JP2012092437A - Corrosion resistant steel for equipment for unloading, storing and conveying coal, member for equipment for unloading, storing and conveying coal, and method for using corrosion resistant steel - Google Patents

Corrosion resistant steel for equipment for unloading, storing and conveying coal, member for equipment for unloading, storing and conveying coal, and method for using corrosion resistant steel Download PDF

Info

Publication number
JP2012092437A
JP2012092437A JP2011208020A JP2011208020A JP2012092437A JP 2012092437 A JP2012092437 A JP 2012092437A JP 2011208020 A JP2011208020 A JP 2011208020A JP 2011208020 A JP2011208020 A JP 2011208020A JP 2012092437 A JP2012092437 A JP 2012092437A
Authority
JP
Japan
Prior art keywords
less
corrosion
resistant steel
steel material
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011208020A
Other languages
Japanese (ja)
Other versions
JP5569493B2 (en
Inventor
Shin Nagasawa
慎 長澤
Kenji Kato
謙治 加藤
Naoki Saito
直樹 斎藤
Yuichi Yamamura
雄一 山村
Akira Takahashi
顕 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011208020A priority Critical patent/JP5569493B2/en
Publication of JP2012092437A publication Critical patent/JP2012092437A/en
Application granted granted Critical
Publication of JP5569493B2 publication Critical patent/JP5569493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide corrosion resistant steel for equipment for unloading, storing and conveying coal which unloads, conveys, stores and discharges coal being powder and granular material and is exposed to a C1-concentrated coal corrosion environment; to provide a member for the equipment for unloading, storing and conveying coal; and to provide a method for using the corrosion resistant steel under the C1-concentrated coal corrosion environment.SOLUTION: The corrosion resistant steel for the equipment for unloading, storing and conveying coal contains. by mass, 0.005-0.030% C, 0.18-0.50% Si, 1.50 to lower than 3.00% Mn, ≤0.030% P, ≤0.0050% S, 4.0-9.0% Cr, 0.20-1.50% Al, ≤0.020% N and the balance Fe with inevitable impurities. The equipment for unloading, storing and conveying coal employs the corrosion resistant steel. It is desirable that inorganic zinc-rich primer layer is provided. The method for using the corrosion resistant steel under the C1-concentrated coal corrosion environment is also provided.

Description

本発明は、粉粒体である石炭を荷揚するアンローダー、搬送するコンベヤー、貯蔵・搬出するホッパーなど、石炭腐食環境に曝される揚貯運炭設備に用いられる耐食鋼材、該耐食用鋼材で構成される揚貯運炭設備用部材及び耐食鋼材の使用方法に関する。
なお、本発明においては、石炭運搬貨車、石炭運搬船等、石炭の運搬、荷役に用いられる設備も揚貯運炭設備に含まれる。
The present invention relates to a corrosion-resistant steel material used in a coal storage facility exposed to a coal corrosive environment, such as an unloader for unloading coal as a granular material, a conveyor for conveyance, and a hopper for storage and unloading, and the corrosion-resistant steel material. The present invention relates to a method for using a constructed storage and coal handling equipment member and a corrosion-resistant steel material.
In the present invention, facilities used for coal transportation and cargo handling, such as coal transportation freight cars and coal transportation ships, are also included in the storage and transportation coal facilities.

石炭火力発電所、石炭ボイラープラント、製鉄所のコークス炉、貨車や船舶等の石炭運搬交通機関、石炭鉱山や港湾施設等において、粉粒体である石炭の荷揚、搬送、貯蔵・搬出等には、アンローダー、コンベヤー、ホッパー等の揚貯運炭設備が用いられる。揚貯運炭設備の部品や部材は、大気中の石炭腐食環境に曝されるため、使用される鋼材には石炭腐食環境下における耐食性が求められる。   In coal coal power plants, coal boiler plants, coke ovens at ironworks, coal transportation such as freight cars and ships, coal mines and harbor facilities, etc. , Unloading, coal storage equipment such as unloaders, conveyors and hoppers are used. Since the parts and members of the coal storage equipment are exposed to the atmospheric corrosive environment in the atmosphere, the steel materials used are required to have corrosion resistance in the corrosive environment.

このような石炭腐食環境下にあって、耐食性を向上させた、石炭・鉱石運搬船ホールド用耐食鋼材が提案されている(例えば、特許文献1、2)。これらは、石炭腐食環境が、Cl及びSO 2−を含む酸環境であり、鋼材にCuやSnを添加して、耐食性を向上させるものである。特許文献1及び2には、Cuの添加によって緻密な腐食生成物が形成されること、Snが鋼材上に析出するとカソード反応である水素発生反応が抑制されることが記載されている。 Corrosion-resistant steel materials for holding a coal / ore carrier ship that have improved corrosion resistance in such a coal-corrosive environment have been proposed (for example, Patent Documents 1 and 2). In these, the coal corrosive environment is an acid environment containing Cl - and SO 4 2− , and Cu or Sn is added to the steel material to improve the corrosion resistance. Patent Documents 1 and 2 describe that a dense corrosion product is formed by the addition of Cu, and that hydrogen generation reaction, which is a cathode reaction, is suppressed when Sn is deposited on a steel material.

また、非特許文献1では、石炭を純水に浸漬すると、滲出液のpHは、室温で浸漬した場合は2.5〜3となり、45℃で浸漬した場合は、150時間までは酸性になるものの、その後、中性物質も滲出するため、6.5になることが報告されている。更に、酸性の石炭滲出液を分析した結果、鉄イオンと硫酸イオンが検出されたことから、硫酸第一鉄により、酸性に傾いていると推定している。この知見及び、pHと鋼材の腐食速度の関係から、ばら積石炭船倉の腐食に関して、石炭滲出液による腐食速度は、希硫酸のpH環境で模擬できるとしている。   In Non-Patent Document 1, when coal is immersed in pure water, the pH of the exudate becomes 2.5 to 3 when immersed at room temperature, and becomes acidic for up to 150 hours when immersed at 45 ° C. However, it has been reported that the neutral substance is also leached out to 6.5. Furthermore, as a result of analyzing the acidic coal exudate, iron ions and sulfate ions were detected, so it is presumed that they are inclined to be acidic due to ferrous sulfate. From this knowledge and the relationship between pH and the corrosion rate of steel materials, the corrosion rate due to coal exudate can be simulated in the pH environment of dilute sulfuric acid for the corrosion of bulk coal holds.

非特許文献2においては、鉄鉱石・石炭を積載するバルクキャリア倉内肋骨の腐食状況を調査した結果、塗装面の下では、腐食ピット部分を覆うように生じた錆が数cm〜十数cm程度の範囲でこぶ状に盛り上がっていることが報告されている。こぶ状の腐食生成物が発生した部分では、鋼板の減肉が認められ、腐食の原因は、石炭と凝結した水分が反応して希硫酸水溶液が生成したためであると推定されている。   In Non-Patent Document 2, as a result of investigating the corrosion status of the ribs in the bulk carrier granary loaded with iron ore and coal, the rust generated to cover the corrosion pit portion is about several centimeters to several tens of centimeters below the painted surface. It has been reported that it rises like a hump in the range. In the portion where the knurled corrosion product is generated, the steel plate is thinned, and the cause of the corrosion is presumed to be due to the reaction between the coal and the condensed water and the formation of a dilute sulfuric acid aqueous solution.

特開2007−262555号公報JP 2007-262555 A 特開2008−174768号公報JP 2008-174768 A

小林佑規ら、「ばら積石炭船倉内の腐食を模擬した希硫酸環境における造船用鋼の腐食および腐食疲労」、日本造船学会論文集、1999、第185号、p.221−232Kobayashi, Y. et al., “Corrosion and Corrosion Fatigue of Shipbuilding Steel in Dilute Sulfuric Acid Environment Simulating Corrosion in Bulk Coal Ships”, The Shipbuilding Society of Japan, 1999, No. 185, p. 221-232 中井達郎ら、「バルクキャリア倉内肋骨の腐食実態と強度」、(財)日本海事協会、平成14年度ClassNK研究発表会講演集、2002、p.35−48(http://www.classnk.or.jp/hp/Top_news_html/RI_presen_2002/H14_PDF/H14_05.pdf)Tatsuro Nakai et al., “Corrosion Actuality and Strength of Bulk Carrier Kurauchi Ribbon”, Nippon Kaiji Kyokai, 2002 ClassNK Research Presentation Lecture, 2002, p. 35-48 (http://www.classnk.or.jp/hp/Top_news_html/RI_presen_2002/H14_PDF/H14_05.pdf)

近年では、製鐵所のコークス炉などの石炭利用プラントや石炭火力発電設備で使用される、コンベヤー等の石炭搬送設備において、設備の腐食に伴って発生した錆が設備内に飛散し、設備トラブルに発展する問題が生じている。また、石炭を貯蔵・搬出するホッパー等においても貯槽内で発生した錆が剥離して石炭中に混入し、錆が多量に含まれるようになると、精製工程やプラントにおいて、操業トラブルに発展することがある。そのため、耐局部腐食性だけでなく、耐発錆性及び耐錆剥離性に優れた鋼材が要望されている。   In recent years, in coal transportation facilities such as conveyors used in coal-fired plants such as coke ovens in coal mills and coal-fired power generation facilities, rust generated due to the corrosion of the facilities has scattered within the facilities, causing equipment troubles. There is a problem that develops. Also, in hoppers that store and carry out coal, if the rust generated in the storage tank is peeled off and mixed in the coal, and a large amount of rust is contained, it will lead to operational troubles in the refining process and plant. There is. Therefore, there is a demand for a steel material that is excellent not only in local corrosion resistance but also in rust resistance and rust peel resistance.

また、本発明者らの検討の結果、希硫酸に対する耐食性に優れる鋼材を用いても、実際の揚貯運炭設備及びその周辺の部材の腐食の進展を抑制できないことがわかった。そのため、粉粒体である石炭に起因する腐食の原因を明らかにするとともに、石炭腐食環境において、発錆しても錆が剥離せず、好ましくは発錆しない耐食鋼材の開発が必要になった。
本発明は、このような事情に鑑みてなされたものであって、揚貯運炭設備及びその周辺の部材が曝される石炭腐食環境において、耐局部腐食性及び耐錆剥離性に優れ、更には無機ジンクリッチプライマー層を設けることによって耐発錆性を向上させることができる、揚貯運炭設備用耐食鋼材、揚貯運炭設備用部材、石炭腐食環境における耐食鋼材の使用方法の提供を課題とする。
Further, as a result of the study by the present inventors, it has been found that even if a steel material having excellent corrosion resistance against dilute sulfuric acid is used, the progress of corrosion of the actual coal storage equipment and its surrounding members cannot be suppressed. Therefore, while clarifying the cause of corrosion caused by coal, which is a granular material, it was necessary to develop a corrosion-resistant steel material that does not rust even if rusted in a coal-corrosive environment, and preferably does not rust. .
The present invention has been made in view of such circumstances, and is excellent in local corrosion resistance and rust peel resistance in a coal corrosive environment to which exposed storage coal facilities and surrounding members are exposed. Provides an inorganic zinc rich primer layer that can improve rust resistance, provide corrosion-resistant steel for use in coal storage equipment, components for use in coal storage equipment, and use of corrosion-resistant steel in a coal-corrosive environment. Let it be an issue.

非特許文献1及び2によって報告されているように、従来、石炭船倉内やバルクキャリア倉内などの石炭腐食環境における鋼材の腐食は、希硫酸によるもの、又は希硫酸水溶液で模擬できるというのが技術常識であった。そして、酸性環境では、Crは酸に溶解するため耐食性の向上に寄与せず、むしろ制限すべき元素であると考えられており、特許文献1及び2では、Cu、Sn、Niなどを添加した鋼材が提案されている。   As reported by Non-Patent Documents 1 and 2, it is conventionally known that the corrosion of steel in a coal corrosive environment such as in a coal ship hold or a bulk carrier hold can be simulated by dilute sulfuric acid or dilute sulfuric acid aqueous solution. It was common sense. And in an acidic environment, Cr is considered to be an element that should not be restricted because it dissolves in acid, and rather is considered to be a limiting element. In Patent Documents 1 and 2, Cu, Sn, Ni, etc. were added. Steel has been proposed.

しかし、本発明者らは、粉粒状の石炭を貯蔵・搬出するホッパーの側面や、搬送するコンベヤー下の腐食環境を調査した結果、希硫酸は生じておらず、Clイオンが濃化した腐食環境であるという新たな知見を得た。次に、このようなClイオンが濃化した石炭腐食環境で、発錆を防止するために、種々の鋼材の曝露試験を行った。その結果、鋼材に適量のCr、Alを含有させることによって、局部腐食が抑制され、錆の剥離を防止できることがわかった。この理由は必ずしも明らかではないが、Cr及びAlの相互作用によって、腐食形態が局部腐食から全面腐食に移行し易くなって、局部腐食が抑制された可能性がある。更に、適量のCr、Alを添加した耐食鋼材の表面に無機ジンクリッチプライマー層を設けると、長期間に亘って発錆が防止できるという知見を得た。 However, as a result of investigating the corrosive environment under the hopper side where the granular coal is stored and transported and the conveyor where the present invention is transported, the present inventors have found that no dilute sulfuric acid is produced, and the Cl ions are concentrated. I got new knowledge that it is an environment. Then, such Cl - coal corrosive environments ions are concentrated, in order to prevent rusting were exposure test of various steel materials. As a result, it was found that local corrosion can be suppressed and rust peeling can be prevented by adding appropriate amounts of Cr and Al to the steel material. The reason for this is not necessarily clear, but the interaction of Cr and Al facilitates the transition of the corrosion form from local corrosion to full-scale corrosion, which may have suppressed local corrosion. Furthermore, it has been found that when an inorganic zinc rich primer layer is provided on the surface of a corrosion resistant steel material to which appropriate amounts of Cr and Al are added, rusting can be prevented over a long period of time.

上記課題を解決することを目的とした本発明の要旨は、以下のとおりである。   The gist of the present invention aimed at solving the above problems is as follows.

[1] 質量%で、C:0.005%以上0.030%以下、Si:0.18%以上0.50%以下、Mn:1.50%以上3.00%未満、P:0.030%以下、S:0.0050%以下、Cr:4.0%以上9.0%以下、Al:0.20%以上1.50%以下、N:0.020%以下、をそれぞれ含有し、残部がFeおよび不可避的不純物からなることを特徴とする、揚貯運炭設備用耐食鋼材。
[2] 質量%で、さらにCu:0.05%以上0.50%以下、Ni:0.05%以上0.50%以下、をそれぞれ含有することを特徴とする耐局部腐食性、耐発錆性および耐錆剥離性に優れた、前記[1]に記載の揚貯運炭設備用耐食鋼材。
[3] 質量%で、さらにMo:0.01%以上0.20%以下、V:0.005%以上0.050%以下、Nb:0.005%以上0.050%以下、Ti:0.005%以上0.030%未満の何れか1種又は2種以上を含有することを特徴とする、前記[1]又は[2]に記載の揚貯運炭設備用耐食鋼材。
[4] 質量%で、さらにCa:0.0005%以上0.010%以下、Mg:0.0005%以上0.010%以下、REM:0.001%以上0.010%以下の何れか1種又は2種以上を含有することを特徴とする、前記[1]〜[3]のいずれか一項に記載の揚貯運炭設備用耐食鋼材。
[5] 更に、前記耐食鋼材の外表面側に、エポキシ系樹脂層又はシリコーン系樹脂層を有し、前記シリコーン系樹脂層又は前記エポキシ系樹脂層の膜厚が20〜400μmであることを特徴とする、前記[1]〜[4]のいずれか1項に記載の揚貯運炭設備用耐食鋼材。
[6] 更に、前記[1]〜[4]のいずれか1項に記載の成分からなる下地鋼材の表面に、金属亜鉛30質量%以上を含有する5〜100μmの厚みの無機ジンクリッチプライマー層を有することを特徴とする、前記[1]〜[4]のいずれか一項に記載の揚貯運炭設備用耐食鋼材。
[7] 前記無機ジンクリッチプライマー層の外表面側に、エポキシ系樹脂層又はシリコーン系樹脂層を有し、前記シリコーン系樹脂層又は前記エポキシ系樹脂層の膜厚が20〜400μmであることを特徴とする、前記[6]に記載の揚貯運炭設備用耐食鋼材。
[1] By mass%, C: 0.005% or more and 0.030% or less, Si: 0.18% or more and 0.50% or less, Mn: 1.50% or more and less than 3.00%, P: 0.00. 030% or less, S: 0.0050% or less, Cr: 4.0% or more and 9.0% or less, Al: 0.20% or more and 1.50% or less, and N: 0.020% or less. The balance is made of Fe and inevitable impurities.
[2] Local corrosion resistance and resistance to heat, characterized by containing, by mass%, Cu: 0.05% to 0.50% and Ni: 0.05% to 0.50%, respectively. The corrosion-resistant steel material for a coal storage facility according to the above [1], which is excellent in rust and rust-resistance peelability.
[3] By mass%, Mo: 0.01% to 0.20%, V: 0.005% to 0.050%, Nb: 0.005% to 0.050%, Ti: 0 Corrosion-resistant steel material for a coal storage facility according to the above [1] or [2], comprising any one or more of 0.005% or more and less than 0.030%.
[4] By mass%, any one of Ca: 0.0005% to 0.010%, Mg: 0.0005% to 0.010%, REM: 0.001% to 0.010% The corrosion-resistant steel material for lifting and coal storage facilities according to any one of the above [1] to [3], comprising seeds or two or more species.
[5] Further, it has an epoxy resin layer or a silicone resin layer on the outer surface side of the corrosion resistant steel material, and the film thickness of the silicone resin layer or the epoxy resin layer is 20 to 400 μm. The corrosion-resistant steel material for a coal storage facility according to any one of [1] to [4].
[6] Further, an inorganic zinc-rich primer layer having a thickness of 5 to 100 μm and containing 30% by mass or more of metallic zinc on the surface of the base steel material comprising the component according to any one of [1] to [4]. The corrosion-resistant steel material for a coal storage facility according to any one of the above [1] to [4].
[7] It has an epoxy resin layer or a silicone resin layer on the outer surface side of the inorganic zinc rich primer layer, and the thickness of the silicone resin layer or the epoxy resin layer is 20 to 400 μm. The corrosion-resistant steel material for lifting and coal storage facilities according to [6] above.

[8] 素材が、質量%で、C:0.005%以上0.030%以下、Si:0.18%以上0.50%以下、Mn:1.50%以上3.00未満、P:0.030%以下、S:0.0050%以下、Cr:4.0%以上9.0%以下、Al:0.20%以上1.50%以下、N:0.020%以下をそれぞれ含有し、残部がFe及び不可避的不純物からなる耐食鋼材であることを特徴とする、揚貯運炭設備用部材。
[9] 前記耐食鋼材が、質量%で、更にCu:0.05%以上0.50%以下、Ni:0.05%以上0.50%以下、をそれぞれ含有することを特徴とする、前記[8]に記載の揚貯運炭設備用部材。
[10] 前記耐食鋼材が、質量%で、更にMo:0.01%以上0.20%以下、V:0.005%以上0.050%以下、Nb:0.005%以上0.050%以下、Ti:0.005%以上0.030%未満の何れか1種又は2種以上を含有することを特徴とする、前記[8]又は[9]に記載の揚貯運炭設備用部材。
[11] 前記耐食鋼材が、質量%で、更にCa:0.0005%以上0.010%以下、Mg:0.0005%以上0.010%以下、REM:0.001%以上0.010%以下の何れか1種又は2種以上を含有することを特徴とする、前記[8]〜[10]のいずれか1項に記載の揚貯運炭設備用部材。
[12] 更に、前記耐食鋼材の外表面側に、エポキシ系樹脂層又はシリコーン系樹脂層を有し、前記シリコーン系樹脂層又は前記エポキシ系樹脂層の膜厚が20〜400μmであることを特徴とする、前記[8]〜[11]の何れか1項に記載の揚貯運炭設備用部材。
[13] 更に、前記[8]〜[11]のいずれか1項に記載の耐食鋼材を素材とする揚貯運炭設備用部材の表面に、金属亜鉛30質量%以上を含有する5〜100μmの厚みの無機ジンクリッチプライマー層を有することを特徴とする、前記[8]〜[11]のいずれか1項に記載の揚貯運炭設備用部材。
[14] 前記無機ジンクリッチプライマー層の外表面側に、エポキシ系樹脂層又はシリコーン系樹脂層を有し、前記シリコーン系樹脂層又は前記エポキシ系樹脂層の膜厚が20〜400μmであることを特徴とする、前記[13]に記載の揚貯運炭設備用部材。
[8] The material is mass%, C: 0.005% to 0.030%, Si: 0.18% to 0.50%, Mn: 1.50% to less than 3.00, P: 0.030% or less, S: 0.0050% or less, Cr: 4.0% to 9.0%, Al: 0.20% to 1.50%, N: 0.020% or less And the balance is the corrosion-resistant steel material which consists of Fe and an unavoidable impurity, The member for lifting storage coal facilities characterized by the above-mentioned.
[9] The corrosion-resistant steel material further includes, by mass%, Cu: 0.05% to 0.50% and Ni: 0.05% to 0.50%, respectively. [8] A member for a coal storage facility according to [8].
[10] The corrosion-resistant steel material is% by mass, Mo: 0.01% to 0.20%, V: 0.005% to 0.050%, Nb: 0.005% to 0.050% Hereinafter, Ti: Any one or more of 0.005% or more and less than 0.030% is contained, or the member for a coal storage equipment according to [8] or [9] above .
[11] The corrosion-resistant steel material is in mass%, Ca: 0.0005% to 0.010%, Mg: 0.0005% to 0.010%, REM: 0.001% to 0.010% Any one of the following, or two or more of the following, [8] to [10], the member for the storage and coal storage equipment according to any one of [8] to [10].
[12] Furthermore, an epoxy resin layer or a silicone resin layer is provided on the outer surface side of the corrosion resistant steel material, and the film thickness of the silicone resin layer or the epoxy resin layer is 20 to 400 μm. The member for a storage and coal-carrying facility according to any one of [8] to [11].
[13] Furthermore, 5 to 100 μm containing 30% by mass or more of metallic zinc on the surface of a member for a coal storage facility using the corrosion-resistant steel material according to any one of [8] to [11] as a raw material. An inorganic zinc rich primer layer having a thickness of 5 to 10. The member for a coal storage facility according to any one of the above [8] to [11].
[14] It has an epoxy resin layer or a silicone resin layer on the outer surface side of the inorganic zinc rich primer layer, and the thickness of the silicone resin layer or the epoxy resin layer is 20 to 400 μm. The member for a coal storage facility according to [13], characterized in that it is characterized.

[15] 質量%で、C:0.005%以上0.030%以下、Si:0.18%以上0.50%以下、Mn:1.50%以上3.00未満、P:0.030%以下、S:0.0050%以下、Cr:4.0%以上9.0%以下、Al:0.20%以上1.50%以下、N:0.020%以下をそれぞれ含有し、残部がFe及び不可避的不純物からなる耐食鋼材を、揚貯運炭設備によってハンドリングされる粉粒体の炭素から滲出するClイオンが濃化した炭素腐食環境で使用することを特徴とする、耐食鋼材の使用方法。
[16] 前記耐食鋼材が、質量%で、更にCu:0.05%以上0.50%以下、Ni:0.05%以上0.50%以下、をそれぞれ含有することを特徴とする、前記[15]に記載の耐食鋼材の使用方法。
[17] 前記耐食鋼材が、質量%で、更にMo:0.01%以上0.20%以下、V:0.005%以上0.050%以下、Nb:0.005%以上0.050%以下、Ti:0.005%以上0.030%未満の何れか1種又は2種以上を含有することを特徴とする、前記[15]又は[16]に記載の耐食鋼材の使用方法。
[18] 前記耐食鋼材が、質量%で、更にCa:0.0005%以上0.010%以下、Mg:0.0005%以上0.010%以下、REM:0.001%以上0.010%以下の何れか1種又は2種以上を含有することを特徴とする、前記[15]〜[17]のいずれか1項に記載の耐食鋼材の使用方法。
[19] 更に、前記鋼材の外表面側に、エポキシ系樹脂層又はシリコーン系樹脂層を有し、前記シリコーン系樹脂層又は前記エポキシ系樹脂層の膜厚が20〜400μmであることを特徴とする、前記[15]〜[18]のいずれか1項に記載の耐食鋼材の使用方法。
[20] 更に、前記[15]〜[18]のいずれか1項に記載の耐食鋼材の表面に、金属亜鉛30質量%以上を含有する5〜100μmの厚みの無機ジンクリッチプライマー層を設けることを特徴とする、前記[15]〜[18]のいずれか1項に記載の耐食鋼材の使用方法。
[21] 前記無機ジンクリッチプライマー層の外表面側に、エポキシ系樹脂層又はシリコーン系樹脂層を有し、前記シリコーン系樹脂層又は前記エポキシ系樹脂層の膜厚が20〜400μmであることを特徴とする、前記[20]に記載の耐食鋼材の使用方法。
[15] By mass%, C: 0.005% to 0.030%, Si: 0.18% to 0.50%, Mn: 1.50% to less than 3.00, P: 0.030 %: S: 0.0050% or less, Cr: 4.0% or more and 9.0% or less, Al: 0.20% or more and 1.50% or less, N: 0.020% or less, and the balance Corrosion resistant steel material, characterized by using a corrosion resistant steel material consisting of Fe and inevitable impurities in a carbon corrosive environment enriched in Cl ions leached from the carbon of the granular material handled by the pumping and storage coal equipment. How to use.
[16] The corrosion-resistant steel material further includes, in mass%, Cu: 0.05% to 0.50% and Ni: 0.05% to 0.50%, respectively. The method for using the corrosion-resistant steel material according to [15].
[17] The corrosion-resistant steel material is% by mass, Mo: 0.01% to 0.20%, V: 0.005% to 0.050%, Nb: 0.005% to 0.050% The method for using a corrosion-resistant steel material according to [15] or [16] above, which contains any one or more of Ti: 0.005% or more and less than 0.030%.
[18] The corrosion-resistant steel material is% by mass, further Ca: 0.0005% to 0.010%, Mg: 0.0005% to 0.010%, REM: 0.001% to 0.010% The method for using a corrosion-resistant steel material according to any one of [15] to [17], comprising any one or more of the following.
[19] Further, the steel material has an epoxy resin layer or a silicone resin layer on the outer surface side, and the thickness of the silicone resin layer or the epoxy resin layer is 20 to 400 μm. The method for using the corrosion-resistant steel material according to any one of [15] to [18].
[20] Further, an inorganic zinc rich primer layer having a thickness of 5 to 100 μm containing 30% by mass or more of metallic zinc is provided on the surface of the corrosion-resistant steel material according to any one of [15] to [18]. The method for using a corrosion-resistant steel material according to any one of [15] to [18], wherein:
[21] It has an epoxy resin layer or a silicone resin layer on the outer surface side of the inorganic zinc rich primer layer, and the thickness of the silicone resin layer or the epoxy resin layer is 20 to 400 μm. The method for using the corrosion-resistant steel material according to [20], characterized in that it is characterized in that

以上のように、本発明によれば、粉粒体である石炭をハンドリングする、アンローダー、コンベヤー、ホッパーなどに使用される、粉粒体の炭素から滲出するClイオンが濃化した炭素腐食環境での発錆が抑制され、錆の剥離が防止された、揚貯運炭設備用耐食鋼材及び揚貯運炭設備用部材を提供することができる。特に、鋼材の表面に無機ジンクリッチプライマーを塗布することにより、長期に亘って揚貯運炭設備及び揚貯運炭設備用部材の発錆を防止することが可能になる。このように、本発明は、産業上の貢献が極めて顕著である。 As described above, according to the present invention, carbon corrosion in which Cl ions that are exuded from the carbon of the granular material used for unloaders, conveyors, hoppers, etc., handling coal as the granular material are concentrated. It is possible to provide a corrosion-resistant steel material for a coal storage facility and a material for a coal storage facility, in which rusting in the environment is suppressed and peeling of rust is prevented. In particular, by applying an inorganic zinc rich primer to the surface of the steel material, it becomes possible to prevent rusting of the coal storage equipment and the material for the coal storage equipment over a long period of time. As described above, the industrial contribution of the present invention is extremely remarkable.

上述の非特許文献1に、石炭を純水に浸漬した場合、滲出液は低pHになることが報告されているように、従来、粉粒体である石炭に含まれる硫黄分に起因して、滲出した水溶液は希硫酸になると考えられていた。しかし、実際には、本発明者らが知見したように、粉粒状の石炭を貯蔵・搬出するホッパーの側面や、搬送するコンベヤー下では、希硫酸は生じておらず、Clイオンが濃化した腐食環境になっている。 As described in Non-Patent Document 1 above, when coal is immersed in pure water, the exudate is reported to have a low pH. The exuded aqueous solution was thought to be dilute sulfuric acid. However, in fact, as the present inventors discovered, dilute sulfuric acid was not generated on the side surface of the hopper for storing and transporting the granular coal and under the conveyer, and Cl ions were concentrated. It has become a corrosive environment.

このように、石炭腐食環境が希硫酸を含まず、Clイオンが濃化している理由は、以下のように推定される。
粉粒体である石炭に含まれる硫黄分は、長時間、純水に浸漬すると溶出して希硫酸になる。しかし、石炭の表面は多孔質になっており、硫黄分は吸着されている。そのため、揚貯運炭設備でハンドリングされるような短時間では溶出せず、石炭腐食環境には希硫酸が含まれない。一方、粉粒体である石炭は海岸付近でハンドリングされるため、表面に海塩粒子などが付着しており、空気中の水蒸気や雨水などの水分とともにClイオンが滲出し、濃化すると考えられる。
Thus, the reason why the coal corrosive environment does not contain dilute sulfuric acid and the Cl ions are concentrated is estimated as follows.
Sulfur contained in coal, which is a granular material, dissolves into diluted sulfuric acid when immersed in pure water for a long time. However, the surface of the coal is porous and sulfur is adsorbed. For this reason, it does not elute in a short time such as handled by a pumping coal storage facility and the coal corrosive environment does not contain dilute sulfuric acid. On the other hand, since coal, which is a granular material, is handled near the coast, sea salt particles adhere to the surface, and Cl ions exude together with moisture such as water vapor and rainwater in the air, and it is thought that it will concentrate. It is done.

従来は、石炭腐食環境が希硫酸を含むと考えられていたため、酸に溶解するCrを鋼材に添加することは避けられていた。しかし、本発明者らは、上記の知見に基づき、石炭腐食環境における耐食性を向上させるために、濃化したClイオンに起因する腐食に対して有効であるCrを積極的に活用した。更に、本発明者らは、Cr及びAlの複合添加が、石炭腐食環境における局部腐食及び発錆の防止、耐錆剥離性の向上に有効であること、さらには、無機ジンクリッチプライマーの塗布によって長期間に亘って、発錆を防止できることを見出し、本発明を完成させた。 Conventionally, since it was thought that the coal corrosive environment contains dilute sulfuric acid, it has been avoided to add Cr that dissolves in acid to steel. However, based on the above findings, the present inventors have actively used Cr, which is effective against corrosion caused by concentrated Cl ions, in order to improve the corrosion resistance in a coal corrosive environment. Furthermore, the present inventors have confirmed that the combined addition of Cr and Al is effective in preventing local corrosion and rusting in a coal corrosive environment, and improving rust resistance peelability, and further by applying an inorganic zinc rich primer. The inventors found that rusting can be prevented over a long period of time, and completed the present invention.

以下、本発明の揚貯運炭設備用耐食鋼材について詳細に説明する。   Hereinafter, the corrosion-resistant steel material for a coal storage facility according to the present invention will be described in detail.

本発明は、適量のCr及びAlを同時に添加し、揚貯運炭設備でハンドリングされる粉粒状の石炭から滲出するClイオンが濃化した石炭腐食環境において、耐局部腐食性、耐発錆性、耐錆剥離性を向上させた揚貯運炭設備用耐食鋼材である。Cr及びAlの相互作用によって局部腐食が抑制され、局所的な減肉及び腐食生成物の成長が防止されるだけでなく、発錆しても錆の剥離を抑制することができる。更に、鋼材の表面に無機ジンクリッチプライマーを塗布することにより、市販のステンレス鋼に比べて、低合金組成でありながら、長期間に亘って発錆を防止することが可能になり、経済性にも優れる揚貯運炭設備用耐食鋼材を得ることができる。 The present invention adds local amounts of Cr and Al at the same time, and in a coal corrosive environment in which Cl ions leached from granular coal handled in a pumped storage coal facility are concentrated, local corrosion resistance and rust resistance. Corrosion-resistant steel material for lifting and coal storage equipment with improved rust and rust resistance. The interaction between Cr and Al suppresses local corrosion and prevents local thinning and the growth of corrosion products, and also prevents rust peeling even when rusting occurs. Furthermore, by applying an inorganic zinc-rich primer to the surface of the steel material, it becomes possible to prevent rusting over a long period of time while maintaining a low alloy composition compared to commercially available stainless steel, which is economical. It is also possible to obtain a corrosion-resistant steel material for use in coal storage facilities.

本発明の揚貯運炭設備用耐食鋼材は、質量%で、C:0.005〜0.030%、Si:0.18〜0.50%、Mn:1.50〜3.00%未満、P:0.030%以下、S:0.0050%以下、Cr:4.0〜9.0%、Al:0.20〜1.50%、N:0.020%以下をそれぞれ含有し、残部がFeおよび不可避的不純物からなる。また、Cu:0.05%以上0.50%以下、Ni:0.05%以上0.50%以下をそれぞれ含んでもよいことを特徴とする。
以下、本発明の鋼材成分を限定した理由について説明する。なお、%の表記は特に断りがない場合は質量%を意味する。
The corrosion-resistant steel material for the coal storage equipment of the present invention is in mass%, C: 0.005 to 0.030%, Si: 0.18 to 0.50%, Mn: 1.50 to less than 3.00% , P: 0.030% or less, S: 0.0050% or less, Cr: 4.0 to 9.0%, Al: 0.20 to 1.50%, N: 0.020% or less The balance consists of Fe and inevitable impurities. Further, it may include Cu: 0.05% or more and 0.50% or less, and Ni: 0.05% or more and 0.50% or less.
Hereinafter, the reason which limited the steel material component of this invention is demonstrated. In addition, the description of% means the mass% unless there is particular notice.

(C:0.005%以上0.030%以下)
Cは、強度を改善する元素で0.005%以上必要であるが、0.030%を超えて添加すると、Cr系炭化物の形成により耐食性を劣化させるために、その添加量の上限を0.030%とする。なお、強度と延性、靭性、溶接性のバランスを考慮すると、0.005%以上0.020%以下が好ましい。さらに、前記バランス達成のための製造安定性を考慮すると、0.010%以上0.020%以下が好ましい。
(C: 0.005% to 0.030%)
C is an element that improves the strength, and is required to be 0.005% or more. However, if added over 0.030%, the corrosion resistance is deteriorated due to the formation of Cr-based carbides, so the upper limit of the amount added is 0.00. 030%. In view of balance between strength, ductility, toughness, and weldability, 0.005% or more and 0.020% or less are preferable. Furthermore, if manufacturing stability for achieving the balance is taken into consideration, 0.010% to 0.020% is preferable.

(Si:0.18%以上0.50%以下)
Siは、Crを2%以上含有する鋼に脱酸剤および強化元素として添加することが有効であるが、含有量が0.18%未満ではその脱酸効果が十分でなく、その結果、溶存酸素とAlが酸化物を生成し易くなり、後述のように不働態皮膜の安定性を向上させるために有効な固溶Al量を十分に確保できなくなる。一方、0.50%を超えて含有するとその効果は飽和し、靭性を低下させうるので、含有量の範囲を0.18%以上0.50%以下に限定する。さらに鋼材の製造性、溶接性を考慮した場合、0.20%以上0.30%以下が好ましい。
(Si: 0.18% to 0.50%)
It is effective to add Si as a deoxidizer and strengthening element to a steel containing 2% or more of Cr. However, if the content is less than 0.18%, the deoxidation effect is not sufficient, and as a result, dissolved. Oxygen and Al easily form oxides, and it becomes impossible to secure a sufficient amount of solid solution Al effective for improving the stability of the passive film as will be described later. On the other hand, when the content exceeds 0.50%, the effect is saturated and the toughness can be lowered. Therefore, the content range is limited to 0.18% or more and 0.50% or less. Furthermore, when considering the manufacturability and weldability of the steel material, 0.20% or more and 0.30% or less are preferable.

(Cr:4.0%以上9.0%以下)
Crは、石炭腐食環境において、不働態皮膜の安定性を向上させる重要な元素であり、後述のAlとともに、耐局部腐食性、耐発錆性及び耐錆剥離性に寄与する。CrをAlとともに添加することにより、相互作用によって、耐局部腐食性を向上させ、たとえ錆が発生した場合であっても、発生した錆と地鉄との密着性を確保し、錆の剥離を防止することができる。更に、無機ジンクリッチプライマー層を設けることにより、長期間に亘って発錆を防止することができる。効果を得るために4.0%以上のCrを含有することが必要であるが、9.0%を超えて含有させてもコストを増すばかりか、母材の靭性を損なうので上限の含有量は9.0%とする。なお、鋼材の耐発錆性、製造性、溶接性、加工性を考慮すると、5.5%以上7.5%以下が好ましい。さらに、コストとのバランスを考慮すると、5.8%以上6.3%以下が好ましい。
(Cr: 4.0% to 9.0%)
Cr is an important element for improving the stability of the passive film in a coal corrosive environment, and contributes to local corrosion resistance, rust resistance and rust resistance peelability together with Al described later. By adding Cr together with Al, local corrosion resistance is improved by interaction, and even if rust is generated, the adhesion between the generated rust and the ground iron is secured, and the rust is peeled off. Can be prevented. Furthermore, rusting can be prevented over a long period of time by providing the inorganic zinc rich primer layer. In order to obtain the effect, it is necessary to contain 4.0% or more of Cr, but if it exceeds 9.0%, not only the cost is increased, but the toughness of the base material is impaired, so the upper limit content Is 9.0%. In consideration of rust resistance, manufacturability, weldability and workability of the steel material, 5.5% to 7.5% is preferable. Furthermore, considering the balance with the cost, it is preferably 5.8% or more and 6.3% or less.

(Al:0.20%以上1.50%以下)
Alは、Crともに添加することにより、石炭腐食環境において、耐局部腐食性及び耐錆剥離性の向上、更には無機ジンクリッチプライマー層を設けた際の耐発錆性の向上に寄与する重要な元素である。Crとの相互作用によって、腐食形態を局部腐食から全面腐食に移行させ、錆を剥離し難くするために、固溶Al量を確保する必要がある。効果を得るためには、0.20%以上のAlが必要であるが、一方、1.50%を越えて添加すると、フェライト相変態の温度範囲が極めて広くなり製造過程での鋳片割れなどの原因となるので、上限を1.50%以下に限定する。さらに、加工性を考慮すると、0.50%以上1.30%以下が好ましい。さらに、耐食性、製造性および、コストとのバランスを考慮すると、0.85%以上1.20%以下が好ましい。
(Al: 0.20% to 1.50%)
When Al is added together with Cr, it is important to contribute to the improvement of local corrosion resistance and rust peel resistance in a coal corrosive environment, and further to the improvement of rust resistance when an inorganic zinc rich primer layer is provided. It is an element. It is necessary to ensure the amount of solute Al in order to shift the corrosion form from local corrosion to full-surface corrosion and to make it difficult to peel off rust by interaction with Cr. In order to obtain the effect, 0.20% or more of Al is necessary. On the other hand, if it is added in excess of 1.50%, the temperature range of the ferrite phase transformation becomes extremely wide, such as slab cracking in the manufacturing process. Because of this, the upper limit is limited to 1.50% or less. Furthermore, when workability is considered, 0.50% or more and 1.30% or less are preferable. Furthermore, considering the balance between corrosion resistance, manufacturability and cost, 0.85% or more and 1.20% or less are preferable.

(Mn:1.50%以上3.00%未満)
Mnは、本発明においては、主として強度の改善とオーステナイト形成元素として作用し、耐食性の観点から添加されているCrおよびAlにより助長される粗大フェライトの形成を抑制するため、および強度確保のために添加される。すなわち、CrおよびAlは、周知のようにフェライト形成元素であり、これらが多量に添加されると、凝固から室温に至るまで変態を経ずしてフェライト単相組織となり、鋳片割れなどが生じ、製造性が低下する。したがって、Mnは、1.50%以上添加することが必要であるが、3.00%以上の添加では母材の延性が著しく低下するため3.00%未満の添加とする。なお、鋼材の強度、製造性、溶接性、加工性を考慮すると、2.00%以上3.00%未満が好ましい。
(Mn: 1.50% or more and less than 3.00%)
In the present invention, Mn mainly acts as an element for improving strength and austenite, suppressing the formation of coarse ferrite promoted by Cr and Al added from the viewpoint of corrosion resistance, and ensuring strength. Added. That is, as is well known, Cr and Al are ferrite forming elements, and when they are added in large amounts, they undergo a transformation from solidification to room temperature and become a ferrite single phase structure, resulting in cracks in the slab, Manufacturability is reduced. Accordingly, Mn needs to be added in an amount of 1.50% or more, but if added in an amount of 3.00% or more, the ductility of the base material is remarkably lowered, the addition is made less than 3.00%. In consideration of the strength, manufacturability, weldability, and workability of the steel material, it is preferably 2.00% or more and less than 3.00%.

(N:0.020%以下)
Nは、鋼板の多量に添加されると窒化物の形成などで母材の延性や耐食性を阻害するために、上限は0.020%とする。
(N: 0.020% or less)
When N is added in a large amount in the steel sheet, the upper limit is made 0.020% in order to inhibit the ductility and corrosion resistance of the base material due to the formation of nitrides and the like.

(P:0.030%以下)
Pは、鋼中に不純物として存在するが、延性を低下し、製造性を低下させるので少ない方が望ましく、上限の含有量は0.030%とする。さらに、製造性、コストの観点から、好ましくは0.020%以下である。
(P: 0.030% or less)
P is present as an impurity in the steel, but lowers the ductility and lowers the manufacturability, so it is desirable that the P content be 0.030%. Furthermore, from the viewpoint of manufacturability and cost, it is preferably 0.020% or less.

(S:0.0050%以下)
Sは、多量に添加すると耐局部腐食性を低下させるので少ない方が望ましく、上限の含有量は0.0050%とする。
なお、SとPは、不可避的な不純物であり、可能な限り少なくするほうがよい。
(S: 0.0050% or less)
When S is added in a large amount, the local corrosion resistance is deteriorated, so a smaller amount is desirable. The upper limit content is 0.0050%.
Note that S and P are inevitable impurities, and should be reduced as much as possible.

本発明では、上記の元素に加えて、Cu:0.05%以上0.50%以下及び、Ni:0.05%以上0.50%以下をそれぞれ添加することで、更に、耐局部腐食性及び耐錆剥離性を向上させ、無機ジンクリッチプライマー層を設けた際の耐発錆性を向上させることができる。
更に、Mo:0.01%以上0.20%以下、V:0.005%以上0.050%以下、Nb:0.005%以上0.050%以下、Ti:0.005%以上0.030%未満の何れか1種又は2種以上を含有させることで、更に、耐局部腐食性及び耐錆剥離性を向上させ、無機ジンクリッチプライマー層を設けた際の耐発錆性を向上させる、もしくは耐食性に影響を及ぼさずに強度、靭性を向上させることが可能である。
In the present invention, in addition to the above elements, Cu: 0.05% or more and 0.50% or less and Ni: 0.05% or more and 0.50% or less are added, respectively. And rust-proof peelability can be improved and the rust-proof property at the time of providing an inorganic zinc rich primer layer can be improved.
Further, Mo: 0.01% to 0.20%, V: 0.005% to 0.050%, Nb: 0.005% to 0.050%, Ti: 0.005% to 0.000%. Inclusion of any one or more of less than 030% further improves local corrosion resistance and rust peel resistance, and improves rust resistance when an inorganic zinc rich primer layer is provided. Or, it is possible to improve the strength and toughness without affecting the corrosion resistance.

(Cu:0.05%以上0.50%以下)
(Ni:0.05%以上0.50%以下)
Cu、Niは、ともに粉粒体である石炭をハンドリングする揚貯運炭設備の石炭腐食環境において、耐局部腐食性及び耐錆剥離性を向上させ、無機ジンクリッチプライマー層を設けた際の耐発錆性を向上させる元素である。Cu、Niを添加する場合は、後述するように、両方を添加する必要がある。なお、Cu、Niは、これらの効果発現のためには、いずれも0.05%以上の添加を必要とするが、いずれも0.50%を越えて添加すると脆化が生じるために、両者ともに、その限定範囲を0.05%以上0.50%以下とする。更に、安定的な製造性の観点から好ましくは、Cu、Niともにそれぞれ、0.05%以上0.30%以下である。さらに、コストとのバランスを考慮すると、両者ともに、0.10%以上0.20%以下が好ましい。
(Cu: 0.05% to 0.50%)
(Ni: 0.05% to 0.50%)
Both Cu and Ni improve the local corrosion resistance and rust peel resistance in the coal corrosive environment of the pumped storage coal handling facility that handles coal, which is a granular material, and are resistant to resistance when an inorganic zinc rich primer layer is provided. It is an element that improves rusting properties. When adding Cu and Ni, it is necessary to add both as described later. Note that Cu and Ni both require 0.05% or more for the expression of these effects, but both add 0.50% to cause embrittlement. In both cases, the limited range is 0.05% or more and 0.50% or less. Further, from the viewpoint of stable productivity, both Cu and Ni are preferably 0.05% or more and 0.30% or less, respectively. Furthermore, considering the balance with cost, both are preferably 0.10% or more and 0.20% or less.

Cu、Niを添加する場合、両方を添加する理由は以下のとおりである。Cu、Niは共に発錆および局部腐食を抑える効果があり、Cuはその効果が大きい。しかし、Cuは偏析し易く、鋳造組織のデンドライト(Dendrite)間の凝固偏析由来の局部的なCuの偏析部が製品表面で残存する場合がある。製品表面でこのような偏析部があれば、その周囲との間に電位差を生じて、電位が低くなった部位に局部腐食又は発錆の起点となりうる。ところが、Niを同時に添加すれば、NiはCuの偏析を軽減する作用があり、両方添加するとその相乗効果が発現する。
一方、Cuを添加せずにNiのみを添加した場合は、コストが上がる割に発錆及び局部腐食を抑える効果の上昇代は小さいが、Cu、Niを共に添加すると、発錆及び局部腐食を抑える効果が顕著に表れる。
また、Cu、Niを共に添加すると、更に強度を改善するとともに、フェライト生成を抑制する効果がある。特に、Niは、Cu添加によるスラブ割れを防ぎ、かつ、Cuと共に添加することで、母材の延性・靭性を改善する効果がある。
When adding Cu and Ni, the reason for adding both is as follows. Both Cu and Ni have an effect of suppressing rusting and local corrosion, and Cu has a great effect. However, Cu is easily segregated, and local Cu segregation parts derived from solidification segregation between dendrites of the cast structure may remain on the product surface. If there is such a segregated portion on the product surface, a potential difference is generated between the segregated portion and the surrounding area, and local corrosion or rusting can be caused at a portion where the potential is lowered. However, if Ni is added at the same time, Ni has the effect of reducing the segregation of Cu, and if both are added, the synergistic effect is exhibited.
On the other hand, when only Ni is added without adding Cu, the increase in the effect of suppressing rusting and local corrosion is small for an increase in cost, but adding both Cu and Ni causes rusting and local corrosion. The effect of suppressing appears remarkably.
Addition of both Cu and Ni has the effect of further improving the strength and suppressing the formation of ferrite. In particular, Ni has an effect of preventing ductility and toughness of the base material by preventing slab cracking due to addition of Cu and adding together with Cu.

(Mo:0.01%以上0.20%以下)
MoはCrおよびAlが添加された鋼において、0.01%以上添加されると、母材の特性を損なうことなく局部腐食の発生と成長を抑制する効果が認められる。一方、0.20%を超えてMoを添加しても効果が飽和するばかりか、母材の延性及び靭性が低下し、揚貯運炭設備用部材に加工する際、冷間加工割れ、表面微細割れを生じることがある。したがって、その範囲を0.01%以上0.20%以下とする。
(Mo: 0.01% or more and 0.20% or less)
When steel is added with Cr and Al in an amount of 0.01% or more, Mo has an effect of suppressing the occurrence and growth of local corrosion without impairing the properties of the base material. On the other hand, adding Mo beyond 0.20% not only saturates the effect, but also lowers the ductility and toughness of the base metal, and causes cold work cracks, May cause microcracking. Therefore, the range is 0.01% or more and 0.20% or less.

(Nb:0.005%以上0.050%以下)
Nbは、耐食性を損なわずに、強度および靭性を改善する元素であり、その効果は0.005%以上から認められるが、0.050%を超えると効果が飽和するので範囲を0.005%以上0.050%以下と限定する。
(Nb: 0.005% to 0.050%)
Nb is an element that improves strength and toughness without impairing corrosion resistance, and its effect is recognized from 0.005% or more, but when it exceeds 0.050%, the effect is saturated, so the range is 0.005%. It is limited to 0.050% or less.

(V:0.005%以上0.050%以下)
Vは、Nbと同じく耐食性を損なわずに強度を改善する元素であり、0.005%以上で効果が認められるが、多量の添加は延性を阻害するので上限を0.050%とする。
(V: 0.005% to 0.050%)
V, like Nb, is an element that improves the strength without impairing the corrosion resistance, and an effect is observed at 0.005% or more. However, since a large amount inhibits ductility, the upper limit is made 0.050%.

(Ti:0.005%以上0.030%未満)
Tiは、窒化物の生成を通じて高温での結晶粒径の細粒化に寄与する元素であり、耐食性を損なわずに、延性の改善などに寄与し、その効果は0.005%以上から認められる。一方、0.030%以上を添加すると炭化物が多量に析出するために、かえって延性及び靭性を阻害し、揚貯運炭設備用部材に加工し使用する際、冷間加工割れ又は靭性低下の不具合を生じることがある。したがって、その範囲を0.005%%以上0.030%未満に限定する。
(Ti: 0.005% or more and less than 0.030%)
Ti is an element that contributes to refinement of the crystal grain size at high temperatures through the formation of nitrides, contributes to improvement of ductility, etc. without impairing corrosion resistance, and the effect is recognized from 0.005% or more. . On the other hand, when 0.030% or more is added, a large amount of carbide precipitates, so that the ductility and toughness are hindered. May occur. Therefore, the range is limited to 0.005% or more and less than 0.030%.

また、本発明では、更に、Ca:0.0005%以上0.010%以下、Mg:0.0005%以上0.010%以下、REM:0.001%以上0.010%以下の何れか1種又は2種以上を添加することで、更に、耐局部腐食性及び耐錆剥離性を向上させ、無機ジンクリッチプライマー層を設けた際の耐発錆性を向上させることが可能である。   Further, in the present invention, any one of Ca: 0.0005% to 0.010%, Mg: 0.0005% to 0.010%, REM: 0.001% to 0.010%. By adding seeds or two or more kinds, it is possible to further improve local corrosion resistance and rust peel resistance and to improve rust resistance when an inorganic zinc rich primer layer is provided.

(Ca:0.0005%以上0.010%以下)
(Mg:0.0005%以上0.010%以下)
Ca及びMgは、Cr及びAlを含有する鋼において、不明な点は多いが、鋼中に添加することで、環境中で選択的に溶解し、鋼板表面でアルカリ環境を形成することから耐食性向上に寄与する元素である。いずれも5ppm以上で耐食性の向上は認められるが、100ppmを越えて添加すると、耐食性向上効果が飽和するばかりでなく、母材の延性や靭性が低下する傾向が明らかとなっており、その添加量を5ppm以上100ppm以下(0.0005%以上0.010%以下)に限定する。
(Ca: 0.0005% or more and 0.010% or less)
(Mg: 0.0005% or more and 0.010% or less)
Ca and Mg have many unclear points in steels containing Cr and Al. However, when added to steel, Ca and Mg are selectively dissolved in the environment to form an alkaline environment on the steel sheet surface, thus improving corrosion resistance. Is an element that contributes to In any case, improvement in corrosion resistance is recognized at 5 ppm or more, but when added over 100 ppm, not only the effect of improving corrosion resistance is saturated, but also the tendency of the ductility and toughness of the base material to decrease is clarified. Is limited to 5 ppm to 100 ppm (0.0005% to 0.010%).

(REM:0.001%以上0.010%以下)
本発明では、希土類元素(REM)を適宜添加しても、その耐食性を損なわずに、母材の延性などを改善することが可能である。その添加量は、0.001%以上を必要とするが、多量の添加はそれを阻害するので、その上限を0.010%とする。
(REM: 0.001% or more and 0.010% or less)
In the present invention, even if rare earth elements (REM) are added as appropriate, ductility of the base material can be improved without impairing its corrosion resistance. The amount of addition needs to be 0.001% or more, but addition of a large amount inhibits it, so the upper limit is made 0.010%.

本発明の揚貯運炭設備用耐食鋼材の製造方法については、上記に述べた成分を有する鋼片を出発材として、加熱、圧延工程、及び必要に応じて熱処理工程を経て製造される。鋼片は、転炉あるいは電気炉により成分調整され溶製後、連続鋳造法及び造塊・分塊法などの工程により製造される。鋼片は加熱後、熱間圧延により鋼板、形鋼、もしくは鋼管などとして目的に応じて焼き入れ、焼き戻しや焼きならしなどの熱処理を加えても、本鋼材の耐食性になんら影響を与えるものでない。   About the manufacturing method of the corrosion-resistant steel material for the coal storage equipment of this invention, it manufactures through the heating, a rolling process, and the heat processing process as needed using the steel piece which has the above-mentioned component as a starting material. The steel slab is manufactured by a process such as a continuous casting method and an ingot-making / bundling method after the components are adjusted by a converter or an electric furnace and melted. Steel slabs, which are heated, are hot rolled into steel sheets, shaped steels, or steel pipes as they are subjected to heat treatment such as quenching, tempering, and normalizing, depending on the purpose. Not.

(無機ジンクリッチプライマー層)
本発明の揚貯運炭設備用耐食鋼材は、上記組成からなる下地鋼材の表面に、無機ジンクリッチプライマー層を形成させることが好ましい。無機ジンクリッチプライマー層による金属亜鉛による犠牲防食の効果が失われた後も、腐食生成物がCr及びAlを添加した鋼材の表面を保護し、発錆を抑制する効果を長期化させることが可能である。
無機ジンクリッチプライマー層は、その膜厚を5〜100μmとすることが好ましい。膜厚が5μm未満では無機ジンクリッチプライマーの効果が得られ難く、また100μmを超えると、割れやダレを生じやすくなり、耐食性が低下する。更に、無機ジンクリッチプライマー層は、膜厚が厚くなればなるほど、溶断・溶接時にヒュームやブローホールを生じやすくなり、加工性が低下する。また、加工性、耐食性、経済性のバランスを考慮すると、膜厚は10〜30μmがより好ましい。
(Inorganic zinc rich primer layer)
It is preferable that the corrosion-resistant steel material for a coal storage facility according to the present invention has an inorganic zinc rich primer layer formed on the surface of the base steel material having the above composition. Even after the effect of sacrificial corrosion protection by metallic zinc by the inorganic zinc rich primer layer is lost, the corrosion products can protect the surface of steel materials with added Cr and Al, and the effect of suppressing rusting can be prolonged. It is.
The inorganic zinc rich primer layer preferably has a thickness of 5 to 100 μm. When the film thickness is less than 5 μm, it is difficult to obtain the effect of the inorganic zinc-rich primer. When the film thickness exceeds 100 μm, cracking and sagging are likely to occur, and the corrosion resistance is lowered. Furthermore, as the inorganic zinc-rich primer layer becomes thicker, fume and blowholes are more likely to occur during fusing and welding, and the workability decreases. In consideration of the balance of workability, corrosion resistance, and economy, the film thickness is more preferably 10 to 30 μm.

また、無機ジンクリッチプライマー層は、乾燥塗膜中に金属亜鉛を30質量%以上含有するものを用いることが好ましい。通常、無機ジンクリッチプライマーの組成は、アルキルシリケート、エチルシリケート等のシリケート縮合液をビヒクルとしたものを用いることが多い。また、加熱残分中の金属亜鉛は30質量%以上のものであれば特に規定するものではないが、JIS K 5552 1種相当品であることが、信頼性の点で好ましい。   The inorganic zinc rich primer layer preferably contains 30% by mass or more of metallic zinc in the dry coating film. In general, the inorganic zinc-rich primer is often composed of a silicate condensate such as an alkyl silicate or ethyl silicate as a vehicle. Further, the metallic zinc in the heating residue is not particularly defined as long as it is 30% by mass or more, but it is preferable in terms of reliability that it is a JIS K 5552 type 1 equivalent product.

無機ジンクリッチプライマー層の形成方法については、特に限定されるものではないが、鋼材に無機ジンクリッチプライマーを刷毛又はスプレーにて塗布することで、鋼材表面に無機ジンクリッチプライマー層を形成することができる。但し、無機ジンクリッチプライマーを塗布又はスプレーする前に、ショットブラストやサンドブラストにより、鋼材表面の錆落としをしておくことが、密着性の点で好ましい。また、ブラスト処理レベルとしては、ISO 8501−1に示すSa2・1/2以上が好ましい。また、ブラスト処理された鋼材表面に無機ジンクリッチプライマーをスプレーする場合、エアレススプレーによりスプレーすることが、作業効率の点で好ましい。   The formation method of the inorganic zinc rich primer layer is not particularly limited, but the inorganic zinc rich primer layer can be formed on the steel material surface by applying the inorganic zinc rich primer to the steel material with a brush or spray. it can. However, from the viewpoint of adhesion, it is preferable to remove rust on the surface of the steel material by shot blasting or sand blasting before applying or spraying the inorganic zinc rich primer. Moreover, as a blast processing level, Sa2 * 1/2 or more shown to ISO 8501-1 is preferable. Moreover, when spraying an inorganic zinc rich primer on the blasted steel material surface, it is preferable from the point of work efficiency to spray by airless spray.

また、本発明の揚貯運炭設備用耐食鋼材では、鋼材の表面又は無機ジンクリッチプライマー層の表面に耐熱性のエポキシ系樹脂層またはシリコーン系樹脂層を形成させることで、更に耐久性を向上させることが可能である。
エポキシ系樹脂塗料としては、主剤と硬化剤を含む2液型のものを例示でき、例えば、エポニックス(登録商標)又はマリンバラスター(登録商標)を例示できる。マリンバラスター(登録商標)は、エポキシ樹脂を含む主剤と、変性脂肪族ポリアミンを含む硬化剤からなるエポキシ系樹脂塗料である。
シリコーン系樹脂塗料としては、シリコーン樹脂を含む主剤とトルエン等を含む硬化剤を混合させて得られたものを例示でき、例えば、パイロジンスタックACT#250やパイロジン(登録商標)B#1000を例示できる。
Moreover, in the corrosion-resistant steel material for coal storage equipment of the present invention, durability is further improved by forming a heat-resistant epoxy resin layer or silicone resin layer on the surface of the steel material or the surface of the inorganic zinc rich primer layer. It is possible to make it.
Examples of the epoxy resin paint include a two-pack type containing a main agent and a curing agent, and examples thereof include Eponics (registered trademark) or Marine Ballaster (registered trademark). Marine Ballaster (registered trademark) is an epoxy resin coating composed of a main agent containing an epoxy resin and a curing agent containing a modified aliphatic polyamine.
Examples of the silicone-based resin paint include those obtained by mixing a main agent containing a silicone resin and a curing agent containing toluene, for example, Pyrogin Stack ACT # 250 and Pyrogin (registered trademark) B # 1000. it can.

耐熱性のエポキシ系樹脂層又はシリコーン系樹脂層の厚みは、20〜400μmとすることが好ましい。厚みが20μm未満では耐食性が低下し、400μm超ではそれ以上の耐食性の効果がなく、経済性に不利となる。特に、エポキシ系樹脂層の場合は40〜100μmがよりよく、シリコーン系樹脂層の場合は塗装性、経済性の観点から20〜75μmがよりよく、2回塗りするなど多層塗りすることが望ましい。   The thickness of the heat-resistant epoxy resin layer or silicone resin layer is preferably 20 to 400 μm. If the thickness is less than 20 μm, the corrosion resistance decreases, and if it exceeds 400 μm, there is no further effect of corrosion resistance, which is disadvantageous for economic efficiency. In particular, in the case of an epoxy-based resin layer, 40 to 100 μm is better, and in the case of a silicone-based resin layer, 20 to 75 μm is better from the viewpoint of paintability and economical efficiency, and it is desirable to apply multiple layers such as coating twice.

エポキシ樹脂層又はシリコーン系樹脂層の施工方法としては、鋼材の表面又は無機ジンクリッチプライマー層の表面に、刷毛、エアレス又はエアスプレー等により、乾燥塗膜の厚さが所望の厚みになるよう、エポキシ系樹脂塗料またはシリコーン系樹脂塗料を塗装し、常温で硬化させて仕上げればよい。   As a construction method of the epoxy resin layer or the silicone-based resin layer, the surface of the steel material or the surface of the inorganic zinc rich primer layer is made to have a desired thickness by a brush, airless or air spray, etc. An epoxy resin paint or a silicone resin paint may be applied and cured at room temperature.

以上説明したような本発明に係る揚貯運炭設備用耐食鋼材よれば、上記成分及び構成により、石炭腐食環境において、局部腐食に進展による穴あき・減肉を防止し、かつ錆を発生させにくく、また、たとえ錆が発生しても錆が剥離し難いため設備外に拡散しにくくなる。その結果、揚貯運炭設備内及びその周辺が腐食生成物や錆で汚染しにくくなり、操業トラブルを防止できる。また、本発明の耐食鋼材を素材とする揚貯運炭設備部材も、耐局部腐食性、耐発錆性及び耐錆剥離性に優れた、揚貯運炭設備用耐食鋼材と同様、揚貯運炭設備内及びその周辺において、発錆や錆の剥離が抑制され、操業トラブルを防止することが可能となる。   According to the corrosion-resistant steel material for lifting and storage coal facilities according to the present invention as described above, the above components and configuration prevent perforation / thinning due to progress in local corrosion and generate rust in a coal corrosion environment. In addition, even if rust is generated, it is difficult for the rust to be peeled off, so that it is difficult to diffuse out of the facility. As a result, the inside and surroundings of the coal storage facility are less likely to be contaminated with corrosion products and rust, and operational troubles can be prevented. In addition, the storage and storage coal equipment members made of the corrosion-resistant steel of the present invention are also similar to the storage and storage coal equipment, which is excellent in local corrosion resistance, rust resistance and rust peel resistance. Rust generation and rust peeling are suppressed in and around the coal handling facility, and operational troubles can be prevented.

更に、本発明に係る耐食鋼材は、上記成分及び構成により、希硫酸を含まず、Clイオンが濃化した石炭腐食環境において、耐局部腐食性及び耐錆剥離性に優れ、無機ジンクリッチプライマー層を設けることにより、長期に亘って耐発錆性を発現させることができる。そのため、本発明に係る耐食鋼材を、揚貯運炭設備によってハンドリングされる粉粒体の炭素から滲出するClイオンが濃化した炭素腐食環境で使用することにより、揚貯運炭設備内及びその周辺において、局部腐食や錆の剥離、更には発錆が抑制され、操業トラブルを防止することが可能となる。 Furthermore, the corrosion resistant steel material according to the present invention is excellent in local corrosion resistance and rust peeling resistance in a coal corrosive environment that does not contain dilute sulfuric acid and is enriched with Cl ions, and has an inorganic zinc rich primer. By providing the layer, rust resistance can be exhibited over a long period of time. Therefore, by using the corrosion-resistant steel material according to the present invention in a carbon corrosive environment in which Cl ions leached from the carbon of the granular material handled by the storage and storage coal facility are concentrated, In the vicinity thereof, local corrosion, rust peeling, and further rusting are suppressed, and operational troubles can be prevented.

以下、実施例により本発明の効果を説明するが、本発明は、以下の実施例で用いた条件に限定されるものではない。   Hereinafter, the effects of the present invention will be described with reference to examples, but the present invention is not limited to the conditions used in the following examples.

本実施例では、先ず、表1〜5に示す合金組成の鋼を溶製・鋳造し、板厚6mmまで熱間圧延、熱処理後、試験片としたものを作製した。   In this example, first, steels having the alloy compositions shown in Tables 1 to 5 were melted and cast, and hot rolled to a plate thickness of 6 mm, heat-treated, and then used as test pieces.

Figure 2012092437
Figure 2012092437

Figure 2012092437
Figure 2012092437

Figure 2012092437
Figure 2012092437

Figure 2012092437
Figure 2012092437

Figure 2012092437
Figure 2012092437

次に、上記試験片から500×1000×5mmを採取し、実プラント暴露試験片とした。この実プラント暴露試験片の片面の中央部に、溶接部を模擬するため、日鐵住金溶接工業(株)製の商品名:309ML・R(JIS Z3221 D309MoL−16該当)被覆アーク溶接棒を用い、500mm方向に、500mmにわたって、溶接金属部が幅10mmになるように直線状に2パス肉盛を行った。その後、ショットブラストでSa2・1/2(ISO 8501−1)以上になるようにブラスト処理を施した。この溶接部を含む500×1000mm面を試験面とした。   Next, 500 * 1000 * 5mm was extract | collected from the said test piece, and it was set as the actual plant exposure test piece. In order to simulate a welded portion at the center of one side of the actual plant exposure test piece, a product name: 309ML • R (corresponding to JIS Z3221 D309MoL-16) manufactured by Nippon Steel & Sumikin Welding Co., Ltd. is used. Two-pass overlay was performed in a straight line so that the weld metal part had a width of 10 mm over 500 mm in the 500 mm direction. Thereafter, a blasting process was performed by shot blasting so as to obtain Sa2 · 1/2 (ISO 8501-1) or more. A 500 × 1000 mm surface including this weld was used as a test surface.

次に、石炭を貯蔵・搬出するホッパーの側面及び石炭を搬送するコンベヤーの下に、試験面を表面にして、実プラント暴露試験片の全周を、前記309ML・R被覆アーク溶接棒を用いて溶接し、Sa2・1/2(ISO 8501−1)以上になるようにケレン処理を施して設置し、一部の実プラント暴露試験片の試験面全体に無機ジンクリッチプライマーを表6〜表10に示す膜厚となるよう塗布し、常温、相対湿度(RH)70%以下で7日間乾燥させ、無機ジンクリッチプライマー層を有する実プラント暴露試験片を準備した。なお、無機ジンクリッチプライマーには、JIS K 5552 1種相当品(日本ペイント株式会社製 商品名:ニッペジンキー(登録商標)1000P)で調整したものを用いた。   Next, under the side of the hopper for storing and unloading the coal and under the conveyor for transporting the coal, the test surface is the surface, and the entire circumference of the actual plant exposure test piece is used with the 309ML / R-coated arc welding rod. Welding and installing kelen treatment so that it becomes Sa2 · 1/2 (ISO 8501-1) or more, and an inorganic zinc rich primer is applied to the entire test surface of some actual plant exposure test pieces. It was applied so as to have a film thickness shown in FIG. 1 and dried at room temperature and a relative humidity (RH) of 70% or less for 7 days to prepare an actual plant exposure test piece having an inorganic zinc rich primer layer. In addition, the inorganic zinc rich primer used what was adjusted with JISK5552 1 type equivalent goods (Nippon Paint Co., Ltd. brand name: Nippinjin key (trademark) 1000P).

次に、無機ジンクリッチプライマーを塗布したものと、塗布していないものの一部試験片の試験面に、エアレススプレーを用いて、エポキシ系樹脂(大日本塗料株式会社製 商品名:エポニックス(登録商標)#90下塗り‐R)又はシリコーン系樹脂(大島工業株式会社製、商品名:パイロジン(登録商標)B#1000)を、表6〜表10に示す膜厚となるように塗布した。
次に、無機ジンクリッチプライマーまたはシリコーン系樹脂を塗布した実プラント暴露試験片において、不可避的な欠陥を模擬して、幅0.6mm長さ300mmの2本の直線が、互いに試験面の中央部(溶接金属中央)で交わるXカットをカッターで入れ、地鉄面を露出させた。このとき、Xカットは、前記試験面上から見て30°で交わるよう入れた。
なお、全実プラント暴露試験片において、周溶接した溶接金属部を含む試験片側面には、シリコーン系樹脂を刷毛で厚く塗布し、石炭輸送用ホッパー本体および石炭輸送コンベア部材そのものが犠牲陽極とならないようにした。
Next, an epoxy resin (trade name: Eponics (registered trademark) manufactured by Dainippon Paint Co., Ltd.) was used on the test surface of some test pieces with and without inorganic zinc rich primer applied, using an airless spray. ) # 90 Undercoat-R) or silicone resin (trade name: Pyrodin (registered trademark) B # 1000, manufactured by Oshima Kogyo Co., Ltd.) was applied so as to have the film thicknesses shown in Tables 6 to 10.
Next, in an actual plant exposure test piece coated with an inorganic zinc-rich primer or a silicone resin, two straight lines having a width of 0.6 mm and a length of 300 mm are simulating each other at the center of the test surface. The X-cut intersecting at (the center of the weld metal) was put with a cutter to expose the ground iron surface. At this time, the X cuts were inserted so as to intersect at 30 ° when viewed from the test surface.
In all actual plant exposure test pieces, the silicone resin is thickly applied with brush on the side of the test piece including the welded metal part that has been circumferentially welded, and the coal transport hopper body and the coal transport conveyor member itself do not become sacrificial anodes. I did it.

実プラント暴露試験片を設置したホッパー及びコンベヤーを、実操業に用い、石炭の貯蔵・搬出、搬送に5年間使用した後、実プラント曝露試験片を回収し、これら暴露試験片表面の耐局部腐食性、耐発錆性、耐錆剥離性及びこれらの総合評価を行った。
更に耐発錆性、耐錆剥離性については、実プラント暴露試験片同様に、無機ジンクリッチプライマーやエポキシ系樹脂又はシリコーン系樹脂の塗布処理を施した暴露試験片を、80℃、100%RHの環境中で、石炭下に設置し、ラボにて各種腐食試験を5年間実施した。
これらの評価結果を表6〜10に示す。
The hopper and conveyor with actual plant exposure test specimens are used for actual operation and used for 5 years for storing, carrying out, and transporting coal, then the actual plant exposure test specimens are collected, and local corrosion resistance on the surface of these exposed test specimens. , Resistance to rusting, anti-rust peelability and comprehensive evaluation thereof.
Furthermore, with respect to rust resistance and rust resistance peel resistance, an exposed test piece subjected to coating treatment with an inorganic zinc rich primer, an epoxy resin or a silicone resin is applied at 80 ° C. and 100% RH in the same manner as an actual plant exposure test piece. In the environment of, it was installed under coal and various corrosion tests were carried out in the laboratory for 5 years.
These evaluation results are shown in Tables 6-10.

耐発錆性は、発錆の有無で評価した。すなわち、肉眼で赤錆の発生が認められないものは○、赤錆の発生が認められるのは×とした。   Rust resistance was evaluated by the presence or absence of rust. That is, the case where the occurrence of red rust was not recognized with the naked eye was rated as ◯, and the case where red rust was observed as x.

耐錆剥離性は、錆発生が認められた暴露試験片において、錆部に対し、石炭を手で持って10〜15kgfの力で押し付けたまま10回摺動させ、その錆が剥離するか、否かを肉眼で観察し、錆の密着性を評価した。すなわち、錆破片の剥離が肉眼で認めらない場合は○、認められる場合は×とした。   Rust resistance peelability is the exposure test piece in which rust generation was observed. Hold the coal by hand and slide it 10 times with a force of 10 to 15 kgf, and the rust peels off. It was observed with the naked eye and the adhesion of rust was evaluated. That is, when peeling of rust debris was not recognized with the naked eye, it was marked with ◯, and when it was recognized with x.

耐局部腐食性は、錆を完全に除去した後(本条件では、母材は、溶解しないことを確認済み)、レーザー光学顕微鏡を用いて、それぞれ試験面の溶接部を含む中央部の、100×100mmの領域を観察し、局部腐食の進展が最大である部分(最も深い部分)の深さを測定して腐食速度を評価した。腐食速度が、0.03mm/year以下を○とし、腐食速度が、0.03mm/yearを超えるものを×とした。なお、錆は、インヒビターとして、スギムラ化学工業(株)製「ヒビロン」(登録商標)を0.5%添加した、50℃、10%硫酸水溶液中に、腐食後の暴露試験片を20分間浸漬して、除去した。   The local corrosion resistance is 100 at the central portion including the welded portion of the test surface using a laser optical microscope after completely removing rust (in this condition, it was confirmed that the base material does not dissolve). An area of × 100 mm was observed, and the corrosion rate was evaluated by measuring the depth of the portion (the deepest portion) where the progress of local corrosion was maximum. The case where the corrosion rate was 0.03 mm / year or less was evaluated as ◯, and the case where the corrosion rate exceeded 0.03 mm / year was evaluated as x. In addition, as for the rust, the exposure test piece after corrosion was immersed for 20 minutes in 50%, 10% sulfuric acid aqueous solution to which 0.5% “Hibiron” (registered trademark) manufactured by Sugimura Chemical Co., Ltd. was added as an inhibitor. And removed.

総合評価については、耐局部腐食性が「○」、耐発錆性が「○」、耐錆剥離性が「○」のものについては「○」、耐発錆性が「×」であっても、耐局部腐食性が「○」かつ、耐錆剥離性が「○」のものについては「○」、それ以外を「×」と評価した。これは、例え、錆が生じても、耐錆剥離性、及び、耐局部腐食性が優れている場合は、設備の錆汚染及び設備腐食を防止できる、という観点に基づく評価である。ただし、実プラント暴露試験後に、その試験片の180°曲げを行った際に、割れを生じたものは、冷間加工性の観点から適さず、総合評価を「×」としている。
なお、耐錆剥離性について、錆が剥離することが肉眼で判別しづらく、その剥離量が極めて微量であって、実質的にプラント操業に影響を与えるとは考えられない場合は、「△」とした。したがって、「△」であっても本願発明の目的とする効果が得られる。
For the comprehensive evaluation, local corrosion resistance is "○", rust resistance is "○", rust resistance peel resistance is "○", "○", and rust resistance is "X". In addition, the case where the local corrosion resistance was “◯” and the rust resistance peelability was “O” was evaluated as “O”, and the others were evaluated as “X”. This is an evaluation based on the viewpoint that, even if rust occurs, the rust contamination of the equipment and the equipment corrosion can be prevented if the rust peel resistance and the local corrosion resistance are excellent. However, after the actual plant exposure test, when the test piece was bent by 180 °, cracks were not suitable from the viewpoint of cold workability, and the overall evaluation was “x”.
In addition, regarding rust resistance peelability, it is difficult to determine with naked eyes that the rust is peeled off, and when the amount of peeling is extremely small and is not considered to substantially affect the plant operation, "△" It was. Therefore, even if “Δ”, the intended effect of the present invention can be obtained.

Figure 2012092437
Figure 2012092437

Figure 2012092437
Figure 2012092437

Figure 2012092437
Figure 2012092437

Figure 2012092437
Figure 2012092437

Figure 2012092437
Figure 2012092437

表6〜10に示すように、本発明の範囲内にあるNo.1〜83の試験片(本発明例)は、耐局部腐食性、耐発錆性、耐錆剥離、の総合評価について何れも優れた結果を示した。   As shown in Tables 6 to 10, No. 4 within the scope of the present invention. The test pieces 1 to 83 (examples of the present invention) all showed excellent results for comprehensive evaluation of local corrosion resistance, rust resistance, and rust resistance peeling.

一方、本願発明から外れる比較例1〜30では、いずれかの試験環境で耐錆剥離性または耐局部腐食性が悪かった。   On the other hand, in Comparative Examples 1 to 30 that deviate from the present invention, the rust peel resistance or local corrosion resistance was poor in any test environment.

これらの結果から、上述した知見を確認することができ、また、上述した各鋼成分を限定する根拠を裏付けることができた。   From these results, the above-described findings could be confirmed, and the grounds for limiting the above-described steel components could be supported.

Claims (21)

質量%で、
C:0.005%以上0.030%以下、
Si:0.18%以上0.50%以下、
Mn:1.50%以上3.00未満、
P:0.030%以下、
S:0.0050%以下、
Cr:4.0%以上9.0%以下、
Al:0.20%以上1.50%以下、
N:0.020%以下
をそれぞれ含有し、
残部がFeおよび不可避的不純物からなることを特徴とする、揚貯運炭設備用耐食鋼材。
% By mass
C: 0.005% or more and 0.030% or less,
Si: 0.18% or more and 0.50% or less,
Mn: 1.50% or more and less than 3.00,
P: 0.030% or less,
S: 0.0050% or less,
Cr: 4.0% or more and 9.0% or less,
Al: 0.20% or more and 1.50% or less,
N: each containing 0.020% or less,
A corrosion-resistant steel material for a coal storage facility, wherein the balance is made of Fe and inevitable impurities.
質量%で、さらに
Cu:0.05%以上0.50%以下、
Ni:0.05%以上0.50%以下、
をそれぞれ含有することを特徴とする、請求項1に記載の揚貯運炭設備用耐食鋼材。
% By mass, further Cu: 0.05% or more and 0.50% or less,
Ni: 0.05% or more and 0.50% or less,
The corrosion-resistant steel material for lifting and coal storage equipment according to claim 1, wherein
質量%で、さらに
Mo:0.01%以上0.20%以下、
V:0.005%以上0.050%以下、
Nb:0.005%以上0.050%以下、
Ti:0.005%以上0.030%未満
の何れか1種又は2種以上を含有することを特徴とする、請求項1又は2に記載の揚貯運炭設備用耐食鋼材。
% By mass, Mo: 0.01% or more and 0.20% or less,
V: 0.005% or more and 0.050% or less,
Nb: 0.005% or more and 0.050% or less,
Ti: 0.005% or more and less than 0.030% of any 1 type or 2 types or more are contained, The corrosion-resistant steel material for the storage coal carrier facilities of Claim 1 or 2 characterized by the above-mentioned.
質量%で、さらに
Ca:0.0005%以上0.010%以下、
Mg:0.0005%以上0.010%以下、
REM:0.001%以上0.010%以下
の何れか1種又は2種以上を含有することを特徴とする、請求項1〜3のいずれか1項に記載の揚貯運炭設備用耐食鋼材。
Mass%, further Ca: 0.0005% or more and 0.010% or less,
Mg: 0.0005% or more and 0.010% or less,
REM: 0.001% or more and 0.010% or less of any one type or two or more types, The corrosion resistance for the storage and coal storage equipment according to any one of claims 1 to 3, Steel material.
更に、前記耐食鋼材の外表面側に、エポキシ系樹脂層又はシリコーン系樹脂層を有し、前記シリコーン系樹脂層又は前記エポキシ系樹脂層の膜厚が20〜400μmであることを特徴とする、請求項1〜4のいずれか1項に記載の揚貯運炭設備用耐食鋼材。   Furthermore, on the outer surface side of the corrosion-resistant steel material, it has an epoxy resin layer or a silicone resin layer, and the film thickness of the silicone resin layer or the epoxy resin layer is 20 to 400 μm, The corrosion-resistant steel material for a coal storage facility according to any one of claims 1 to 4. 更に、請求項1〜4のいずれか1項に記載の成分からなる下地鋼材の表面に、金属亜鉛30質量%以上を含有する5〜100μmの厚みの無機ジンクリッチプライマー層を有することを特徴とする、請求項1〜4のいずれか1項に記載の揚貯運炭設備用耐食鋼材。   Furthermore, it has the inorganic zinc rich primer layer of the thickness of 5-100 micrometers containing metal zinc 30 mass% or more on the surface of the base steel material which consists of a component of any one of Claims 1-4, It is characterized by the above-mentioned. The corrosion-resistant steel material for lifting and storing coal facilities according to any one of claims 1 to 4. 前記無機ジンクリッチプライマー層の外表面側に、エポキシ系樹脂層又はシリコーン系樹脂層を有し、前記シリコーン系樹脂層又は前記エポキシ系樹脂層の膜厚が20〜400μmであることを特徴とする、請求項6に記載の揚貯運炭設備用耐食鋼材。   It has an epoxy resin layer or a silicone resin layer on the outer surface side of the inorganic zinc rich primer layer, and the silicone resin layer or the epoxy resin layer has a thickness of 20 to 400 μm. The corrosion-resistant steel material for lifting and coal storage equipment according to claim 6. 素材が、質量%で、
C:0.005%以上0.030%以下、
Si:0.18%以上0.50%以下、
Mn:1.50%以上3.00未満、
P:0.030%以下、
S:0.0050%以下、
Cr:4.0%以上9.0%以下、
Al:0.20%以上1.50%以下、
N:0.020%以下
をそれぞれ含有し、
残部がFe及び不可避的不純物からなる耐食鋼材であることを特徴とする、揚貯運炭設備用部材。
The material is mass%,
C: 0.005% or more and 0.030% or less,
Si: 0.18% or more and 0.50% or less,
Mn: 1.50% or more and less than 3.00,
P: 0.030% or less,
S: 0.0050% or less,
Cr: 4.0% or more and 9.0% or less,
Al: 0.20% or more and 1.50% or less,
N: each containing 0.020% or less,
A member for a coal storage facility, wherein the balance is a corrosion-resistant steel material made of Fe and inevitable impurities.
前記耐食鋼材が、質量%で、更に
Cu:0.05%以上0.50%以下、
Ni:0.05%以上0.50%以下、
をそれぞれ含有することを特徴とする、請求項8に記載の揚貯運炭設備用部材。
The corrosion-resistant steel material is mass%, and Cu: 0.05% or more and 0.50% or less,
Ni: 0.05% or more and 0.50% or less,
Each of these is contained, The member for pumping storage coal equipment of Claim 8 characterized by the above-mentioned.
前記耐食鋼材が、質量%で、更に
Mo:0.01%以上0.20%以下、
V:0.005%以上0.050%以下、
Nb:0.005%以上0.050%以下、
Ti:0.005%以上0.030%未満
の何れか1種又は2種以上を含有することを特徴とする、請求項8又は9に記載の揚貯運炭設備用部材。
The corrosion-resistant steel material is mass%, and Mo: 0.01% or more and 0.20% or less,
V: 0.005% or more and 0.050% or less,
Nb: 0.005% or more and 0.050% or less,
Ti: Any one type or more of 0.005% or more and less than 0.030% is contained, The member for pumping and storage coal facilities of Claim 8 or 9 characterized by the above-mentioned.
前記耐食鋼材が、質量%で、更に
Ca:0.0005%以上0.010%以下、
Mg:0.0005%以上0.010%以下、
REM:0.001%以上0.010%以下
の何れか1種又は2種以上を含有することを特徴とする、請求項8〜10のいずれか1項に記載の揚貯運炭設備用部材。
The corrosion-resistant steel material is mass%, and further Ca: 0.0005% or more and 0.010% or less,
Mg: 0.0005% or more and 0.010% or less,
REM: 0.001% or more and 0.010% or less of any one kind or two or more kinds, The member for the pumping and storage coal facilities of any one of Claims 8-10 characterized by the above-mentioned. .
更に、前記耐食鋼材の外表面側に、エポキシ系樹脂層又はシリコーン系樹脂層を有し、前記シリコーン系樹脂層又は前記エポキシ系樹脂層の膜厚が20〜400μmであることを特徴とする、請求項8〜11の何れか1項に記載の揚貯運炭設備用部材。   Furthermore, on the outer surface side of the corrosion-resistant steel material, it has an epoxy resin layer or a silicone resin layer, and the film thickness of the silicone resin layer or the epoxy resin layer is 20 to 400 μm, The member for lifting and coal storage equipment according to any one of claims 8 to 11. 更に、請求項8〜11のいずれか1項に記載の耐食鋼材を素材とする揚貯運炭設備用部材の表面に、金属亜鉛30質量%以上を含有する5〜100μmの厚みの無機ジンクリッチプライマー層を有することを特徴とする、請求項8〜11のいずれか1項に記載の揚貯運炭設備用部材。   Furthermore, the inorganic zinc rich of the thickness of 5-100 micrometers which contains 30 mass% or more of metallic zinc on the surface of the member for a coal storage equipment which uses the corrosion-resistant steel materials of any one of Claims 8-11 as a raw material. It has a primer layer, The member for pumping storage coal facilities of any one of Claims 8-11 characterized by the above-mentioned. 前記無機ジンクリッチプライマー層の外表面側に、エポキシ系樹脂層又はシリコーン系樹脂層を有し、前記シリコーン系樹脂層又は前記エポキシ系樹脂層の膜厚が20〜400μmであることを特徴とする、請求項13に記載の揚貯運炭設備用部材。   It has an epoxy resin layer or a silicone resin layer on the outer surface side of the inorganic zinc rich primer layer, and the silicone resin layer or the epoxy resin layer has a thickness of 20 to 400 μm. The member for a coal storage equipment according to claim 13. 質量%で、
C:0.005%以上0.030%以下、
Si:0.18%以上0.50%以下、
Mn:1.50%以上3.00未満、
P:0.030%以下、
S:0.0050%以下、
Cr:4.0%以上9.0%以下、
Al:0.20%以上1.50%以下、
N:0.020%以下
をそれぞれ含有し、
残部がFe及び不可避的不純物からなる耐食鋼材を、揚貯運炭設備によってハンドリングされる粉粒体の炭素から滲出するClイオンが濃化した炭素腐食環境で使用することを特徴とする、耐食鋼材の使用方法。
% By mass
C: 0.005% or more and 0.030% or less,
Si: 0.18% or more and 0.50% or less,
Mn: 1.50% or more and less than 3.00,
P: 0.030% or less,
S: 0.0050% or less,
Cr: 4.0% or more and 9.0% or less,
Al: 0.20% or more and 1.50% or less,
N: each containing 0.020% or less,
Corrosion-resistant steel material, the balance of which is composed of Fe and inevitable impurities, is used in a corrosive environment enriched with Cl ions leached from the carbon of the granular material handled by the coal storage equipment. How to use steel.
前記耐食鋼材が、質量%で、更に
Cu:0.05%以上0.50%以下、
Ni:0.05%以上0.50%以下、
をそれぞれ含有することを特徴とする、請求項15に記載の耐食鋼材の使用方法。
The corrosion-resistant steel material is mass%, and Cu: 0.05% or more and 0.50% or less,
Ni: 0.05% or more and 0.50% or less,
Each of these is contained, The usage method of the corrosion-resistant steel materials of Claim 15 characterized by the above-mentioned.
前記耐食鋼材が、質量%で、更に
Mo:0.01%以上0.20%以下、
V:0.005%以上0.050%以下、
Nb:0.005%以上0.050%以下、
Ti:0.005%以上0.030%未満
の何れか1種又は2種以上を含有することを特徴とする、請求項15又は16に記載の耐食鋼材の使用方法。
The corrosion-resistant steel material is mass%, and Mo: 0.01% or more and 0.20% or less,
V: 0.005% or more and 0.050% or less,
Nb: 0.005% or more and 0.050% or less,
The method for using a corrosion-resistant steel material according to claim 15 or 16, characterized by containing any one or more of Ti: 0.005% or more and less than 0.030%.
前記耐食鋼材が、質量%で、更に
Ca:0.0005%以上0.010%以下、
Mg:0.0005%以上0.010%以下、
REM:0.001%以上0.010%以下
の何れか1種又は2種以上を含有することを特徴とする、請求項15〜17のいずれか1項に記載の耐食鋼材の使用方法。
The corrosion-resistant steel material is mass%, and further Ca: 0.0005% or more and 0.010% or less,
Mg: 0.0005% or more and 0.010% or less,
REM: Any 1 type or 2 types or more of 0.001% or more and 0.010% or less are contained, The usage method of the corrosion-resistant steel materials of any one of Claims 15-17 characterized by the above-mentioned.
更に、前記鋼材の外表面側に、エポキシ系樹脂層又はシリコーン系樹脂層を有し、前記シリコーン系樹脂層又は前記エポキシ系樹脂層の膜厚が20〜400μmであることを特徴とする、請求項15〜18のいずれか1項に記載の耐食鋼材の使用方法。   Furthermore, it has an epoxy-type resin layer or a silicone-type resin layer in the outer surface side of the said steel material, The film thickness of the said silicone-type resin layer or the said epoxy-type resin layer is 20-400 micrometers, It is characterized by the above-mentioned. Item 19. A method of using the corrosion-resistant steel material according to any one of items 15 to 18. 更に、請求項15〜18のいずれか1項に記載の耐食鋼材の表面に、金属亜鉛30質量%以上を含有する5〜100μmの厚みの無機ジンクリッチプライマー層を設けることを特徴とする、請求項15〜18のいずれか1項に記載の耐食鋼材の使用方法。   Furthermore, the inorganic zinc rich primer layer of the thickness of 5-100 micrometers containing 30 mass% or more of metallic zinc is provided in the surface of the corrosion-resistant steel materials of any one of Claims 15-18, It is characterized by the above-mentioned. Item 19. A method of using the corrosion-resistant steel material according to any one of items 15 to 18. 前記無機ジンクリッチプライマー層の外表面側に、エポキシ系樹脂層又はシリコーン系樹脂層を有し、前記シリコーン系樹脂層又は前記エポキシ系樹脂層の膜厚が20〜400μmであることを特徴とする、請求項20に記載の耐食鋼材の使用方法。   It has an epoxy resin layer or a silicone resin layer on the outer surface side of the inorganic zinc rich primer layer, and the silicone resin layer or the epoxy resin layer has a thickness of 20 to 400 μm. The usage method of the corrosion-resistant steel material of Claim 20.
JP2011208020A 2010-09-30 2011-09-22 Corrosion-resistant steel materials for lifting and coal storage facilities, materials for lifting and coal storage facilities and methods of using corrosion-resistant steel materials Active JP5569493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011208020A JP5569493B2 (en) 2010-09-30 2011-09-22 Corrosion-resistant steel materials for lifting and coal storage facilities, materials for lifting and coal storage facilities and methods of using corrosion-resistant steel materials

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010222331 2010-09-30
JP2010222331 2010-09-30
JP2011208020A JP5569493B2 (en) 2010-09-30 2011-09-22 Corrosion-resistant steel materials for lifting and coal storage facilities, materials for lifting and coal storage facilities and methods of using corrosion-resistant steel materials

Publications (2)

Publication Number Publication Date
JP2012092437A true JP2012092437A (en) 2012-05-17
JP5569493B2 JP5569493B2 (en) 2014-08-13

Family

ID=46386104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011208020A Active JP5569493B2 (en) 2010-09-30 2011-09-22 Corrosion-resistant steel materials for lifting and coal storage facilities, materials for lifting and coal storage facilities and methods of using corrosion-resistant steel materials

Country Status (1)

Country Link
JP (1) JP5569493B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089245A (en) * 2014-11-10 2016-05-23 新日鐵住金株式会社 Corrosion resistant steel material
JP2016089246A (en) * 2014-11-10 2016-05-23 新日鐵住金株式会社 Corrosion resistant steel material
JP2019116648A (en) * 2017-12-26 2019-07-18 日本製鉄株式会社 Steel material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237601A (en) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd Neutral chloride corrosion resistant austenitic stainless steel
JP2004068098A (en) * 2002-08-07 2004-03-04 Nippon Steel Corp Steel showing excellent machinability and wet corrosion resistance
JP2004277839A (en) * 2003-03-18 2004-10-07 Nippon Steel Corp Zinc based metal-coated steel
JP2007262555A (en) * 2006-03-30 2007-10-11 Sumitomo Metal Ind Ltd Corrosion resistant steel for hold of coal/ore carrying vessel
JP2008144204A (en) * 2006-12-07 2008-06-26 Nippon Steel Corp Rust-proofing steel plate for ship's ballast tank to be protected in electric corrosion, and rust-proofing method for ship's ballast tank
JP2008174768A (en) * 2007-01-16 2008-07-31 Sumitomo Metal Ind Ltd Corrosion-resistant steel for hold of coal or ore carrier
JP2010100872A (en) * 2008-10-21 2010-05-06 Kobe Steel Ltd Steel used for vessel storing mineral
WO2010113828A1 (en) * 2009-03-30 2010-10-07 新日本製鐵株式会社 Corrosion-resistant steel for use in chimney or flue of natural gas combustion or liquefied petroleum gas combustion plant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237601A (en) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd Neutral chloride corrosion resistant austenitic stainless steel
JP2004068098A (en) * 2002-08-07 2004-03-04 Nippon Steel Corp Steel showing excellent machinability and wet corrosion resistance
JP2004277839A (en) * 2003-03-18 2004-10-07 Nippon Steel Corp Zinc based metal-coated steel
JP2007262555A (en) * 2006-03-30 2007-10-11 Sumitomo Metal Ind Ltd Corrosion resistant steel for hold of coal/ore carrying vessel
JP2008144204A (en) * 2006-12-07 2008-06-26 Nippon Steel Corp Rust-proofing steel plate for ship's ballast tank to be protected in electric corrosion, and rust-proofing method for ship's ballast tank
JP2008174768A (en) * 2007-01-16 2008-07-31 Sumitomo Metal Ind Ltd Corrosion-resistant steel for hold of coal or ore carrier
JP2010100872A (en) * 2008-10-21 2010-05-06 Kobe Steel Ltd Steel used for vessel storing mineral
WO2010113828A1 (en) * 2009-03-30 2010-10-07 新日本製鐵株式会社 Corrosion-resistant steel for use in chimney or flue of natural gas combustion or liquefied petroleum gas combustion plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089245A (en) * 2014-11-10 2016-05-23 新日鐵住金株式会社 Corrosion resistant steel material
JP2016089246A (en) * 2014-11-10 2016-05-23 新日鐵住金株式会社 Corrosion resistant steel material
JP2019116648A (en) * 2017-12-26 2019-07-18 日本製鉄株式会社 Steel material
JP6992499B2 (en) 2017-12-26 2022-01-13 日本製鉄株式会社 Steel material

Also Published As

Publication number Publication date
JP5569493B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP4502075B1 (en) Corrosion resistant steel for crude oil tankers
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
JP5862323B2 (en) Corrosion resistant steel for holding coal ships or coal / ore combined ships
JP5845646B2 (en) Corrosion resistant steel for holding coal ships and coal / iron ore combined ships
JP4525687B2 (en) Corrosion resistant steel for ships
JP2013227610A (en) Corrosion resistant steel for hold of coal carrier or coal/ore carrier
JPWO2012005327A1 (en) Corrosion resistant steel for cargo oil tanks
JP5481980B2 (en) Marine steel with excellent film swell resistance
JP3753088B2 (en) Steel material for cargo oil tanks
JP6264519B1 (en) Coal ships and steel for holding coal and ore ships and ships
JP2000017381A (en) Corrosion resistant steel for shipbuilding
JP2012077378A (en) Welded joint excellent in corrosion resistance
JP5569493B2 (en) Corrosion-resistant steel materials for lifting and coal storage facilities, materials for lifting and coal storage facilities and methods of using corrosion-resistant steel materials
JP6065062B2 (en) Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP6645462B2 (en) Steel material and method of manufacturing the same
JP6493019B2 (en) Corrosion-resistant steel for ballast tanks
JP2010229526A (en) Highly-corrosion-resistant painted steel material
JP6048104B2 (en) Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP2015157968A (en) Corrosion resistant steel for bottom plate in holding coal ship and coal and ore ship
JP2015157969A (en) Corrosion resistant steel for holding coal ship and coal and ore ship
JP6287791B2 (en) Corrosion resistant steel for inner bottom plate of coal ship and coal / ore combined use hold
JP6624129B2 (en) Steel material and method of manufacturing the same
JP2011162849A (en) Zinc primer-coated corrosion resistant steel material
JP5862464B2 (en) Corrosion resistant steel for coal ships or coal / ore combined ships
JP2011094184A (en) Highly corrosion resistant painted steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R151 Written notification of patent or utility model registration

Ref document number: 5569493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350