JPH10237601A - Neutral chloride corrosion resistant austenitic stainless steel - Google Patents

Neutral chloride corrosion resistant austenitic stainless steel

Info

Publication number
JPH10237601A
JPH10237601A JP4404797A JP4404797A JPH10237601A JP H10237601 A JPH10237601 A JP H10237601A JP 4404797 A JP4404797 A JP 4404797A JP 4404797 A JP4404797 A JP 4404797A JP H10237601 A JPH10237601 A JP H10237601A
Authority
JP
Japan
Prior art keywords
steel
resistance
corrosion
corrosion resistance
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4404797A
Other languages
Japanese (ja)
Inventor
Hisanobu Hashizume
寿伸 橋詰
Yoshio Taruya
芳男 樽谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4404797A priority Critical patent/JPH10237601A/en
Publication of JPH10237601A publication Critical patent/JPH10237601A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an austenitic stainless steel having excellent crevice corrosion resistance and stress corrosion cracking resistance in a neutral chloride environment and furthermore excellent in sulfuric acid dew point corrosion- resistance and hot workability. SOLUTION: This stainless steel has a compsn. contg., by weight, <=0.05% C, <=1% Si, <=2% Mn, <=0.03% P, <=0.01% S, 18 to 24% Cr, 16 to 26% Ni, 4 to 6.5% Mo, 0.1 to 0.3% N, 0 to 3.0% Cu, 0 to 3.0% W, 0 to 0.05% Al, 0 to 0.005% Ca, 0 to 0.005% Mg and 0 to 0.002% B, in which PI value and Ni-bal. value shown by the formulae I and II satisfy 35<=PI<=50 and -2.5<=Ni-bal.<=1, and the balance Fe with inevitable impurities. The formula I is PI=Cr+3.3(Mo+0.5W)+16N and the formula II is Ni-bal.=Ni+30(C+N)+0.5Mn-1.1(Cr+1.5Si+Mo), where the elemental symbols in each formula denote the weight% of each element in the steel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐中性塩化物腐食
性に優れるオーステナイト系ステンレス鋼に関し、特に
火力発電プラントにおいて使用される石炭専焼ボイラー
の脱硫装置、煙道および煙突等の部材として好適なオー
ステナイト系ステンレス鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an austenitic stainless steel having excellent resistance to neutral chloride corrosion, and is particularly suitable as a member for a desulfurization apparatus, a stack and a chimney of a coal-fired boiler used in a thermal power plant. Austenitic stainless steel.

【0002】[0002]

【従来の技術】火力発電プラントの石炭または重油の専
焼ボイラーの脱硫装置、煙道および煙突等では、排ガス
中に含まれるSOX に起因する硫酸露点腐食が発生する
ことが知られている。硫酸露点腐食とは、排ガスが装置
の表面に接して温度が低下し、排ガス中の水分が露点に
達して装置内側の表面で結露し、排ガス中のSOX と結
びつき、濃い硫酸となって装置の表面を激しく腐食する
現象である。
Desulfurizer-fired boiler coal or heavy oil BACKGROUND ART thermal power plant, the flue and chimney like, it is known that sulfuric acid dew point corrosion due to SO X contained in the exhaust gas is generated. Sulfuric acid dew point corrosion means that the exhaust gas contacts the surface of the equipment and the temperature drops, the moisture in the exhaust gas reaches the dew point and condenses on the inner surface of the equipment, and it is combined with SO X in the exhaust gas, resulting in dense sulfuric acid. This is a phenomenon that corrodes the surface of the surface severely.

【0003】硫酸露点腐食を防止する鋼として、1重量
%程度(以下、化学組成の%表示は重量%とする。)の
Crを含有する低合金鋼にSやCu等を添加した耐硫酸
露点腐食鋼が実用化されている。しかし、耐硫酸露点腐
食鋼は低合金鋼であるため、鋼材表面には腐食生成物が
発生してしまう。この腐食生成物は、専焼ボイラーの煙
突等から外部に飛散して環境問題を引き起こす。
As a steel for preventing sulfuric acid dew point corrosion, sulfuric acid dew point is obtained by adding S, Cu, or the like to a low alloy steel containing about 1% by weight (hereinafter, the chemical composition is expressed as% by weight) of Cr. Corroded steel has been put to practical use. However, since sulfuric acid dew point corrosion resistant steel is a low alloy steel, corrosion products are generated on the surface of the steel material. This corrosion product scatters outside from a chimney of a boiler or the like to cause environmental problems.

【0004】硫酸露点腐食を防止したその他の鋼とし
て、特開平4−346638号公報には、Cuを2%を
超え5%以下含有することで硫酸露点腐食を防止し、C
uの添加による熱間加工性の悪化をBの添加と、酸素含
有量を低くすることによって防止したオーステナイト系
ステンレス鋼が開示されている。特公平6−8485号
公報には、耐全面腐食指数と耐隙間腐食指数を規定する
ことにより、耐硫酸露点腐食、耐全面腐食および耐隙間
腐食に優れるオーステナイト系ステンレス鋼が開示され
ている。
[0004] As another steel which prevents sulfuric acid dew point corrosion, Japanese Patent Application Laid-Open No. Hei 4-34638 discloses that sulfur is prevented from sulfuric acid dew point corrosion by containing more than 2% and less than 5% Cu.
There is disclosed an austenitic stainless steel in which deterioration of hot workability due to the addition of u is prevented by adding B and lowering the oxygen content. Japanese Patent Publication No. 6-8485 discloses an austenitic stainless steel that is excellent in sulfuric acid dew point corrosion resistance, general corrosion resistance, and crevice corrosion resistance by defining the general corrosion resistance index and the crevice corrosion resistance.

【0005】一方、石炭を燃料として使用する火力発電
プラントの石炭専焼ボイラー内の脱硫装置、煙道および
煙突等では、前述した硫酸露点腐食の他に、高濃度の中
性塩化物環境下における隙間腐食や応力腐食割れが問題
となる。石炭専焼ボイラーの燃料は、主に海外からの輸
入石炭である。輸入石炭には、貯蔵中および運搬中の自
然発火を防止するために多量の海水が散布されている。
このような輸入石炭を燃焼すると、排ガス中の塩素濃度
が上昇する。この塩素は、排煙脱硫装置で発生する石灰
スラリー中に溶け込み濃縮する。そのため、排煙脱硫装
置の煙道や煙突の部材は、CaCl2やMgCl2を主体
とした中性塩化物水溶液環境下にさらされている。
On the other hand, in a desulfurization unit, a flue, a chimney and the like in a coal-fired boiler of a thermal power plant using coal as a fuel, in addition to the sulfuric acid dew-point corrosion described above, a gap in a high-concentration neutral chloride environment is required. Corrosion and stress corrosion cracking become problems. The fuel for coal-fired boilers is mainly imported coal from overseas. Imported coal is sprayed with large amounts of seawater to prevent spontaneous ignition during storage and transportation.
Burning such imported coal increases the chlorine concentration in the exhaust gas. This chlorine dissolves and concentrates in the lime slurry generated in the flue gas desulfurization unit. Therefore, the members of the flue and the chimney of the flue gas desulfurization device are exposed to a neutral chloride aqueous solution environment mainly composed of CaCl 2 and MgCl 2 .

【0006】中性塩化物水溶液環境下では、排煙脱硫装
置の煙道や煙突の部材同士の接続部分等に隙間腐食と応
力腐食割れが起こりやすくなる。隙間腐食は、隙間部の
溶存酸素が減少することにより起こる。隙間部で溶存酸
素が減少すれば、ステンレス鋼の不動態皮膜は局部的に
破壊され、Feイオンが溶出する。中性塩化物水溶液環
境下では隙間部にClイオンが存在しているので、電気
的中性を維持するためにFeイオンは一層溶出し、腐食
が進行する。一方、応力腐食割れは、材料の切り欠き部
から起こるので、隙間腐食が進行している部分は、同時
に応力腐食割れを起こしやすい部分となる。
[0006] In a neutral chloride aqueous solution environment, crevice corrosion and stress corrosion cracking are liable to occur in a flue of a flue gas desulfurization unit or a connection portion between members of a chimney. Crevice corrosion occurs when the dissolved oxygen in the gap decreases. If the dissolved oxygen decreases in the gap, the passivation film of stainless steel is locally destroyed, and Fe ions are eluted. In a neutral chloride aqueous solution environment, Cl ions are present in gaps, so that Fe ions are further eluted to maintain electrical neutrality, and corrosion proceeds. On the other hand, since the stress corrosion cracking occurs from the cutout portion of the material, the portion where the crevice corrosion has progressed is a portion where stress corrosion cracking is likely to occur at the same time.

【0007】前述した特開平4−346638号公報や
特公平6−8485号公報に記載されているオーステナ
イト系ステンレス鋼は、あくまで耐硫酸露点腐食性を改
善する目的で開発された鋼であって、石炭専焼ボイラー
のような中性塩化物環境下で使用する部材に発生する隙
間腐食や応力腐食割れを防止できない。
The austenitic stainless steels described in the above-mentioned Japanese Patent Application Laid-Open No. 4-34638 and Japanese Patent Publication No. 6-8485 are steels developed for the purpose of improving sulfuric acid dew point corrosion resistance. It is not possible to prevent crevice corrosion and stress corrosion cracking occurring in members used in a neutral chloride environment such as a coal-fired boiler.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、中性
塩化物環境下において優れた耐隙間腐食性と耐応力腐食
割れ性を備えるとともに耐硫酸露点腐食性と熱間加工性
にも優れるオーステナイト系ステンレス鋼を提供するこ
とである。
An object of the present invention is to provide excellent crevice corrosion resistance and stress corrosion cracking resistance in a neutral chloride environment, as well as sulfuric acid dew point corrosion resistance and hot workability. It is to provide an austenitic stainless steel.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、下記の
オーステナイト系ステンレス鋼にある。
The gist of the present invention resides in the following austenitic stainless steel.

【0010】『重量%で、C:0.05%以下、Si:
1%以下、Mn:2%以下、P:0.03%以下、S:
0.01%以下、Cr:18〜24%、Ni:16〜2
6%、 Mo:4〜6.5%、N:0.1〜0.3%、C
u:0〜3%、W:0〜3%、 Al:0〜0.05%、
Ca:0〜0.005%、Mg:0〜0.005%、
B:0〜0.002%含有するとともに、下記(1)、
(2)式で示されるPI値とNi-bal.値が35≦PI≦
50、−2.5≦Ni-bal.≦1を満たし、残部がFeお
よび不可避的不純物からなる耐中性塩化物腐食性オース
テナイト系ステンレス鋼。
[In weight%, C: 0.05% or less, Si:
1% or less, Mn: 2% or less, P: 0.03% or less, S:
0.01% or less, Cr: 18 to 24%, Ni: 16 to 2
6%, Mo: 4 to 6.5%, N: 0.1 to 0.3%, C
u: 0 to 3%, W: 0 to 3%, Al: 0 to 0.05%,
Ca: 0 to 0.005%, Mg: 0 to 0.005%,
B: 0-0.002% and the following (1),
(2) When the PI value and the Ni-bal. Value represented by the equation are 35 ≦ PI ≦
A neutral chloride-resistant austenitic stainless steel which satisfies 50, -2.5≤Ni-bal.≤1, and the balance is Fe and unavoidable impurities.

【0011】 PI=Cr+3.3(Mo+0.5W)+16N ・・・・・・・ (1) Ni-bal.=Ni+30(C+N)+0.5Mn−1.1(Cr+1.5Si+Mo) ・・・・・・・(2) ここで、上記(1)、(2)式中の元素記号は鋼中にお
ける各元素の重量%を表す。』 本発明のオーステナイト系ステンレス鋼(以下、本発明
鋼ともいう。)では、下記の技術手段により、耐隙間腐
食性、耐応力腐食割れ性、耐硫酸露点腐食性および熱間
加工性を向上させている。
PI = Cr + 3.3 (Mo + 0.5W) + 16N (1) Ni-bal. = Ni + 30 (C + N) + 0.5Mn-1.1 (Cr + 1.5Si + Mo) ... (2) Here, the element symbols in the above formulas (1) and (2) represent the weight percentage of each element in the steel. In the austenitic stainless steel of the present invention (hereinafter also referred to as the present invention steel), the following technical means improve crevice corrosion resistance, stress corrosion cracking resistance, sulfuric acid dew point corrosion resistance, and hot workability. ing.

【0012】(A)耐隙間腐食性 本発明鋼は、前記(1)式のPI値を35以上に規定し
ているので、石炭専焼ボイラー等の中性塩化物水溶液に
接する部材に使用しても、十分な耐隙間腐食性を維持で
きる。これは、部材同士の接続部、すなわちフランジ部
や溶接部等の隙間部でも本発明鋼の表面が不動態化し続
けるからである。なお、本発明鋼でいうPI値とは、ス
テンレス鋼の耐食性を改善するCr、Mo、NおよびW
をCr当量として表した値である。
(A) Crevice corrosion resistance Since the steel of the present invention stipulates the PI value of the above formula (1) to be 35 or more, it is used for a member in contact with a neutral chloride aqueous solution such as a coal-fired boiler. However, sufficient crevice corrosion resistance can be maintained. This is because the surface of the steel of the present invention continues to be passivated even at a connection portion between members, that is, a gap portion such as a flange portion or a welded portion. The PI value of the steel of the present invention means Cr, Mo, N and W which improve the corrosion resistance of stainless steel.
Is expressed as Cr equivalent.

【0013】(B)耐応力腐食割れ性 石炭専焼ボイラー用部材には、数10N/mm2の応力がか
かる。このような応力負荷条件下であっても、本発明鋼
は、前記(1)式のPI値を35以上に規定するととも
に、Ni含有量を16%以上にすることによって、石炭
専焼ボイラー等の部材としての十分な耐応力腐食割れ性
を維持できる。PI値を35以上に規定すれば、上記
(A)で述べたように、耐隙間腐食性が向上する。応力
腐食割れは、隙間腐食を起こして切り欠き状になった部
分を起点として発生することが多いので、隙間腐食を未
然に防ぐことが応力腐食割れを防止することにもなる。
(B) Resistance to Stress Corrosion Cracking A member of a coal fired boiler receives a stress of several tens of N / mm 2 . Even under such stress loading conditions, the steel of the present invention regulates the PI value of the above formula (1) to 35 or more and sets the Ni content to 16% or more, so that the coal-fired boiler or the like can be used. Sufficient stress corrosion cracking resistance as a member can be maintained. When the PI value is specified to be 35 or more, crevice corrosion resistance is improved as described in the above (A). Since stress corrosion cracking often occurs starting from a notched portion due to crevice corrosion, preventing crevice corrosion in advance also prevents stress corrosion cracking.

【0014】したがって、本発明鋼は、耐応力腐食割れ
性を向上させるためにPI値を35以上に規定する。ま
た、中性塩化物環境において応力腐食割れ抑制効果の大
きいNi量も併せて規定することで優れた耐応力腐食割
れ性を得ている。
Therefore, the steel of the present invention has a PI value of 35 or more in order to improve the stress corrosion cracking resistance. In addition, excellent stress corrosion cracking resistance is obtained by also defining the amount of Ni having a large effect of suppressing stress corrosion cracking in a neutral chloride environment.

【0015】(C)耐硫酸露点腐食性 本発明鋼は、SUS304やSUS316系鋼に比べ
て、鋼中のCr、NiおよびMoの含有量が高い。この
ために、硫酸浸漬環境での耐食性が優れており、石炭専
焼用ボイラー用等の部材として十分な耐硫酸露点腐食性
を備えている。また、鋼中にCuを含有させることによ
り、耐硫酸露点腐食性がさらに向上する。
(C) Sulfuric acid dew point corrosion resistance The steel of the present invention has a higher content of Cr, Ni and Mo in steel than SUS304 or SUS316 steel. For this reason, it has excellent corrosion resistance in a sulfuric acid immersion environment, and has sufficient sulfuric acid dew point corrosion resistance as a member for a boiler for burning coal only. Further, by including Cu in the steel, sulfuric acid dew point corrosion resistance is further improved.

【0016】(D)熱間加工性 Cr、NiおよびMoの含有量が多いステンレス鋼は、
熱間鍛造時や熱間圧延時に割れが生じ易い。しかし、本
発明鋼では、(2)式で定義するNi-bal. 値を−0.
25 から1までの範囲に規定することにより、熱間加
工性を向上させている。(2)式のNi-bal.値とは、
オーステナイト生成元素である、Ni、C、NおよびM
nの含有量にそれぞれの定数を乗したものの和からδ-
フェライトの生成元素であるCr、SiおよびMoの含
有量にそれぞれの定数を乗じたものの和を減じて求まる
値であって、オーステナイトの生成しやすさを表す指数
となる値である。Ni-bal.値が−0.25から1までの
範囲にあれば、数%のδ- フェライトと残部がオーステ
ナイトの相となり、熱間加工性が良好となる。
(D) Hot workability Stainless steel having a high content of Cr, Ni and Mo is:
Cracks are likely to occur during hot forging or hot rolling. However, in the steel of the present invention, the Ni-bal. Value defined by the equation (2) is -0.1.
By defining the range from 25 to 1, the hot workability is improved. The Ni-bal. Value in equation (2) is
Ni, C, N and M which are austenite forming elements
From the sum of the n content multiplied by each constant, δ-
It is a value obtained by subtracting the sum of the contents of Cr, Si, and Mo, which are the elements forming ferrite, and their respective constants, and is an index that indicates the ease with which austenite is formed. When the Ni-bal. Value is in the range of -0.25 to 1, several percent of δ-ferrite and the remainder are austenite phases, and the hot workability is good.

【0017】[0017]

【発明の実施の形態】中性塩環境下での耐隙間腐食性、
耐応力腐食割れ性、耐硫酸露点腐食性および熱間加工性
におよぼす本発明鋼の各合金元素の影響とその含有量に
ついて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Crevice corrosion resistance in a neutral salt environment,
The effect of each alloy element of the steel of the present invention on the stress corrosion cracking resistance, sulfuric acid dew point corrosion resistance and hot workability and the content thereof will be described.

【0018】C:0.05%以下 Cは、耐隙間腐食性と耐応力腐食割れ性を悪化させるの
で、0.05%以下とした。一方、Cは本発明鋼の用途
に必要な強度を確保することと商業規模での溶製の容易
さから、0.01%以上含有させるのが望ましい。
C: 0.05% or less C deteriorates crevice corrosion resistance and stress corrosion cracking resistance, so it was made 0.05% or less. On the other hand, C is preferably contained in an amount of 0.01% or more from the viewpoint of securing the strength necessary for the use of the steel of the present invention and facilitating melting on a commercial scale.

【0019】Si:1%以下 Siは、過剰に含有させると鋼の熱間加工性、靭性、溶
接性を悪化する元素なので含有量の上限を1%とした。
一方、Siには脱酸作用があり、その効果を発揮させる
ためには0.1%以上含有させるのが望ましい。
Si: 1% or less Si, when excessively contained, deteriorates hot workability, toughness and weldability of steel, so the upper limit of the content is set to 1%.
On the other hand, Si has a deoxidizing effect, and in order to exhibit its effect, it is desirable to contain 0.1% or more.

【0020】Mn:2%以下 Mnは、オーステナイトを安定化させる元素であり、同
様の効果がある高価なNiの量を低減させるためにも添
加するのが望ましい。しかし、過剰に含有させると鋼の
耐隙間腐食性と耐応力腐食割れ性を悪化させるので、含
有量の上限を2%とした。一方、MnはSiと同様に脱
酸作用があり、その効果を発揮させるためには、0.1
%以上含有させるのが望ましい。
Mn: 2% or less Mn is an element for stabilizing austenite, and is desirably added to reduce the amount of expensive Ni having the same effect. However, if the content is excessive, the crevice corrosion resistance and stress corrosion cracking resistance of the steel are deteriorated. Therefore, the upper limit of the content is set to 2%. On the other hand, Mn has a deoxidizing effect similarly to Si, and in order to exhibit its effect, it is 0.1%.
% Is desirably contained.

【0021】P:0.03%以下 Pは、鋼の製造過程で完全に除去することが困難な不可
避的不純物の1つであり、耐隙間腐食性、耐応力腐食割
れ性および熱間加工性を悪化させる。したがって、含有
量を0.03%以下とした。
P: not more than 0.03% P is one of the unavoidable impurities that are difficult to completely remove during the production process of steel, and has resistance to crevice corrosion, stress corrosion cracking and hot workability. Worsen. Therefore, the content is set to 0.03% or less.

【0022】S:0.01%以下 Sも鋼の製造過程で完全に除去することが困難な不可避
的不純物の1つである。Sが鋼中に多く存在するとMn
と結びついてMnSとなる。MnSは、耐隙間腐食性を
著しく悪化させる。したがって、Sの含有量を0.01
%以下とした。
S: 0.01% or less S is one of the unavoidable impurities that are difficult to completely remove during the steel manufacturing process. If a large amount of S is present in steel, Mn
And MnS. MnS significantly deteriorates crevice corrosion resistance. Therefore, the content of S is 0.01
% Or less.

【0023】Cr:18〜24% Crは、中性塩化物環境における耐隙間腐食性、耐応力
腐食割れ性および耐硫酸露点腐食性を改善する元素の一
つである。中性塩化物環境下でも高い耐隙間腐食性を維
持するためには、Ni、MoおよびNを共存させてもC
rを18%以上含有させる必要がある。Crを含有させ
るほど耐食性は向上するが、24%を超えるとδ- フェ
ライトフェライト相が多量に生成して、熱間加工性が悪
化する。したがって、Crの含有量を18〜24%とし
た。
Cr: 18 to 24% Cr is one of the elements that improve crevice corrosion resistance, stress corrosion cracking resistance and sulfuric acid dew point corrosion resistance in a neutral chloride environment. In order to maintain high crevice corrosion resistance even in a neutral chloride environment, even if Ni, Mo and N coexist, C
r must be contained at least 18%. The more Cr is added, the more the corrosion resistance is improved, but if it exceeds 24%, a large amount of δ-ferrite ferrite phase is formed, and the hot workability is deteriorated. Therefore, the content of Cr is set to 18 to 24%.

【0024】Ni:16〜26% Niは、オーステナイトを安定化させる元素である。ま
た、Niは、中性塩化物環境下での耐応力腐食割れ性や
耐硫酸露点腐食性を向上させる。中性塩化物環境下にお
いて必要な耐応力腐食割れ性を維持するためには、Ni
を16%以上含有させる必要がある。しかし、26%を
超えて含有させてもその効果は飽和し、製造コストが上
昇するだけなので、上限を26%とした。
Ni: 16-26% Ni is an element that stabilizes austenite. Ni improves stress corrosion cracking resistance and sulfuric acid dew point corrosion resistance in a neutral chloride environment. In order to maintain the required stress corrosion cracking resistance in a neutral chloride environment, Ni
Must be contained at least 16%. However, if the content exceeds 26%, the effect saturates and only the manufacturing cost increases, so the upper limit is set to 26%.

【0025】Mo:4〜6.5% Moは、中性塩化物環境下における耐隙間腐食性と耐応
力腐食割れ性を改善する元素の一つである。本発明鋼の
使用環境である中性塩化物環境において必要な耐隙間腐
食性と耐応力腐食割れ性を維持するためには、Moを4
%以上含有させる必要がある。しかし、6.5%を超え
て含有させてもその効果は飽和し、製造コストが上昇す
るだけなので、上限を6.5%とした。
Mo: 4 to 6.5% Mo is one of the elements for improving crevice corrosion resistance and stress corrosion cracking resistance in a neutral chloride environment. In order to maintain the required crevice corrosion resistance and stress corrosion cracking resistance required in a neutral chloride environment, which is an environment in which the steel of the present invention is used, Mo must be set to 4%.
% Or more. However, if the content exceeds 6.5%, the effect is saturated and only the production cost increases, so the upper limit is set to 6.5%.

【0026】N:0.1〜0.3% Nは、Cr、Ni、Moと共存することにより耐食性を
向上させる。特に、中性塩化物環境における耐隙間腐食
性を向上させる。その効果は、0.1% 以上含有させる
ことにより発揮される。しかし、含有量が0.3% を超
えるとその効果が飽和するばかりか、ステンレス鋼の結
晶粒界で窒化物となり、耐隙間腐食性、耐応力腐食割れ
性や熱間加工性を悪化させるので、含有量の上限を0.
3% とした。
N: 0.1 to 0.3% N improves the corrosion resistance by coexisting with Cr, Ni and Mo. In particular, it improves crevice corrosion resistance in a neutral chloride environment. The effect is exhibited by containing 0.1% or more. However, when the content exceeds 0.3%, not only the effect is saturated, but also nitrides are formed at the grain boundaries of stainless steel, which deteriorates crevice corrosion resistance, stress corrosion cracking resistance, and hot workability. , The upper limit of the content is 0.1.
3%.

【0027】Cu:0〜3% Cuは、添加しなくてもよいが、耐硫酸露点腐食性、耐
隙間腐食性および耐応力腐食割れ性を向上させるので、
添加するのが望ましい。その効果を十分発揮させるに
は、0.5%以上含有させるのがよい。しかし、3%を
超えて含有させると熱間加工性や溶接性を悪化させる。
したがって、上限を3%とした。
Cu: 0 to 3% Although Cu may not be added, Cu improves sulfuric acid dew point corrosion resistance, crevice corrosion resistance and stress corrosion cracking resistance.
It is desirable to add. In order to exert its effect sufficiently, it is preferable to contain 0.5% or more. However, when the content exceeds 3%, hot workability and weldability are deteriorated.
Therefore, the upper limit was set to 3%.

【0028】W:0〜3% Wの添加も必須ではないが、耐隙間腐食性と耐応力腐食
割れ性を向上させるので、添加するのが望ましい。その
効果を十分発揮させるには、0.5%以上含有させるの
がよい。しかし、3%を超えて含有させてもその効果は
飽和し、製造コストを上昇させるだけである。したがっ
て、上限を3%とした。
W: 0 to 3% Although the addition of W is not essential, it is desirable to add W because it improves crevice corrosion resistance and stress corrosion cracking resistance. In order to exert its effect sufficiently, it is preferable to contain 0.5% or more. However, if the content exceeds 3%, the effect is saturated and only the production cost is increased. Therefore, the upper limit was set to 3%.

【0029】Al:0〜0.05% Alは、脱酸作用があるので必要に応じて添加する。そ
の効果を十分発揮させるには、0.005%以上含有さ
せるのがよい。しかし、0.05%を超えて含有させて
も脱酸効果が飽和するばかりか、溶接性を悪化させるの
で、上限を 0.05%とした。
Al: 0 to 0.05% Al has a deoxidizing effect and is added as necessary. In order to exert its effect sufficiently, it is preferable to contain 0.005% or more. However, if the content exceeds 0.05%, not only does the deoxidizing effect become saturated, but also the weldability deteriorates, so the upper limit was made 0.05%.

【0030】Ca:0〜0.005% Caは、脱酸、脱硫元素として必要に応じて添加する元
素である。また熱間加工性を改善する効果もある。これ
らの効果を十分発揮させるには、0.0002%以上含
有させるのがよい。しかし、0.005%超えるとその
効果が飽和する。したがって、含有量の上限を0.00
5%とした。
Ca: 0 to 0.005% Ca is an element added as necessary as a deoxidizing or desulfurizing element. It also has the effect of improving hot workability. In order to sufficiently exhibit these effects, 0.0002% or more is preferably contained. However, when the content exceeds 0.005%, the effect is saturated. Therefore, the upper limit of the content is 0.00.
5%.

【0031】Mg:0〜0.005% Mgは、脱酸、脱硫元素として必要に応じて添加する元
素である。また熱間加工性を改善する効果もある。これ
らの効果を十分発揮させるには、0.0002%以上含
有させるのがよい。しかし、0.005%超えるとその
効果が飽和する。したがって、含有量の上限を0.00
5%とした。
Mg: 0 to 0.005% Mg is an element added as necessary as a deoxidizing or desulfurizing element. It also has the effect of improving hot workability. In order to sufficiently exhibit these effects, 0.0002% or more is preferably contained. However, when the content exceeds 0.005%, the effect is saturated. Therefore, the upper limit of the content is 0.00.
5%.

【0032】B:0〜0.002% Bは、熱間加工性を改善するので、必要に応じて添加す
る元素である。その効果を十分発揮させるには、0.0
002% 以上含有させるのがよい。しかし、含有量が
0.002% を超えると炭化物の粒界析出を促進して耐
隙間腐食性と耐応力腐食割れ性を悪化させる。したがっ
て、Bの含有量の上限を0.002% とした。
B: 0 to 0.002% B is an element to be added as necessary, because it improves hot workability. To fully demonstrate its effect, 0.0
The content is preferably 002% or more. However, when the content exceeds 0.002%, the precipitation of carbides at the grain boundary is promoted, and the crevice corrosion resistance and stress corrosion cracking resistance are deteriorated. Therefore, the upper limit of the B content is set to 0.002%.

【0033】PI値:35≦PI≦50 中性塩化物環境において必要な耐隙間腐食性と耐応力腐
食割れ性を維持するためには、本発明鋼の各元素の含有
量を上記の規定範囲内にする他に、前記(1)式で示さ
れるPI値が35以上50以下となるように各元素の含
有量を調整する必要がある。PI値が35未満では、耐
隙間腐食性と耐応力腐食割れ性が不十分である。一方、
PI値が50を超えると、原料コストを上昇させるばか
りか、熱間加工性も悪化させてしまう。したがって、P
I値の上限を50とした。
PI value: 35 ≦ PI ≦ 50 In order to maintain the required crevice corrosion resistance and stress corrosion cracking resistance in a neutral chloride environment, the content of each element of the steel of the present invention must be within the above specified range. In addition to the above, it is necessary to adjust the content of each element so that the PI value represented by the above formula (1) is 35 or more and 50 or less. If the PI value is less than 35, crevice corrosion resistance and stress corrosion cracking resistance are insufficient. on the other hand,
When the PI value exceeds 50, not only does the raw material cost rise, but also the hot workability deteriorates. Therefore, P
The upper limit of the I value was set to 50.

【0034】Ni-bal.値:−2.5≦Ni-bal.≦1 良好な熱間加工性を確保するためには、本発明鋼の各元
素の含有量を上記の規定範囲内にする他に、前記(2)
式で示されるNi-bal.値が−0.25以上1以下となる
ように各元素の含有量を調整する必要がある。Ni-ba
l.値が−0.25未満でも1を超えても熱間鍛造時や熱
間圧延時に割れが生じる。
Ni-bal. Value: -2.5 ≦ Ni-bal. ≦ 1 In order to ensure good hot workability, the content of each element of the steel of the present invention is set within the above specified range. In addition, the above (2)
It is necessary to adjust the content of each element so that the Ni-bal. Value shown by the equation is -0.25 or more and 1 or less. Ni-ba
If the l. value is less than -0.25 or more than 1, cracks occur during hot forging or hot rolling.

【0035】[0035]

【実施例】本発明鋼を溶製し、厚板にした後、耐隙間腐
食性、耐応力腐食割れ性、耐硫酸露点腐食性および熱間
加工性を調査した。
EXAMPLES After the steel of the present invention was melted and formed into a thick plate, its crevice corrosion resistance, stress corrosion cracking resistance, sulfuric acid dew point corrosion resistance and hot workability were investigated.

【0036】表1に、真空溶解法により溶製した本発明
鋼と本発明鋼の組成とは異なる比較のための鋼(以下、
比較鋼と略す。)の化学組成を示した。この溶製鋼に通
常の方法で熱間鍛造を施した後、熱間圧延を行って厚さ
6mmの熱延板に成形した。熱間圧延の際には、熱延板
に発生した割れを目視で観察した。その後、熱延板に1
150℃で30分の固溶化熱処理を施した。
Table 1 shows the steels of the present invention and the steels of the present invention which were produced by the vacuum melting method and have different compositions.
Abbreviated as comparative steel. ). This forged steel was subjected to hot forging by an ordinary method, and then hot-rolled to form a hot-rolled sheet having a thickness of 6 mm. During hot rolling, cracks generated in the hot-rolled sheet were visually observed. After that, 1
A solution heat treatment was performed at 150 ° C. for 30 minutes.

【0037】[0037]

【表1】 [Table 1]

【0038】(a)耐隙間腐食性について 本発明鋼と比較鋼の熱延板から図1で示す2つのサイズ
の試験片を切り出し、#600番のエメリー紙まで湿式
研磨を施し、アセトン脱脂した。2つのサイズの試験片
をボルトで拘束することにより隙間部を再現した。な
お、ボルトにはテフロンワッシャーを咬ませて絶縁し
た。隙間腐食試験は、排煙脱硫装置の煙道や煙突部の実
際の乾燥、湿潤の繰り返し状況を想定して、塩水噴霧−
乾燥−湿潤を144サイクル(720h)で行った。塩水
は、石炭専焼ボイラーの排煙脱硫装置の石灰スラリー内
の塩素イオン濃度と同程度となるように、CaCl2
MgCl2を5:1の比率で蒸留水中に添加し、硫酸を
用いて溶液のpHを5に調整し、塩素イオン濃度を20
000ppmとした。
(A) Crevice corrosion resistance Test pieces of two sizes shown in FIG. 1 were cut out from hot-rolled sheets of the present invention steel and comparative steel, wet-polished to # 600 emery paper, and acetone-degreased. . The gap was reproduced by restraining the test pieces of two sizes with bolts. The bolt was insulated with a Teflon washer. The crevice corrosion test is based on the assumption that actual drying and wetting of flue and chimney of flue gas desulfurization equipment is repeated.
Dry-wet was performed for 144 cycles (720 h). The salt water is added to distilled water at a ratio of 5: 1 CaCl 2 and MgCl 2 so as to have a chlorine ion concentration in a lime slurry of a flue gas desulfurization unit of a coal-fired boiler, and sulfuric acid is used. Was adjusted to pH 5 and the chloride ion concentration was adjusted to 20.
000 ppm.

【0039】試験後の減重量を測定し、腐食は隙間部の
みで発生していると仮定して、減重量を隙間部の総面積
で割った値(以下、腐食減量という。)で耐隙間腐食性
を評価した。その結果を表2に示した。
The weight loss after the test was measured, and assuming that the corrosion occurred only in the gap, the weight loss divided by the total area of the gap (hereinafter referred to as corrosion weight loss) was used as the gap resistance. The corrosivity was evaluated. The results are shown in Table 2.

【0040】[0040]

【表2】 [Table 2]

【0041】本発明鋼は、腐食減量が全て3.2g/m
2 以下であり、良好な耐隙間腐食性を示した。一方、比
較鋼15〜18および20は、腐食減量が3.7g/m
2 を超えており、耐隙間腐食性に劣っている。
The steel of the present invention has a corrosion loss of 3.2 g / m
2 or less, indicating good crevice corrosion resistance. On the other hand, Comparative Steels 15 to 18 and 20 had a corrosion weight loss of 3.7 g / m.
It exceeds 2 and is inferior in crevice corrosion resistance.

【0042】また、本発明鋼と比較鋼のPI値と腐食減
量の関係も調査した。その結果を図2に示した。PI値
が35以上になると、腐食減量が3.2g/m2 以下に
なることが分かった。
Further, the relationship between the PI value of the steel of the present invention and the comparative steel and the weight loss due to corrosion was also investigated. The result is shown in FIG. It was found that when the PI value was 35 or more, the corrosion weight loss was 3.2 g / m 2 or less.

【0043】(b)耐応力腐食割れ性について Uベンド試験法にて応力腐食割れ試験を行った。試験片
は、図3で示すように、熱延板から横10mm、縦75
mmの形状に切り出し、#600番のエメリー紙まで湿
式研磨してアセトン脱脂し、2枚の試験片の間にテフロ
ンシートを挟んだ後、ポンチとローラーでU字に曲げ、
さらにボルトでU字の間隔を5mm狭めて応力を負荷した
ものとした。中性塩化物環境下での応力腐食割れは、隙
間部でより激しく発生するので、試験片に応力を負荷す
るとともに、隙間部も形成したのである。
(B) Stress corrosion cracking resistance A stress corrosion cracking test was performed by the U-bend test method. As shown in FIG. 3, the test piece was 10 mm wide and 75 mm long from the hot rolled sheet.
mm, wet-polished to # 600 emery paper, degreased with acetone, sandwiched a Teflon sheet between two test pieces, and bent into a U-shape with a punch and roller.
Further, the U-shaped interval was narrowed by 5 mm with a bolt to apply a stress. Stress corrosion cracking in a neutral chloride environment occurred more severely in the gap, so that stress was applied to the test piece and the gap was formed.

【0044】上記(A)と同様の塩素イオン濃度が20
000ppm の塩水を使用して塩水噴霧−乾燥−湿潤を1
44サイクル(720h)行って、応力腐食割れの発生の
有無を調査した。あわせて、隙間部の腐食減量も測定し
た。結果を表2に示した。本発明鋼には、応力腐食割れ
は発生しなかった。隙間部の腐食減量も2g/m2 以下
と良好であった。一方、比較鋼1、19および20に
は、応力腐食割れが発生した。
The same chloride ion concentration as in (A) above
Salt spray-dry-wet using 1 000 ppm saline
Forty-four cycles (720 h) were performed to investigate the occurrence of stress corrosion cracking. At the same time, the corrosion loss of the gap was also measured. The results are shown in Table 2. No stress corrosion cracking occurred in the steel of the present invention. The corrosion weight loss in the gap was as good as 2 g / m 2 or less. On the other hand, stress corrosion cracking occurred in Comparative Steels 1, 19 and 20.

【0045】(c)熱間加工性について 熱間圧延時に熱延板に発生する割れを観察した。結果を
表2に示した。本発明鋼の熱延板には割れが発生しなか
った。一方、比較鋼20、21の熱延板は、Ni-bal.
が−2.5を下回っているために割れが発生した。比較
鋼22の熱延板はNi-bal.が1を超えているので割れ
が生じた。
(C) Hot workability Cracks generated in the hot rolled sheet during hot rolling were observed. The results are shown in Table 2. No crack occurred in the hot-rolled sheet of the steel of the present invention. On the other hand, the hot-rolled sheets of comparative steels 20 and 21 are Ni-bal.
Was below -2.5, causing cracking. Since the Ni-bal. Of the hot-rolled sheet of Comparative Steel 22 exceeded 1, cracking occurred.

【0046】(d)耐硫酸露点腐食性について 本発明鋼と比較鋼の熱延板から試験片を切り出し、硫酸
に浸漬して耐硫酸露点腐食性を調査した。試験片は、熱
延板から横10mm、縦40mmの形状に切り出した
後、#600番のエメリー紙まで湿式研磨し、アセトン
脱脂したものとした。本発明鋼と比較鋼の試験片を80
%、140℃の硫酸水溶液に4h浸漬した後に腐食速度
を測定した。腐食速度は1h当たりの腐食減量[g/m2
h] で表している。試験結果を表2に示した。本発明鋼
の腐食速度は、全て100g/m2/h未満であり、良好な耐
硫酸露点腐食性を示した。一方、比較鋼15〜18、2
0および22は、腐食速度が100g/m2/hを超えてお
り、耐硫酸露点腐食性が不十分である。
(D) Sulfuric Acid Dew Point Corrosion Resistance Test pieces were cut out from hot-rolled sheets of the steel of the present invention and the comparative steel, immersed in sulfuric acid, and examined for sulfuric acid dew point corrosion resistance. The test piece was cut into a shape of 10 mm in width and 40 mm in length from the hot-rolled sheet, wet-polished to # 600 emery paper, and degreased with acetone. Test pieces of the steel of the present invention and the comparative steel were 80
%, Immersed in a 140 ° C. sulfuric acid aqueous solution for 4 hours, and then measured the corrosion rate. Corrosion rate is corrosion loss per hour [g / m 2 ·
h]. The test results are shown in Table 2. The corrosion rates of the steels of the present invention were all less than 100 g / m 2 / h, indicating good sulfuric acid dew point corrosion resistance. On the other hand, comparative steels 15 to 18, 2
In Nos. 0 and 22, the corrosion rate exceeds 100 g / m 2 / h, and the sulfuric acid dew point corrosion resistance is insufficient.

【0047】[0047]

【発明の効果】本発明のオーステナイト系ステンレス鋼
は、中性塩化物環境下において優れた耐隙間腐食性と耐
応力腐食割れ性を備えるとともに耐硫酸露点腐食性と熱
間加工性を持つので、石炭専焼ボイラー用の部材等の中
性塩化物環境下で用いられる部材として好適である。
The austenitic stainless steel of the present invention has excellent crevice corrosion resistance and stress corrosion cracking resistance in a neutral chloride environment, and also has sulfuric acid dew point corrosion resistance and hot workability. It is suitable as a member used in a neutral chloride environment such as a member for a coal-fired boiler.

【図面の簡単な説明】[Brief description of the drawings]

【図1】隙間腐食試験片を示す図である。FIG. 1 is a view showing a crevice corrosion test piece.

【図2】隙間腐食試験後の腐食減量とPI値との関係を
示す図である。
FIG. 2 is a diagram showing a relationship between a corrosion weight loss after a crevice corrosion test and a PI value.

【図3】応力腐食割れ試験の試験片と応力負荷状態を示
す図である。
FIG. 3 is a diagram showing a test piece in a stress corrosion cracking test and a stress applied state.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.05%以下、Si:1
%以下、Mn:2%以下、P:0.03%以下、S:0.
01%以下、Cr:18〜24%、Ni:16〜26
%、 Mo:4〜6.5%、N:0.1〜0.3%、Cu:
0〜3%、W:0〜3%、 Al:0〜0.05%、C
a:0〜0.005%、Mg:0〜0.005%、 B:
0〜0.002%含有するとともに、下記(1)、(2)式
で示されるPI値とNi-bal.値が35≦PI≦50、
−2.5≦Ni-bal. ≦1を満たし、残部がFeおよび
不可避的不純物からなることを特徴とする耐中性塩化物
腐食性オーステナイト系ステンレス鋼。 PI=Cr+3.3(Mo+0.5W)+16N ・・・・・・・ (1) Ni-bal.=Ni+30(C+N)+0.5Mn−1.1(Cr+1.5Si+Mo) ・・・・・・・(2) ここで、上記(1)、(2)式中の元素記号は鋼中にお
ける各元素の重量%を表す。
(1) In weight%, C: 0.05% or less, Si: 1
% Or less, Mn: 2% or less, P: 0.03% or less, S: 0.1% or less.
01% or less, Cr: 18 to 24%, Ni: 16 to 26
%, Mo: 4 to 6.5%, N: 0.1 to 0.3%, Cu:
0-3%, W: 0-3%, Al: 0-0.05%, C
a: 0 to 0.005%, Mg: 0 to 0.005%, B:
0-0.002%, and the PI value and Ni-bal. Value represented by the following formulas (1) and (2) are 35 ≦ PI ≦ 50,
A neutral chloride-corrosive austenitic stainless steel which satisfies -2.5 ≦ Ni-bal. ≦ 1 and the balance consists of Fe and unavoidable impurities. PI = Cr + 3.3 (Mo + 0.5W) + 16N (1) Ni-bal. = Ni + 30 (C + N) + 0.5Mn-1.1 (Cr + 1.5Si + Mo) (2) Here, the element symbols in the above formulas (1) and (2) represent the weight percentage of each element in the steel.
JP4404797A 1997-02-27 1997-02-27 Neutral chloride corrosion resistant austenitic stainless steel Pending JPH10237601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4404797A JPH10237601A (en) 1997-02-27 1997-02-27 Neutral chloride corrosion resistant austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4404797A JPH10237601A (en) 1997-02-27 1997-02-27 Neutral chloride corrosion resistant austenitic stainless steel

Publications (1)

Publication Number Publication Date
JPH10237601A true JPH10237601A (en) 1998-09-08

Family

ID=12680709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4404797A Pending JPH10237601A (en) 1997-02-27 1997-02-27 Neutral chloride corrosion resistant austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPH10237601A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044237A1 (en) * 2001-11-22 2003-05-30 Nippon Yakin Kogyo Co., Ltd. Stainless steel for use under circumstance where organic acid and saline are present
JP2004156126A (en) * 2002-11-08 2004-06-03 Nippon Steel Corp High corrosion resistant austenitic stainless steel with excellent cold workability
CN100449025C (en) * 2003-12-26 2009-01-07 松下电器产业株式会社 Material of case for storage cell
JP2011247642A (en) * 2010-05-24 2011-12-08 Kobe Steel Ltd Method of estimating corrosion state of steel material
JP2012092437A (en) * 2010-09-30 2012-05-17 Nippon Steel Corp Corrosion resistant steel for equipment for unloading, storing and conveying coal, member for equipment for unloading, storing and conveying coal, and method for using corrosion resistant steel
JP2014214325A (en) * 2013-04-23 2014-11-17 新日鐵住金株式会社 Metallic material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044237A1 (en) * 2001-11-22 2003-05-30 Nippon Yakin Kogyo Co., Ltd. Stainless steel for use under circumstance where organic acid and saline are present
CN1303241C (en) * 2001-11-22 2007-03-07 日本冶金工业株式会社 Stainless steel for use under circumstance where organic acid and saline are present
JP2004156126A (en) * 2002-11-08 2004-06-03 Nippon Steel Corp High corrosion resistant austenitic stainless steel with excellent cold workability
CN100449025C (en) * 2003-12-26 2009-01-07 松下电器产业株式会社 Material of case for storage cell
JP2011247642A (en) * 2010-05-24 2011-12-08 Kobe Steel Ltd Method of estimating corrosion state of steel material
JP2012092437A (en) * 2010-09-30 2012-05-17 Nippon Steel Corp Corrosion resistant steel for equipment for unloading, storing and conveying coal, member for equipment for unloading, storing and conveying coal, and method for using corrosion resistant steel
JP2014214325A (en) * 2013-04-23 2014-11-17 新日鐵住金株式会社 Metallic material

Similar Documents

Publication Publication Date Title
JP3271262B2 (en) Duplex stainless steel with excellent corrosion resistance
CN109563594B (en) Sulfuric acid dew point corrosion resistant steel
JP2007262558A (en) Sulfuric acid dew point corrosion resistant steel having excellent hydrochloric acid resistance
KR100511653B1 (en) Steel excellent in resistance to sulfuric acid dew point corrosion and preheater for air
WO1999009231A1 (en) Austenitic stainless steel excellent in resistance to sulfuric acid corrosion and workability
JP5239615B2 (en) Welded joints for crude oil tanks with excellent corrosion resistance and ductile fracture resistance
JPH0925536A (en) Acid dew point corrosion resistant steel
JP4190993B2 (en) Ferritic stainless steel sheet with improved crevice corrosion resistance
JPH068485B2 (en) High alloy stainless steel with excellent corrosion resistance for chimney / flue and desulfurization equipment
JPH04214843A (en) Austenite stainless steel
JPH09279313A (en) Stainless steel for exhaust gas system of city waste incineration equipment
JPH10237601A (en) Neutral chloride corrosion resistant austenitic stainless steel
JPH03158437A (en) Duplex stainless steel having excellent concentrated sulfuric acid resistance
JPH08144012A (en) Steel for stack and flue for natural gas firing
JP3153981B2 (en) High alloy stainless steel showing excellent corrosion resistance in dew point environment producing sulfuric acid and hydrochloric acid simultaneously
EP1361290B1 (en) Use of a steel for chemical tank, excellent in sulfuric acid corrosion resistance and pitting corrosion resistance
JPH11189848A (en) Austenitic stainless steel excellent in sulfuric acid corrosion resistance
JP3239763B2 (en) Austenitic stainless steel with excellent resistance to sulfuric acid corrosion
JPH11140586A (en) Steel product for flue and stack of lng-fired boiler for lng only
JPH08134538A (en) Production of corrosion resistant low-alloy steel
JP2000001755A (en) Austenitic stainless steel excellent in sulfuric acid dew point corrosion resistance and its production
JP3923163B2 (en) Waste incinerator
JP2015083285A (en) Adsorption tower for sintering exhaust gas
JP3294282B2 (en) Austenitic stainless steel with excellent sulfuric acid corrosion resistance and workability
JP5089103B2 (en) Stainless steel with excellent corrosion resistance