the Al amount is 0.01%, and the upper limit value of the Al amount is 0.20%. The amount of Al is more desirably 0.03% to 0.10%.
 Cuは、原料から不可避不純物として0.01%以上の量で含まれる。ただし、本実施形態にて対象とする環境においては、Cuは腐食を促進させるため望ましくない。その理由は、前述のように一度腐食が開始した場合、溶出したCuイオンがカソード反応を促進させるためであると推定される。そのためCu量は、少ないほど望ましいため、Cu量の範囲を0.5%以下とする。Cu量は、より望ましくは、0.25%以下である。 Cu is included as an inevitable impurity from the raw material in an amount of 0.01% or more. However, in the environment targeted by this embodiment, Cu is not desirable because it promotes corrosion. The reason is presumed that, as described above, once corrosion starts, the eluted Cu ions promote the cathode reaction. Therefore, the smaller the amount of Cu, the better. Therefore, the range of the Cu amount is set to 0.5% or less. The amount of Cu is more desirably 0.25% or less.
 Siは、脱酸剤として不可避的に混入する元素である。一般的にSiは、耐食性、耐酸化性にも有効である。しかし、本実施形態にて対象とする環境においては、Siは腐食の進行を促進する作用がある。さらに過度な添加は加工性、製造性を低下させる。そのためSi量の上限を0.60%とする。Si量は、より望ましくは0.2%未満である。また、極度に低減させることはコストの増加を招くため、Si量は、0.05%以上であることが望ましい。 Si is an element inevitably mixed as a deoxidizer. In general, Si is also effective for corrosion resistance and oxidation resistance. However, in the environment targeted by this embodiment, Si has an action of promoting the progress of corrosion. Furthermore, excessive addition reduces workability and manufacturability. Therefore, the upper limit of Si content is 0.60%. The amount of Si is more desirably less than 0.2%. Further, since extremely reducing causes an increase in cost, the Si amount is desirably 0.05% or more.
 Niは必須ではないが、活性溶解速度を抑制させる。しかし、過剰な添加は、加工性を低下させ、フェライト組織を不安定にするだけでなくコストも悪化する。このため、Ni量を0.35%未満とする。Ni量は、望ましくは0.05%以上、0.25%未満である。 Ni is not essential, but suppresses the active dissolution rate. However, excessive addition reduces workability and not only makes the ferrite structure unstable, but also worsens the cost. For this reason, the amount of Ni is made less than 0.35%. The amount of Ni is desirably 0.05% or more and less than 0.25%.
 Moは必須でないが、原料から不可避不純物として0.01%以上の量で含まれる。一般的にMoは不動態皮膜の回復効果を高めると言われている。しかし、本実施形態にて対象とする環境においては耐食性向上への寄与は小さい。一方で、Moは、加工性を低下させ、コストも悪化する。そのため、Mo量は少ない方が望ましいため、Mo量の範囲を0.30%未満とする。Mo量は、望ましくは、0.20%以下であり、さらにより望ましくは0.10%以下である。 Although Mo is not essential, it is contained in an amount of 0.01% or more as an inevitable impurity from the raw material. In general, Mo is said to enhance the recovery effect of the passive film. However, in the environment targeted by this embodiment, the contribution to the corrosion resistance improvement is small. On the other hand, Mo reduces workability and costs. Therefore, since it is desirable that the amount of Mo is small, the range of the amount of Mo is set to less than 0.30%. The amount of Mo is desirably 0.20% or less, and even more desirably 0.10% or less.
 さらに本実施形態で規定される他の化学成分について以下に詳しく説明する。
 Cは、強度向上や、安定化元素との組合せによる結晶粒の粗大化を抑制する効果がある。しかし、Cは、溶接部の耐粒界腐食性、加工性を低下させる。高純度のフェライト系ステンレス鋼では、Cの含有量を低減させる必要があるため、C量の上限を0.030%とする。過度に低減させることは精錬コストを悪化させるため、C量は、より望ましくは、0.002~0.020%である。
Further, other chemical components defined in this embodiment will be described in detail below.
C has an effect of suppressing strength increase and coarsening of crystal grains due to a combination with a stabilizing element. However, C decreases the intergranular corrosion resistance and workability of the weld. In high-purity ferritic stainless steel, it is necessary to reduce the C content, so the upper limit of the C content is 0.030%. Since excessive reduction deteriorates the refining cost, the C amount is more preferably 0.002 to 0.020%.
 Nは、Cと同様に耐粒界腐食性、加工性を低下させるため、Nの含有量を低減させる必要がある。このため、N量の上限を0.030%とする。ただし過度に低減させることは精錬コストを悪化させるため、N量は、より望ましくは、0.002~0.020%である。 N, like C, reduces the intergranular corrosion resistance and workability, so it is necessary to reduce the N content. For this reason, the upper limit of the N amount is set to 0.030%. However, since excessive reduction deteriorates the refining cost, the N amount is more preferably 0.002 to 0.020%.
 Mnは、脱酸元素として重要な元素である。しかし、Mnを過剰に添加すると、腐食の起点となるMnSを生成しやすくなり、またフェライト組織を不安定化させる。このため、Mnの含有量を0.01~0.5%とする。Mn量は、より望ましくは、0.05~0.3%である。 Mn is an important element as a deoxidizing element. However, when Mn is added excessively, it becomes easy to produce MnS which becomes a starting point of corrosion, and the ferrite structure is destabilized. Therefore, the Mn content is set to 0.01 to 0.5%. The amount of Mn is more desirably 0.05 to 0.3%.
 Pは、溶接性、加工性を低下させるだけでなく、粒界腐食を生じやすくする。このため、P量を低く抑える必要がある。そのためP含有量を0.05%以下とする。P量は、より望ましくは0.001~0.04%である。 P P not only deteriorates weldability and workability but also easily causes intergranular corrosion. For this reason, it is necessary to keep the amount of P low. Therefore, the P content is 0.05% or less. The amount of P is more preferably 0.001 to 0.04%.
 Sは、先述のCaSやMnS等の腐食の起点となる水溶性介在物を生成させるため、S量を低減させる必要がある。そのためS量を0.01%以下とする。ただし過度の低減はコストの悪化を招くため、S量は、より望ましくは0.0001~0.006%である。 S needs to reduce the amount of S in order to produce the water-soluble inclusions that are the starting points of corrosion such as CaS and MnS described above. Therefore, the S content is 0.01% or less. However, excessive reduction leads to cost deterioration, so the S amount is more preferably 0.0001 to 0.006%.
 Nbは、Tiと同様にC,Nを固定し、溶接部の粒界腐食を抑制し加工性を向上させる。このため、Nbは非常に重要な元素である。そのためには、Nb量を、CとNの合計量(C+N)の8倍以上にすることが望ましい。ただし過剰な添加は、加工性を低下させるため、添加する場合は、Nb量を0.05~0.5%とするのが良い。Nb量は、より望ましくは0.1~0.3%である。 Nb fixes C and N similarly to Ti, suppresses intergranular corrosion of the welded portion, and improves workability. For this reason, Nb is a very important element. For this purpose, it is desirable that the Nb amount be 8 times or more the total amount of C and N (C + N). However, excessive addition reduces workability, so when Nb is added, the Nb content is preferably 0.05 to 0.5%. The amount of Nb is more preferably 0.1 to 0.3%.
 Snは、耐流れさび性を確保するために必要に応じて添加させることができる。Snは腐食速度を抑制するために重要な元素である。しかし、過剰な添加は製造性及びコストを悪化させるため、Sn量の範囲を0.005~1.0%とする。Sn量は、より望ましくは0.05~0.5%である。 Sn can be added as necessary to ensure flow rust resistance. Sn is an important element for suppressing the corrosion rate. However, excessive addition deteriorates manufacturability and cost, so the Sn content range is 0.005 to 1.0%. The amount of Sn is more desirably 0.05 to 0.5%.
 Bは、二次加工脆性改善に有効な粒界強化元素であるため、必要に応じて添加することができる。しかし、過度の添加は、フェライトを固溶強化して延性低下の原因になる。このためB量の下限を0.0001%とし、B量の上限を0.003%とする。B量は、より望ましくは0.0002~0.0020%である。 B is a grain boundary strengthening element effective for improving secondary work brittleness, and can be added as necessary. However, excessive addition causes solid solution strengthening of ferrite and causes a decrease in ductility. For this reason, the lower limit of the B amount is 0.0001%, and the upper limit of the B amount is 0.003%. The amount of B is more preferably 0.0002 to 0.0020%.
 Vは、耐銹性や耐すき間腐食性を改善する。Cr,Moに代替してVを添加すれば、優れた加工性も得られるため、必要に応じてVを添加することができる。ただし、Vの過度の添加は、加工性を低下させると共に、耐食性を向上させる効果も飽和する。このため、V量の下限を0.03%とし、V量の上限を1.0%とする。V量は、より望ましくは0.05~0.50%である。 V improves weather resistance and crevice corrosion resistance. If V is added instead of Cr and Mo, excellent workability can be obtained, so V can be added as necessary. However, excessive addition of V reduces workability and also saturates the effect of improving corrosion resistance. For this reason, the lower limit of the V amount is 0.03%, and the upper limit of the V amount is 1.0%. The amount of V is more desirably 0.05 to 0.50%.
 表3,4に示す化学組成を有する鋼を、通常の高純度フェライト系ステンレス鋼の製造方法で製造した。なお、表3,4の化学組成の残部は、鉄及び不可避不純物である。また表4に記載の符号*は、オーステナイト系ステンレス鋼(鋼No.B9,B10)であることを示す。
 詳細には、まず真空溶製し、次いで40mm厚のインゴットを製造した。このインゴットを熱間圧延で4mm厚に圧延した。その後、各々の再結晶挙動に基づき、900~1000℃の温度で1分間の熱処理を行った。次いで、スケールを研削除去した。さらに冷間圧延により1.0mm厚の鋼板を製造した。この鋼板に対して、各々の再結晶挙動に基づき900~1000℃の温度で1分間の熱処理(最終焼鈍)を施した。
 なお、オーステナイト系ステンレス鋼を製造する場合は、熱処理温度を1100℃とした。
Steels having the chemical compositions shown in Tables 3 and 4 were manufactured by a normal high purity ferritic stainless steel manufacturing method. The balance of the chemical compositions in Tables 3 and 4 is iron and inevitable impurities. Moreover, the code | symbol * of Table 4 shows that it is austenitic stainless steel (steel No. B9, B10).
Specifically, first, vacuum melting was performed, and then an ingot having a thickness of 40 mm was manufactured. This ingot was rolled to a thickness of 4 mm by hot rolling. Thereafter, heat treatment was performed for 1 minute at a temperature of 900 to 1000 ° C. based on each recrystallization behavior. The scale was then ground away. Furthermore, a 1.0 mm thick steel plate was manufactured by cold rolling. This steel plate was subjected to heat treatment (final annealing) for 1 minute at a temperature of 900 to 1000 ° C. based on each recrystallization behavior.
In addition, when manufacturing austenitic stainless steel, the heat processing temperature was 1100 degreeC.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 前述と同様の条件で乾湿繰り返し試験を行った。
 比較的緩やかな腐食環境を模擬した試験溶液(酸性雨の模擬液)8は、硝酸イオン10ppm、硫酸イオン10ppm、塩化物イオン5ppmを含有し、pHを4.5とした。
 各種ステンレス鋼(供試材)のそれぞれについて、図1(b)に示すように25×50mmの寸法を有する試験片1を3枚用意した。本試験では、すきま腐食を評価するため、以下のように試験片1にガラス/金属のすきまを付与した。試験片1の略中央部にφ6mmの穴9を穿った。試験開始前に試験片1の全面を#400エメリー紙にて湿式研磨処理を行い、速やかにテフロン(登録商標)製ボルト2、テフロン(登録商標)製ナット3、チタン製ワッシャー5を用いて、2枚のガラス板4の間に試験片1を挟み込んだ。以上により、試験片1にガラス/金属のすきまを付与した。
Repeated wet and dry tests were performed under the same conditions as described above.
A test solution (simulated acid rain solution) 8 simulating a relatively mild corrosive environment contained 10 ppm nitrate ions, 10 ppm sulfate ions, and 5 ppm chloride ions, and had a pH of 4.5.
For each of the various stainless steels (test materials), three test pieces 1 having a size of 25 × 50 mm were prepared as shown in FIG. In this test, in order to evaluate crevice corrosion, a glass / metal gap was given to the test piece 1 as follows. A hole 9 having a diameter of 6 mm was formed in a substantially central portion of the test piece 1. Before starting the test, the entire surface of the test piece 1 was wet-polished with # 400 emery paper, and immediately using a Teflon (registered trademark) bolt 2, a Teflon (registered trademark) nut 3, and a titanium washer 5, Test piece 1 was sandwiched between two glass plates 4. Thus, a glass / metal gap was imparted to the test piece 1.
 この試験片1を図1(a)に示すようなビーカー7に設置し、酸性雨の模擬液8を50ml満たし、半浸漬させた。このビーカー7を50℃の温浴に入れ24時間保持した。次いで、乾燥濃縮した模擬液中からステンレス鋼サンプル(試験片1)を取りだし、軽く蒸留水で洗浄した。次いで、新たに洗浄したビーカー7に試験溶液(酸性雨の模擬液8)を再度満たした。次いで、ステンレス鋼サンプル(試験片1)を再び半浸漬させ、50℃で24時間保持した。試験片1を模擬液に半浸漬させ、次いで50℃で24時間保持することを10回繰り返した(乾湿繰返し試験)。 The test piece 1 was placed in a beaker 7 as shown in FIG. 1A, filled with 50 ml of acid rain simulation solution 8 and semi-immersed. The beaker 7 was placed in a 50 ° C. warm bath and held for 24 hours. Next, a stainless steel sample (test piece 1) was taken out from the dried and concentrated simulated liquid, and lightly washed with distilled water. Then, the newly washed beaker 7 was filled again with the test solution (acid rain simulated solution 8). Subsequently, the stainless steel sample (test piece 1) was again semi-immersed and held at 50 ° C. for 24 hours. The test piece 1 was half-immersed in the simulated solution and then held at 50 ° C. for 24 hours was repeated 10 times (wet and dry repetition test).
 10サイクル経過後に、試験片1のさびを落とし、質量を電子天秤で測定した。予め測定した試験前の試験片1の質量から試験後の試験片1の質量を差し引いて、腐食減量を求めた。
 3枚の試験片1のそれぞれに対して、同様の乾湿繰返し試験を行い、腐食減量を求めた。そして、腐食減量の平均値(平均腐食減量)を求めた。得られた平均腐食減量を表5,6の「腐食減量1」欄に記載した。
After 10 cycles, the rust of the test piece 1 was removed, and the mass was measured with an electronic balance. The weight loss of the corrosion was determined by subtracting the mass of the test piece 1 after the test from the mass of the test piece 1 before the test measured in advance.
Each of the three test pieces 1 was subjected to the same wet and dry repeated test to determine the corrosion weight loss. And the average value (average corrosion weight loss) of corrosion weight loss was calculated | required. The average weight loss obtained was listed in the “Corrosion weight loss 1” column of Tables 5 and 6.
 厳しい腐食環境を模擬した試験溶液(燃焼排ガスの凝縮水の模擬液)8は、硝酸イオン(NO3-)100ppm、硫酸イオン(SO 2-)10ppm、塩化物イオン(Cl)100ppmを含有し、pHを2.5とした。
 各種ステンレス鋼(供試材)のそれぞれについて、図1(b)に示すように25×50mmの寸法を有する試験片1を3枚用意した。
 凝縮水の模擬液を用いること、及び保持温度を80℃とすること以外は、酸性雨の模擬液を用いた試験と同様にして腐食試験を行い、平均腐食減量を求めた。得られた平均腐食減量を表5,6の「腐食減量2」欄に記載した。
Test solution (simulated liquid of combustion exhaust gas condensate) 8 that simulates a severe corrosive environment contains 100 ppm nitrate ions (NO 3− ), 10 ppm sulfate ions (SO 4 2− ), and 100 ppm chloride ions (Cl ). The pH was adjusted to 2.5.
For each of the various stainless steels (test materials), three test pieces 1 having a size of 25 × 50 mm were prepared as shown in FIG.
A corrosion test was conducted in the same manner as the test using the acid rain simulated liquid except that the condensed water simulated liquid was used and the holding temperature was 80 ° C., and the average corrosion weight loss was determined. The average weight loss obtained was listed in the “Corrosion weight loss 2” column of Tables 5 and 6.
 前述と同様の条件にて引張試験を行った。冷延、焼鈍、及び酸洗の後に表面が研磨された材料をIS13Bに規定される形状に加工し、試験片を作製した。この試験片を用いて、引張試験を実施した。
 得られた試験結果を表5,6に示す。
A tensile test was performed under the same conditions as described above. A material whose surface was polished after cold rolling, annealing, and pickling was processed into a shape defined in IS13B, and a test piece was produced. Using this test piece, a tensile test was performed.
The test results obtained are shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3~5のNo.A1~A25が本発明例であり、No.B1~B13が比較例である。本実施形態で規定された範囲から外れる数値をアンダーラインで強調している。
 すきまを付与した試験片1に対して、酸性雨の模擬液を用いた乾湿繰返し試験を行った結果を表5,6、図4に示す。
 No.A1~A25は、本実施形態で規定された範囲の量の成分を含有するとともに、以下の(A)式及び(B)式を満たす。いずれも平均腐食減量は0.4mg/cm以下となった。
 (A)式:Cr+10Ti+10Al≧15
 (B)式:Si+Cu≦1.1
 (A)式の左辺の値が17以上であり、かつ(B)式の左辺の値が0.70以下である例では、平均腐食減量は0.30mg/cmと小さくなる結果となった。
 一方、(A)式又は(B)式を満たさない例や、元素の含有量が本実施形態で規定された範囲外にある例では、平均腐食減量は0.40mg/cmを超える結果となった。
No. in Tables 3-5. A1 to A25 are examples of the present invention. B1 to B13 are comparative examples. Numerical values that deviate from the range defined in the present embodiment are highlighted with an underline.
Tables 5 and 6 and FIG. 4 show the results of the wet and dry repeated test using the simulated acid rain solution on the test piece 1 provided with the clearance.
No. A1 to A25 contain components in amounts within the ranges defined in this embodiment, and satisfy the following formulas (A) and (B). In all cases, the average corrosion weight loss was 0.4 mg / cm 2 or less.
(A) Formula: Cr + 10Ti + 10Al ≧ 15
(B) Formula: Si + Cu ≦ 1.1
In the example in which the value of the left side of the formula (A) is 17 or more and the value of the left side of the formula (B) is 0.70 or less, the average corrosion weight loss was reduced to 0.30 mg / cm 2 . .
On the other hand, in an example where the formula (A) or (B) is not satisfied, or in an example where the element content is outside the range defined in the present embodiment, the average corrosion weight loss exceeds 0.40 mg / cm 2. became.
 すきまを付与した試験片1に対して、燃焼排ガスから生じる凝縮水の模擬液を用いた乾湿繰返し試験を行った結果を表5,6、図5に示す。
 No.A1~A20は、本実施形態で規定された範囲の量の成分を含有するとともに、以下の(A)式及び(B’)式を満たす。いずれも平均腐食減量は1.0mg/cm以下となった。
 (A)式:Cr+10Ti+10Al≧15
 (B’)式:Si+Cu≦0.5
 (A)式の左辺の値が17以上であり、かつ(B’)式の左辺の値が0.35未満である例では、平均腐食減量は0.7mg/cmと小さい。
 さらに(A)式の左辺の値が18以上であり、かつ(B’)式の左辺の値が0.20未満である例では、平均腐食減量は0.5mg/cm以下であり、耐食性にきわめて優れる結果を示した。
 一方、(A)式と(B’)式の一方または両方を満たさない例では、何れも平均腐食減量が1.0mg/cmを超える結果となった。
Tables 5 and 6 and FIG. 5 show the results of repeated wet and dry tests on the test piece 1 provided with the clearance using a simulated liquid of condensed water generated from the combustion exhaust gas.
No. A1 to A20 contain components in amounts within the ranges defined in the present embodiment, and satisfy the following formulas (A) and (B ′). In all cases, the average corrosion weight loss was 1.0 mg / cm 2 or less.
(A) Formula: Cr + 10Ti + 10Al ≧ 15
(B ′) Formula: Si + Cu ≦ 0.5
In the example where the value on the left side of the formula (A) is 17 or more and the value on the left side of the formula (B ′) is less than 0.35, the average corrosion weight loss is as small as 0.7 mg / cm 2 .
Further, in the example where the value of the left side of the formula (A) is 18 or more and the value of the left side of the formula (B ′) is less than 0.20, the average corrosion weight loss is 0.5 mg / cm 2 or less, and the corrosion resistance The results are very good.
On the other hand, in the examples where one or both of the formulas (A) and (B ′) were not satisfied, the average corrosion weight loss exceeded 1.0 mg / cm 2 .
 また、引張試験の結果、本実施形態で規定された要件を満たす例は、何れも32%以上の伸びを達成した。更に、(B)式の左辺の値(Si+Cu)が0.25以下であり、さらに、Moを含有せず、Ni量が0.35%未満である例では、伸び値は34%以上となり、非常に加工性が優れる結果となった。 Moreover, as a result of the tensile test, all examples satisfying the requirements defined in the present embodiment achieved an elongation of 32% or more. Further, in the example where the value (Si + Cu) on the left side of the formula (B) is 0.25 or less, and Mo is not contained and the Ni amount is less than 0.35%, the elongation value is 34% or more, The result was very good workability.
 以上の結果から、本実施形態により、耐食性に優れ、かつ良好な加工性を有するフェライト系ステンレス鋼を提供することが可能であることが明らかとなった。なお、耐食性とは、酸性雨による腐食環境や、二次熱交換器において燃焼排ガスから発生する凝縮水による腐食環境における耐食性を意味する。 From the above results, it was clarified that the ferritic stainless steel having excellent corrosion resistance and good workability can be provided by the present embodiment. The corrosion resistance means corrosion resistance in a corrosive environment caused by acid rain or a corrosive environment caused by condensed water generated from combustion exhaust gas in the secondary heat exchanger.
 本実施形態は、酸性雨による被害の多い地域において屋外で使用される材料に適用できる。具体的には、各種熱交換器、酸性雨環境での屋外外装材、建材、屋根材、屋外機器類、貯水・貯湯タンク、家電製品、浴槽、厨房機器、その他屋外・屋内の一般的な用途に適用可能である。また、熱交換器用材料、とくに潜熱回収型給湯器の二次熱交換器用材料に適用できる。具体的には、ケースや仕切り板だけでなく、熱交換パイプのような加工性を必要とする材料としても適用可能である。さらに、二次熱交換器用材料は、炭化水素燃料の燃焼排ガスのみならず、多量の硝酸イオンと硫酸イオンを含み低pHの溶液にも晒される。この状態で、乾湿が繰り返される。このような環境に晒される材料にも本実施形態は適用できる。 This embodiment can be applied to materials used outdoors in areas where there is a lot of damage due to acid rain. Specifically, various heat exchangers, outdoor exterior materials in acid rain environments, building materials, roofing materials, outdoor equipment, water and hot water storage tanks, home appliances, bathtubs, kitchen equipment, and other general outdoor and indoor applications It is applicable to. Moreover, it is applicable to the material for heat exchangers, especially the material for secondary heat exchangers of the latent heat recovery type water heater. Specifically, it can be applied not only to cases and partition plates but also to materials that require workability such as heat exchange pipes. Further, the secondary heat exchanger material is exposed not only to the combustion exhaust gas of hydrocarbon fuel but also to a low pH solution containing a large amount of nitrate ions and sulfate ions. In this state, drying and drying are repeated. This embodiment can also be applied to materials exposed to such an environment.
 1 試験片
 2 テフロン(登録商標)製ボルト
 3 テフロン(登録商標)製ナット
 4 ガラス板
 5 チタン製ワッシャー
 7 ビーカー
 8 模擬液(酸性雨の模擬液又は燃焼排ガスの凝縮水の模擬液)
 9 穴
1 Test specimen 2 Teflon (registered trademark) bolt 3 Teflon (registered trademark) nut 4 Glass plate 5 Titanium washer 7 Beaker 8 Simulated liquid (simulated liquid of acid rain or condensed water of combustion exhaust gas)
9 holes

Claims (7)

  1.  質量%で、C:0.030%以下、N:0.030%以下、Si:0.60%以下、Mn:0.01~0.5%、P:0.05%以下、S:0.01%以下、Cr:13~22.5%、Ni:0.35%未満、Ti:0.05~0.30%、Al:0.01~0.2%、Cu:0.5%以下、及びMo:0.30%未満を含有し、残部はFeおよび不可避的不純物であり、且つ下記の(A)式及び(B)式を満たすことを特徴とする耐食性及び加工性に優れるフェライト系ステンレス鋼。
     (A)式:Cr+10Ti+10Al≧15
     (B)式:Si+Cu≦1.1
     (ただし、式中のCr,Ti,Al,Si,Cuは、それぞれの元素の含有量(質量%)を意味する。)
    In mass%, C: 0.030% or less, N: 0.030% or less, Si: 0.60% or less, Mn: 0.01 to 0.5%, P: 0.05% or less, S: 0 0.01% or less, Cr: 13 to 22.5%, Ni: less than 0.35%, Ti: 0.05 to 0.30%, Al: 0.01 to 0.2%, Cu: 0.5% Ferrite with excellent corrosion resistance and workability characterized in that it contains less than 0.30% and Mo: the balance is Fe and inevitable impurities, and satisfies the following formulas (A) and (B): Stainless steel.
    (A) Formula: Cr + 10Ti + 10Al ≧ 15
    (B) Formula: Si + Cu ≦ 1.1
    (However, Cr, Ti, Al, Si, and Cu in the formula mean the content (mass%) of each element.)
  2.  さらに、Nb:0.05~0.50%を含有することを特徴とする請求項1に記載の耐食性及び加工性に優れるフェライト系ステンレス鋼。 The ferritic stainless steel excellent in corrosion resistance and workability according to claim 1, further comprising Nb: 0.05 to 0.50%.
  3.  さらに、Sn:0.005~1.0%を含有することを特徴とする請求項1又は2に記載の耐食性及び加工性に優れるフェライト系ステンレス鋼。 The ferritic stainless steel having excellent corrosion resistance and workability according to claim 1 or 2, further comprising Sn: 0.005 to 1.0%.
  4.  さらに、B:0.0001~0.003%、及びV:0.03~1.0%のうち、いずれか一方又は両方を含有することを特徴とする請求項1~3のいずれかに記載の耐食性及び加工性に優れるフェライト系ステンレス鋼。 4. The method according to claim 1, further comprising any one or both of B: 0.0001 to 0.003% and V: 0.03 to 1.0%. Ferritic stainless steel with excellent corrosion resistance and workability.
  5.  前記(B)式の代わりに下記の(B’)式を満たすことを特徴とする請求項1~4のいずれかに記載の耐食性及び加工性に優れるフェライト系ステンレス鋼。
     (B’)式:Si+Cu≦0.5
     (ただし、式中のSi,Cuは、それぞれの元素の含有量(質量%)を意味する。)
    The ferritic stainless steel excellent in corrosion resistance and workability according to any one of claims 1 to 4, wherein the following formula (B ') is satisfied instead of the formula (B):
    (B ′) Formula: Si + Cu ≦ 0.5
    (However, Si and Cu in the formula mean the content (mass%) of each element.)
  6.  酸性雨の模擬液を用いた腐食試験によって測定される平均腐食減量が0.4mg/cm以下であり、
     前記腐食試験では、前記模擬液として、pHが4.5であり、かつ10ppmの硝酸イオン、10ppmの硫酸イオン、及び5ppmの塩化物イオンを含有する水溶液を用い、前記水溶液中にすきま付与試験片を半浸漬させ、50℃に24時間保持する乾湿繰り返し試験を10サイクル実施し、前記乾湿繰り返し試験後の質量の減少量を測定し、前記平均腐食減量を得ることを特徴とする請求項1~4のいずれかに記載の耐食性及び加工性に優れるフェライト系ステンレス鋼。
    The average corrosion weight loss measured by a corrosion test using a simulated acid rain solution is 0.4 mg / cm 2 or less,
    In the corrosion test, an aqueous solution containing a pH of 4.5 and containing 10 ppm nitrate ions, 10 ppm sulfate ions, and 5 ppm chloride ions is used as the simulated solution, and a gap imparting test piece is used in the aqueous solution. The wet and dry repeated test is performed for 10 cycles, and the weight loss after the dry and wet repeated test is measured to obtain the average corrosion weight loss. 4. Ferritic stainless steel having excellent corrosion resistance and workability according to any one of 4 above.
  7.  燃焼排ガスの凝縮水の模擬液を用いた腐食試験によって測定される平均腐食減量が1.0mg/cm以下であり、
     前記腐食試験では、前記模擬液として、pHが2.5であり、かつ100ppmの硝酸イオン、10ppmの硫酸イオン、100ppmの塩化物イオンを含有する水溶液を用い、前記水溶液中にすきま付与試験片を半浸漬させ、80℃に24時間保持する乾湿繰り返し試験を10サイクル実施し、前記乾湿繰り返し試験後の質量の減少量を測定し、前記平均腐食減量を得ることを特徴とする請求項5に記載の耐食性及び加工性に優れるフェライト系ステンレス鋼。
    The average corrosion weight loss measured by a corrosion test using a simulated liquid of condensed water of combustion exhaust gas is 1.0 mg / cm 2 or less,
    In the corrosion test, an aqueous solution having a pH of 2.5 and containing 100 ppm nitrate ions, 10 ppm sulfate ions, and 100 ppm chloride ions is used as the simulated solution, and a gap imparting test piece is placed in the aqueous solution. The wet and dry repeated test that is semi-immersed and held at 80 ° C. for 24 hours is carried out 10 times, the amount of decrease in mass after the dry and wet repeated test is measured, and the average corrosion weight loss is obtained. Ferritic stainless steel with excellent corrosion resistance and workability.
PCT/JP2012/072709 2011-09-06 2012-09-06 Ferritic stainless steel of exceptional corrosion resistance and processability WO2013035775A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013532638A JP6097693B2 (en) 2011-09-06 2012-09-06 Ferritic stainless steel with excellent corrosion resistance and workability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-193915 2011-09-06
JP2011193915 2011-09-06

Publications (1)

Publication Number Publication Date
WO2013035775A1 true WO2013035775A1 (en) 2013-03-14

Family

ID=47832216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072709 WO2013035775A1 (en) 2011-09-06 2012-09-06 Ferritic stainless steel of exceptional corrosion resistance and processability

Country Status (3)

Country Link
JP (1) JP6097693B2 (en)
TW (1) TWI503422B (en)
WO (1) WO2013035775A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115360A (en) * 2017-01-17 2018-07-26 日新製鋼株式会社 Stainless steel for latent heat recovery type heat exchanger cabinet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106661695B (en) * 2014-08-14 2019-10-29 杰富意钢铁株式会社 Ferrite series stainless steel plate
JP6432701B2 (en) 2017-04-25 2018-12-05 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof
TWI801538B (en) * 2018-03-27 2023-05-11 日商日鐵不銹鋼股份有限公司 Ferritic stainless steel, method for producing the same, ferritic stainless steel sheet, method for producing the same, and members for fuel cell
KR102120695B1 (en) * 2018-08-28 2020-06-09 주식회사 포스코 Ferritic stainless steel excellent in pickling property

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320772A (en) * 1992-03-24 1993-12-03 Sumitomo Metal Ind Ltd Production of ferritic stainless steel
JPH08144021A (en) * 1994-11-18 1996-06-04 Sumitomo Metal Ind Ltd Production of ferritic stainless steel and cold rolled sheet therefrom
JPH08296000A (en) * 1995-04-24 1996-11-12 Nippon Steel Corp Ferritic stainless steel excellent in workability and corrosion resistance and its production
JPH1060543A (en) * 1996-08-15 1998-03-03 Nippon Steel Corp Production of ferritic stainless steel thin sheet excellent in surface property and corrosion resistance
JP2004083972A (en) * 2002-08-26 2004-03-18 Nisshin Steel Co Ltd Ferritic stainless steel cold rolled, annealed material having excellent secondary workability, and production method therefor
JP2008001945A (en) * 2006-06-22 2008-01-10 Nippon Steel & Sumikin Stainless Steel Corp Bright annealing-finished ferritic stainless steel sheet having excellent rusting resistance and workability and method for producing the same
JP2009068104A (en) * 2007-08-20 2009-04-02 Jfe Steel Kk Ferritic stainless steel sheet excellent in punchability, and manufacturing method therefor
JP2009174036A (en) * 2008-01-28 2009-08-06 Nippon Steel & Sumikin Stainless Steel Corp High purity ferritic stainless steel having excellent corrosion resistance and workability and method for producing the same
JP2010031315A (en) * 2008-07-28 2010-02-12 Nippon Steel & Sumikin Stainless Steel Corp Low alloy type ferritic stainless steel for automotive exhaust system member having excellent corrosion resistance after heating
JP2010070799A (en) * 2008-09-18 2010-04-02 Jfe Steel Corp Ti-ADDED FERRITIC STAINLESS STEEL SHEET EXCELLENT IN SPINNABILITY AND PRODUCTION METHOD THEREOF
JP2010159487A (en) * 2008-12-09 2010-07-22 Nippon Steel & Sumikin Stainless Steel Corp High-purity ferritic stainless steel having excellent corrosion resistance, and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4390961B2 (en) * 2000-04-04 2009-12-24 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent surface properties and corrosion resistance
KR101120764B1 (en) * 2006-05-09 2012-03-22 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Stainless steel excellent in corrosion resistance
KR100821059B1 (en) * 2006-12-28 2008-04-16 주식회사 포스코 Ferritic stainless steel with high corrosion resistance and stretchability and the method of manufacturing the same
JP2009097079A (en) * 2007-09-27 2009-05-07 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent atmospheric corrosion resistance

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320772A (en) * 1992-03-24 1993-12-03 Sumitomo Metal Ind Ltd Production of ferritic stainless steel
JPH08144021A (en) * 1994-11-18 1996-06-04 Sumitomo Metal Ind Ltd Production of ferritic stainless steel and cold rolled sheet therefrom
JPH08296000A (en) * 1995-04-24 1996-11-12 Nippon Steel Corp Ferritic stainless steel excellent in workability and corrosion resistance and its production
JPH1060543A (en) * 1996-08-15 1998-03-03 Nippon Steel Corp Production of ferritic stainless steel thin sheet excellent in surface property and corrosion resistance
JP2004083972A (en) * 2002-08-26 2004-03-18 Nisshin Steel Co Ltd Ferritic stainless steel cold rolled, annealed material having excellent secondary workability, and production method therefor
JP2008001945A (en) * 2006-06-22 2008-01-10 Nippon Steel & Sumikin Stainless Steel Corp Bright annealing-finished ferritic stainless steel sheet having excellent rusting resistance and workability and method for producing the same
JP2009068104A (en) * 2007-08-20 2009-04-02 Jfe Steel Kk Ferritic stainless steel sheet excellent in punchability, and manufacturing method therefor
JP2009174036A (en) * 2008-01-28 2009-08-06 Nippon Steel & Sumikin Stainless Steel Corp High purity ferritic stainless steel having excellent corrosion resistance and workability and method for producing the same
JP2010031315A (en) * 2008-07-28 2010-02-12 Nippon Steel & Sumikin Stainless Steel Corp Low alloy type ferritic stainless steel for automotive exhaust system member having excellent corrosion resistance after heating
JP2010070799A (en) * 2008-09-18 2010-04-02 Jfe Steel Corp Ti-ADDED FERRITIC STAINLESS STEEL SHEET EXCELLENT IN SPINNABILITY AND PRODUCTION METHOD THEREOF
JP2010159487A (en) * 2008-12-09 2010-07-22 Nippon Steel & Sumikin Stainless Steel Corp High-purity ferritic stainless steel having excellent corrosion resistance, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115360A (en) * 2017-01-17 2018-07-26 日新製鋼株式会社 Stainless steel for latent heat recovery type heat exchanger cabinet

Also Published As

Publication number Publication date
TWI503422B (en) 2015-10-11
JP6097693B2 (en) 2017-03-22
TW201323628A (en) 2013-06-16
JPWO2013035775A1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5610796B2 (en) Ferritic stainless steel with excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas
JP6016331B2 (en) Austenitic stainless steel with excellent corrosion resistance and brazing
JP6295155B2 (en) Ferritic stainless steel, manufacturing method thereof, and heat exchanger using ferritic stainless steel as a member
US9238855B2 (en) Ferrite-based stainless steel for use in components of automobile exhaust system
JP5320034B2 (en) Mo-type ferritic stainless steel for automotive exhaust system parts with excellent corrosion resistance after heating
JP4997808B2 (en) Sulfuric acid dew-point corrosion steel with excellent hydrochloric acid resistance
WO2009139355A1 (en) Ferritic stainless steel
JP5784763B2 (en) Ferritic stainless steel with excellent flow rust resistance
JP6097693B2 (en) Ferritic stainless steel with excellent corrosion resistance and workability
JP2013199663A (en) Austenitic stainless steel excellent in molten nitrate corrosion resistance, heat collection tube and heat accumulation system using molten nitrate as heat accumulation medium
KR100318529B1 (en) Austenitic stainless steel excellent in resistance to sulfuric acid corrosion and workability
JP5818418B2 (en) Sulfuric and hydrochloric acid dew point corrosion steel and exhaust gas flow path components
JP5866628B2 (en) Ferritic stainless steel with excellent secondary workability and Cr evaporation resistance
JP3239763B2 (en) Austenitic stainless steel with excellent resistance to sulfuric acid corrosion
JP2000290754A (en) High corrosion resistance clad steel and chimney for coal fired power plant
JPS5983748A (en) Ultra-low carbon low alloy acid resistant steel thereof
JP5089103B2 (en) Stainless steel with excellent corrosion resistance
JPH02115346A (en) Ferritic stainless steel having excellent corrosion resistance in high concentrated halide
JP2018115360A (en) Stainless steel for latent heat recovery type heat exchanger cabinet
TWI516613B (en) Acid dew-point corrosion resistant steel and exhausted gas flow path constructing member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829254

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013532638

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829254

Country of ref document: EP

Kind code of ref document: A1