JP2011247642A - Method of estimating corrosion state of steel material - Google Patents

Method of estimating corrosion state of steel material Download PDF

Info

Publication number
JP2011247642A
JP2011247642A JP2010118520A JP2010118520A JP2011247642A JP 2011247642 A JP2011247642 A JP 2011247642A JP 2010118520 A JP2010118520 A JP 2010118520A JP 2010118520 A JP2010118520 A JP 2010118520A JP 2011247642 A JP2011247642 A JP 2011247642A
Authority
JP
Japan
Prior art keywords
corrosion
steel material
steel
index
environmental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010118520A
Other languages
Japanese (ja)
Other versions
JP5352530B2 (en
Inventor
Shinji Sakashita
真司 阪下
Akihiko Tatsumi
明彦 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010118520A priority Critical patent/JP5352530B2/en
Publication of JP2011247642A publication Critical patent/JP2011247642A/en
Application granted granted Critical
Publication of JP5352530B2 publication Critical patent/JP5352530B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an estimation method capable of accurately and easily estimating a corrosion state when estimating the corrosion state of a steel material in a predetermined composition in a predetermined atmospheric environment.SOLUTION: The estimation method comprises: a steel corrosion index calculation process of calculating the steel corrosion index of the steel material from the amount of two or more elements included in the steel material to be an estimation object; an environmental corrosion index calculation process of calculating the environmental corrosion index of the atmospheric environment from two or more environmental factors indicating the state of the atmospheric environment in which the steel material to be the estimation object is used; and an estimation process of estimating the corrosion state of the steel material to be the estimation object, for a boundary obtained from the relationship of the steel corrosion index and the environmental corrosion index calculated beforehand and the corrosion state, depending on in which area divided by the boundary the steel material corrosion index and the environmental corrosion index are positioned.

Description

本発明は、所定の大気環境下で使用される鋼材の腐食状態、すなわち当該鋼材表面に生成される錆の状態を推定する鋼材の腐食状態推定方法に関する。   The present invention relates to a method for estimating a corrosion state of a steel material that estimates a corrosion state of a steel material used in a predetermined atmospheric environment, that is, a state of rust generated on the surface of the steel material.

橋梁などの鋼構造物においては、必要とされる機械特性や使用予定場所の大気環境に応じて、様々な組成の鋼材が使用されている。ここで、鋼材が腐食し難い大気環境下で使用される場合は、保護皮膜の役割を果たす錆(安定錆)が鋼材の表面に均一に生成され、鋼材の腐食が抑制される。従って、景観上の問題を生じさせることなく鋼材を長期間使用できるため、鋼材を維持するにあたり耐食処理等のメンテナンスを最小限に抑えることができる。
一方、鋼材が腐食し易い大気環境下で使用される場合は、鋼材の表面に生成した錆が層状に剥離してしまう。従って、景観上の問題を生じさせてしまい鋼材の長期間の使用が困難となってしまうため、耐食処理等のメンテナンスが頻繁に必要となってしまう。
In steel structures such as bridges, steel materials having various compositions are used depending on required mechanical properties and the atmospheric environment of the intended use location. Here, when the steel material is used in an atmospheric environment where it is difficult to corrode, rust (stable rust) serving as a protective film is uniformly generated on the surface of the steel material, and corrosion of the steel material is suppressed. Accordingly, since the steel material can be used for a long time without causing a problem in landscape, maintenance such as corrosion resistance treatment can be minimized in maintaining the steel material.
On the other hand, when the steel material is used in an atmospheric environment where the steel material is easily corroded, the rust generated on the surface of the steel material is peeled off in layers. Therefore, it causes a problem on the landscape and makes it difficult to use the steel material for a long time, so that maintenance such as corrosion resistance treatment is frequently required.

このような鋼材の腐食状態、すなわち錆(安定錆)の生成能力は、鋼材の耐食性(耐候性)と使用予定場所の大気環境との兼ね合いで決まるが、コストパフォーマンスの観点より使用予定場所の大気環境に応じて必要十分な耐食性(耐候性)を有する鋼材を選定する必要がある。   The corrosion state of such steel materials, that is, the ability to generate rust (stable rust) is determined by the balance between the corrosion resistance (weather resistance) of the steel materials and the atmospheric environment of the intended use location. It is necessary to select a steel material having necessary and sufficient corrosion resistance (weather resistance) according to the environment.

現在、前記のような事情に鑑み、鋼材の腐食状態や腐食量を推定する方法が多数提案されている。
例えば、特許文献1には、橋梁の構造データ、架橋位置の地形データ等を用いて無塗装耐候性鋼橋の錆レベルを予測する方法が開示されている。また、特許文献2には、鋼材の表面に生じた錆に含まれる非晶質部分の化学成分の組成と量から錆の安定化度を評価する方法が開示されている。
In view of the above circumstances, many methods for estimating the corrosion state and the amount of corrosion of steel materials have been proposed.
For example, Patent Document 1 discloses a method for predicting the rust level of an unpainted weather-resistant steel bridge using bridge structure data, terrain data of bridge positions, and the like. Patent Document 2 discloses a method for evaluating the degree of rust stabilization from the composition and amount of the chemical component of the amorphous part contained in the rust generated on the surface of the steel material.

特開2007−39970号公報(請求項1)JP 2007-39970 A (Claim 1) 特開2002−310889号公報(請求項1)JP 2002-310889 A (Claim 1)

しかしながら、特許文献1に係る方法は、そもそも鋼材の耐食性(耐候性)が考慮されていないため、鋼材の腐食状態を正確に予測することができない。
また、特許文献2に係る方法は、測定対象となる鋼材の表面に生じた錆の化学成分を分析する必要があるが、錆の化学成分は経時的に変化していくため、正確な評価を行うためには、数ヶ月から数年という長期間にわたって鋼材を大気環境に曝露しておく必要がある。したがって、当該方法により鋼材の腐食状態を推定しようとすると、非常に長い時間がかかり、現実的ではないという問題があった。
However, since the corrosion resistance (weather resistance) of the steel material is not considered in the first place, the method according to Patent Document 1 cannot accurately predict the corrosion state of the steel material.
In addition, the method according to Patent Document 2 needs to analyze the chemical component of rust generated on the surface of the steel material to be measured. However, since the chemical component of rust changes with time, accurate evaluation is required. In order to do so, it is necessary to expose the steel to the atmospheric environment for a long period of months to years. Therefore, when it was going to estimate the corrosion state of steel materials by the said method, there existed a problem that it took very long time and was not realistic.

本発明は、前記の問題に鑑みてなされたものであり、その課題は、所定の大気環境において所定の組成の鋼材の腐食状態を推定するにあたり、簡便に腐食状態が推定できる推定方法を提供することにある。   The present invention has been made in view of the above problems, and its object is to provide an estimation method that can easily estimate the corrosion state of a steel material having a predetermined composition in a predetermined atmospheric environment. There is.

本発明者らは、所定の大気環境において所定の組成の鋼材を使用する場合に、当該鋼材に含まれるCu、Ni、Cr、Tiなどの量を用いて決定した鋼材の耐食性を表す指標(鋼材腐食指数Km)と、当該大気環境の年平均気温、年平均湿度、鋼材表面に対する付着電解質量などの環境因子を用いて決定した環境の腐食性を表す指標(環境腐食指数Ke)の2つの指標により、当該鋼材表面に生じる安定錆が剥離を起こすか否かを予測することが可能であることを見出し、本発明を創出した。   The present inventors, when using a steel material having a predetermined composition in a predetermined atmospheric environment, an index (steel material) representing the corrosion resistance of the steel material determined by using the amount of Cu, Ni, Cr, Ti, etc. contained in the steel material Corrosion index Km) and two indicators of environmental corrosivity (environmental corrosion index Ke) determined using environmental factors such as annual average temperature, annual average humidity, and the amount of electrolysis deposited on the steel surface. Thus, the present inventors have found that it is possible to predict whether or not stable rust generated on the surface of the steel material will cause peeling.

前記課題を解決するために、本発明に係る鋼材の腐食状態推定方法は、鋼材自体の特性(鋼材中に含まれる元素の量等)からみた当該鋼材の腐食のしやすさを示す鋼材腐食指数と、当該鋼材が使用される大気環境の特性(年平均気温、年平均湿度等)からみた当該鋼材の腐食のしやすさを示す環境腐食指数とを用いて、当該大気環境で使用される鋼材の腐食状態を推定するための腐食状態推定方法であって、推定対象となる鋼材に含まれる2つ以上の元素の量から、当該鋼材の鋼材腐食指数を算出する鋼材腐食指数算出工程と、前記推定対象となる鋼材が使用される大気環境の状態を示す2つ以上の環境因子から、当該大気環境の環境腐食指数を算出する環境腐食指数算出工程と、前記環境腐食指数の異なる複数の大気環境において前記鋼材腐食指数の異なる複数の鋼材を使用した場合の当該鋼材の腐食状態をそれぞれ観察することで予め算出した鋼材腐食指数と環境腐食指数と腐食状態との関係から得られる境界に対して、前記鋼材腐食指数算出工程および前記環境腐食指数算出工程によって算出した鋼材腐食指数および環境腐食指数が、当該境界で分けられるいずれの領域に位置するかによって、前記推定対象となる鋼材の腐食状態を推定する推定工程を含むことを特徴とする。
また、本発明に係る鋼材の腐食状態推定方法は、前記腐食状態が、前記鋼材の表面に形成される錆の剥離の有無であることが好ましい。
In order to solve the above-mentioned problems, the method for estimating the corrosion state of a steel material according to the present invention includes a steel material corrosion index indicating the ease of corrosion of the steel material from the viewpoint of the properties of the steel material itself (such as the amount of elements contained in the steel material). And the environmental corrosion index indicating the susceptibility to corrosion of the steel from the characteristics of the atmospheric environment in which the steel is used (annual average temperature, annual average humidity, etc.) A corrosion state estimation method for estimating the corrosion state of the steel material, the steel material corrosion index calculating step for calculating the steel material corrosion index of the steel material from the amount of two or more elements contained in the steel material to be estimated, An environmental corrosion index calculating step of calculating an environmental corrosion index of the atmospheric environment from two or more environmental factors indicating the state of the atmospheric environment in which the steel material to be estimated is used, and a plurality of atmospheric environments having different environmental corrosion indexes In said steel material When a plurality of steel materials having different corrosion indexes are used, the steel material corrosion is compared with the boundary obtained from the relationship between the steel material corrosion index, the environmental corrosion index, and the corrosion state calculated in advance by observing the corrosion state of each steel material. An estimation step of estimating the corrosion state of the steel material to be estimated according to which region the steel material corrosion index and the environmental corrosion index calculated by the index calculation step and the environmental corrosion index calculation step are located in the boundary. It is characterized by including.
Moreover, it is preferable that the said corrosion state is the presence or absence of peeling of the rust formed in the surface of the said steel material in the corrosion state estimation method of the steel material which concerns on this invention.

このように、本発明に係る鋼材の腐食状態推定方法は、予め算出した鋼材腐食指数と環境腐食指数と腐食状態との関係に、前記鋼材腐食指数算出工程および前記環境腐食指数算出工程によって算出した鋼材腐食指数および環境腐食指数をあてはめることで、鋼材の腐食状態を簡便に推定することができる。よって、実際に腐食実験等を行ったことのない組成の鋼材であっても、また、実際に腐食実験を行ったことのない大気環境であっても、鋼材の腐食状態を推定することができる。つまり、推定対象となる鋼材の腐食状態を推定するにあたり、当該鋼材の腐食実験等が不要となる。   As described above, the method for estimating the corrosion state of the steel material according to the present invention was calculated by the steel material corrosion index calculation step and the environmental corrosion index calculation step based on the relationship between the steel material corrosion index and the environmental corrosion index calculated in advance. By applying the steel material corrosion index and the environmental corrosion index, the corrosion state of the steel material can be easily estimated. Therefore, it is possible to estimate the corrosion state of a steel material even in a steel material having a composition that has never been subjected to a corrosion experiment or the like, or even in an atmospheric environment that has not actually been subjected to a corrosion experiment. . That is, in estimating the corrosion state of the steel material to be estimated, a corrosion experiment or the like of the steel material becomes unnecessary.

また、本発明に係る鋼材の腐食状態推定方法は、前記鋼材腐食指数が、前記鋼材に含まれるCu、Ni、CrおよびTiのうちの2種以上の量から算出される値であることが好ましい。そして、本発明に係る鋼材の腐食状態推定方法は、前記鋼材腐食指数が、前記鋼材に含まれるCu、Ni、CrおよびTiのうちの2種以上の量を変数とする一次関数によって算出されるものであることが好ましい。   In the method for estimating the corrosion state of a steel material according to the present invention, the steel material corrosion index is preferably a value calculated from two or more kinds of Cu, Ni, Cr and Ti contained in the steel material. . In the method for estimating the corrosion state of a steel material according to the present invention, the steel material corrosion index is calculated by a linear function having two or more kinds of Cu, Ni, Cr and Ti contained in the steel material as variables. It is preferable.

このように、本発明に係る鋼材の腐食状態推定方法は、鋼材の腐食状態(鋼材表面に生じる錆が安定に保護層として形成するかあるいは層状に剥離するか)に大きな影響を与えるCu、Ni、Cr、Tiの添加量に基づき算出した鋼材腐食指数を使用しているため、正確に鋼材の腐食状態を推定することができる。   As described above, the method for estimating the corrosion state of a steel material according to the present invention has a significant effect on the corrosion state of the steel material (whether rust generated on the steel material surface is stably formed as a protective layer or peels off in layers). Since the steel material corrosion index calculated based on the addition amount of Cr, Ti is used, the corrosion state of the steel material can be accurately estimated.

また、本発明に係る鋼材の腐食状態推定方法は、前記環境腐食指数が、前記大気環境における年平均気温、年平均湿度、および付着電解質量のうちの2種以上を変数とする算出式によって算出される値であり、前記付着電解質量は、単位時間の間に前記鋼材の単位面積に付着する電解質の量であることが好ましい。   Further, in the method for estimating the corrosion state of a steel material according to the present invention, the environmental corrosion index is calculated by a calculation formula using two or more kinds of annual average temperature, annual average humidity, and attached electrolytic mass in the atmospheric environment as variables. The attached electrolytic mass is preferably the amount of electrolyte that adheres to the unit area of the steel material during a unit time.

このように、本発明に係る鋼材の腐食状態推定方法は、鋼材の腐食状態(鋼材表面に生じる錆が安定に保護層として形成するかあるいは層状に剥離するか)に大きな影響を与える年平均気温、年平均湿度、および付着電解質量のうちの2種以上に基づき算出した環境腐食指数を使用しているため、さらに正確に鋼材の腐食状態を推定することができる。   As described above, the method for estimating the corrosion state of a steel material according to the present invention has an annual average temperature that greatly affects the corrosion state of the steel material (whether rust generated on the surface of the steel material is stably formed as a protective layer or peels into a layer). Further, since the environmental corrosion index calculated based on two or more of the annual average humidity and the attached electrolytic mass is used, the corrosion state of the steel material can be estimated more accurately.

また、本発明に係る鋼材の腐食状態推定方法は、前記環境腐食指数算出工程で算出される環境腐食指数が、少なくとも前記付着電解質量を用いて算出される場合において、前記環境腐食指数算出工程で前記環境腐食指数を算出するために用いられる前記付着電解質量は、複数の鋼材を水平方向に対し異なる角度で設置した後、それぞれの当該鋼材に付着した水溶液に含まれる電解質の量から、前記付着電解質量を当該鋼材の水平方向に対する角度ごとに求め、前記付着電解質量と当該鋼材の水平方向に対する角度との対応関係を求める電解質量測定工程と、前記電解質量測定工程によって求めた前記対応関係の中から、前記推定対象となる鋼材の水平方向に対する角度に応じた付着電解質量を選択する電解質量選択工程と、から算出されるものであることが好ましい。   Further, in the method for estimating the corrosion state of a steel material according to the present invention, when the environmental corrosion index calculated in the environmental corrosion index calculation step is calculated using at least the attached electrolytic mass, the environmental corrosion index calculation step The attached electrolytic mass used for calculating the environmental corrosion index is determined by calculating the amount of the electrolyte from the amount of the electrolyte contained in the aqueous solution attached to each steel material after a plurality of steel materials are installed at different angles with respect to the horizontal direction. The electrolytic mass is determined for each angle with respect to the horizontal direction of the steel material, the electrolytic mass measurement step for determining the correspondence between the attached electrolytic mass and the angle with respect to the horizontal direction of the steel material, and the correspondence relationship determined by the electrolytic mass measurement step. From the inside, an electrolytic mass selection step of selecting the adhered electrolytic mass according to the angle with respect to the horizontal direction of the steel material to be estimated is calculated from It is preferable that.

このように、本発明に係る鋼材の腐食状態推定方法は、付着電解質量を、鋼材の設置角度(水平方向に対する角度)ごとに算出しているため、より正確に鋼材の腐食状態を推定することができる。   As described above, the corrosion state estimation method for steel materials according to the present invention calculates the adhesion electrolysis mass for each installation angle (angle with respect to the horizontal direction) of the steel materials, and therefore more accurately estimates the corrosion state of the steel materials. Can do.

本発明に係る鋼材の腐食状態推定方法によれば、推定対象となる鋼材の腐食状態を推定するにあたり、当該鋼材の腐食実験等が不要となることから、簡便に鋼材の腐食状態を推定することができる。   According to the method for estimating the corrosion state of a steel material according to the present invention, in order to estimate the corrosion state of the steel material to be estimated, a corrosion experiment or the like of the steel material becomes unnecessary, and therefore the corrosion state of the steel material can be simply estimated. Can do.

鋼材腐食指数と環境腐食指数と腐食状態との関係を示すグラフである。It is a graph which shows the relationship between a steel material corrosion index, an environmental corrosion index, and a corrosion state.

以下、本発明に係る鋼材の腐食状態推定方法を実施するための形態について、適宜図面を参照しながら詳細に説明する。   Hereinafter, the form for implementing the corrosion state estimation method of the steel materials concerning this invention is demonstrated in detail, referring drawings suitably.

[鋼材]
本発明に係る鋼材の腐食状態推定方法の推定対象となる鋼材は、腐食状態を推定する必要があるものであれば、どのような形状、大きさのものであってもよい。
また、測定対象となる鋼材は、大気環境中で使用されるどのような構造物に使用されるものであってもよいが、例えば、長期間大気に曝される橋梁などに使用される鋼材が対象となる。
[Steel]
The steel material to be estimated by the method for estimating the corrosion state of the steel material according to the present invention may have any shape and size as long as the corrosion state needs to be estimated.
The steel material to be measured may be used for any structure used in the atmospheric environment. For example, a steel material used for a bridge exposed to the air for a long period of time may be used. It becomes a target.

[大気環境]
また、鋼材が使用される大気環境についても特に限定されず、年平均気温および年平均湿度などがわかれば(または測定できれば)、どのような大気環境であってもよい。
例えば、海岸や河岸からの距離等に関係なく本発明に係る鋼材の腐食状態推定方法を使用することができる。
[Atmospheric environment]
Also, the atmospheric environment in which the steel material is used is not particularly limited, and any atmospheric environment may be used as long as the annual average temperature and the annual average humidity are known (or can be measured).
For example, the method for estimating the corrosion state of a steel material according to the present invention can be used regardless of the distance from the coast or the riverbank.

[鋼材の腐食状態推定方法]
次に、本発明に係る鋼材の腐食状態推定方法の実施の形態について、図1を参照して説明する。
本実施形態に係る鋼材の腐食状態推定方法は、推定対象となる鋼材に含まれる2つ以上の元素の量から、当該鋼材の鋼材腐食指数を算出する鋼材腐食指数算出工程と、前記推定対象となる鋼材が使用される大気環境の状態を示す2つ以上の環境因子から、当該大気環境の環境腐食指数を算出する環境腐食指数算出工程と、前記環境腐食指数の異なる複数の大気環境において前記鋼材腐食指数の異なる複数の鋼材を使用した場合の当該鋼材の腐食状態をそれぞれ観察することで予め算出した鋼材腐食指数と環境腐食指数と腐食状態との関係から得られる境界に対して、前記鋼材腐食指数算出工程および前記環境腐食指数算出工程によって算出した鋼材腐食指数および環境腐食指数が、当該境界で分けられるいずれの領域に位置するかによって、前記推定対象となる鋼材の腐食状態を推定する推定工程を含むことを特徴とする。
以下、鋼材腐食指数算出工程、環境腐食指数算出工程、推定工程について説明する。
[Method of estimating the corrosion state of steel]
Next, an embodiment of a steel material corrosion state estimation method according to the present invention will be described with reference to FIG.
The steel material corrosion state estimation method according to the present embodiment includes a steel material corrosion index calculating step of calculating a steel material corrosion index of the steel material from the amount of two or more elements contained in the steel material to be estimated, and the estimation object. An environmental corrosion index calculating step for calculating an environmental corrosion index of the atmospheric environment from two or more environmental factors indicating the state of the atmospheric environment in which the steel material is used, and the steel materials in a plurality of atmospheric environments having different environmental corrosion indexes When a plurality of steel materials having different corrosion indexes are used, the steel material corrosion is compared with the boundary obtained from the relationship between the steel material corrosion index, the environmental corrosion index, and the corrosion state calculated in advance by observing the corrosion state of each steel material. Depending on which region the steel material corrosion index and the environmental corrosion index calculated by the index calculation step and the environmental corrosion index calculation step are located at the boundary, Characterized in that it comprises an estimation step of estimating the corrosion state of the steel to be serial estimation target.
Hereinafter, the steel material corrosion index calculation process, the environmental corrosion index calculation process, and the estimation process will be described.

(鋼材腐食指数算出工程)
鋼材腐食指数算出工程とは、推定対象となる鋼材に含まれる2つ以上の元素の量から、当該鋼材の鋼材腐食指数を算出する工程である。
なお、この元素とは、鋼材の腐食に影響を与える元素のことである。
(Steel corrosion index calculation process)
The steel material corrosion index calculating step is a step of calculating the steel material corrosion index of the steel material from the amount of two or more elements contained in the steel material to be estimated.
In addition, this element is an element which affects the corrosion of steel materials.

鋼材腐食指数とは、鋼材の組成によって決定される指数であるとともに、鋼材自体の特性(鋼材中に含まれる元素の量等)からみた当該鋼材の腐食のしやすさを示す指数である。なお、鋼材に含まれるCu、Ni、CrおよびTiの量は、鋼材の腐食状態(鋼材表面に生じる錆が安定に保護層として形成するかあるいは層状に剥離するか)に大きな影響を与える。よって、当該鋼材腐食指数は、鋼材に含まれるCu、Ni、CrおよびTiのうち2種以上の量から算出される値であることが好ましい。
なお、2種以上としたのは、1種の場合だと、鋼材腐食指数を求める意味が無いからである。
The steel material corrosion index is an index determined by the composition of the steel material and an index indicating the ease of corrosion of the steel material from the viewpoint of the characteristics of the steel material itself (amount of elements contained in the steel material, etc.). In addition, the amount of Cu, Ni, Cr and Ti contained in the steel material has a great influence on the corrosion state of the steel material (whether rust generated on the steel material surface is stably formed as a protective layer or peeled off in layers). Therefore, the steel material corrosion index is preferably a value calculated from two or more kinds of Cu, Ni, Cr, and Ti contained in the steel material.
Two or more types are used because there is no meaning for obtaining the steel material corrosion index in the case of one type.

さらに、当該鋼材腐食指数は、鋼材に含まれるCu、Ni、CrおよびTiのうち2種以上の量を変数とする一次関数によって算出されるものであることが好ましい。なお、当該鋼材腐食指数は、Cu、Ni、CrおよびTiに加えて、Si、Mnの量を変数とし、当該変数をそれぞれ足し合わせることによって算出される値であることがより好ましい。   Furthermore, it is preferable that the said steel material corrosion index | exponent is calculated by the linear function which makes 2 or more types of quantity a variable among Cu, Ni, Cr, and Ti contained in steel materials. The steel material corrosion index is more preferably a value calculated by adding the amounts of Si and Mn in addition to Cu, Ni, Cr and Ti and adding the variables.

例えば、具体的には、鋼材腐食指数Kmは、下記式(1)に基づき算出することができる。なお、下記式(1)中の[%M]は、鋼材中の添加元素Mの添加量(重量%)を示している。また、下記式(1)中の[%Si]、[%Mn]の項目は設けなくてもよいが、設けたほうがより正確な鋼材腐食指数Kmを算出することができる。
Km=[%Si]+[%Mn]+[%Cu]+[%Ni]+[%Cr]+[%Ti]・・・(1)
For example, specifically, the steel material corrosion index Km can be calculated based on the following formula (1). In addition, [% M] in the following formula (1) indicates an addition amount (% by weight) of the additive element M in the steel material. Further, the items [% Si] and [% Mn] in the following formula (1) may not be provided, but the steel corrosion index Km can be calculated more accurately by providing the items.
Km = [% Si] + [% Mn] + [% Cu] + [% Ni] + [% Cr] + [% Ti] (1)

また、鋼材の各元素の腐食に対する影響度により、各元素の量を示す変数(上記式(1)の[%M])に所定の係数を乗じて、鋼材腐食指数Kmを算出してもよい。例えば、腐食に対する影響度が大きい元素については、当該元素の量を示す変数の係数を、他の元素の量を示す変数の係数に比べて、大きな値とすればよい。   Further, the steel material corrosion index Km may be calculated by multiplying a variable indicating the amount of each element ([% M] in the above formula (1)) by a predetermined coefficient according to the degree of influence of each element on the corrosion. . For example, for an element having a large influence on corrosion, a coefficient of a variable indicating the amount of the element may be set to a larger value than a coefficient of a variable indicating the amount of another element.

(環境腐食指数算出工程)
環境腐食指数算出工程とは、推定対象となる鋼材が使用される大気環境の状態を示す2つ以上の環境因子から、当該大気環境の環境腐食指数を算出する工程である。
なお、この環境因子とは、例えば、年平均気温、年平均湿度などのような環境の状態を数値化したものである。
(Environmental corrosion index calculation process)
The environmental corrosion index calculating step is a step of calculating the environmental corrosion index of the atmospheric environment from two or more environmental factors indicating the state of the atmospheric environment where the steel material to be estimated is used.
The environmental factor is a numerical value of an environmental condition such as annual average temperature and annual average humidity.

環境腐食指数とは、大気環境の環境因子によって決定される指数であるとともに、鋼材が使用される大気環境の特性(年平均気温、年平均湿度等)からみた当該大気環境中での当該鋼材の腐食のしやすさを示す指数である。
ここで、鋼材の温度、鋼材表面に形成される水膜に覆われている(濡れている)時間、および鋼材表面に形成される水膜の電解質水溶液濃度という環境因子が、鋼材の腐食状態に大きな影響を与え、これらの環境因子は、大気環境の年平均気温、年平均湿度、および付着電解質量(単位時間の間に鋼材の単位面積に付着する電解質の量)の値に大きく依存している。よって、当該環境腐食指数は、大気環境における年平均気温、年平均湿度、および付着電解質量のうちの2種以上に基づいて算出されるものであることが好ましい。
なお、2種以上としたのは、1種の場合だと、環境腐食指数を求める意味が無いからである。
The environmental corrosion index is an index determined by the environmental factors of the air environment, and the steel material in the air environment in terms of the characteristics of the air environment in which the steel material is used (annual average temperature, annual average humidity, etc.). It is an index indicating the ease of corrosion.
Here, environmental factors such as the temperature of the steel material, the time covered (wet) by the water film formed on the steel material surface, and the concentration of the aqueous electrolyte solution in the water film formed on the steel material surface contribute to the corrosion state of the steel material. These environmental factors have a great influence and depend largely on the values of the annual average temperature, the average humidity, and the deposited electrolytic mass (amount of electrolyte that adheres to the unit area of steel during unit time) of the atmospheric environment Yes. Therefore, the environmental corrosion index is preferably calculated based on two or more of the annual average temperature, the annual average humidity, and the attached electrolytic mass in the atmospheric environment.
Two or more types are used because it is meaningless to obtain an environmental corrosion index in the case of one type.

例えば、環境腐食指数Keは、下記式(2)に基づき算出することができる。なお、下記式(2)のTは推定対象となる鋼材が配置される大気環境の年平均気温(℃)、Hは当該大気環境の年平均湿度(%RH)、Vは単位時間(例えば、30日)の間に鋼材の単位面積に付着する電解質の量である付着電解質量(mg/m)を示している。
Ke=1000/(0.5×T+H+63×V)・・・(2)
For example, the environmental corrosion index Ke can be calculated based on the following formula (2). T in the following formula (2) is the annual average temperature (° C.) of the atmospheric environment where the steel material to be estimated is arranged, H is the annual average humidity (% RH) of the atmospheric environment, and V is the unit time (for example, 30) shows the amount of electrolytic electrolyte (mg / m 2 ) that is the amount of electrolyte that adheres to the unit area of the steel material.
Ke = 1000 / (0.5 × T + H + 63 × V) (2)

なお、上記式(2)の年平均気温T(℃)、年平均湿度H(%RH)、付着電解質量V(mg/m)の各係数は、鋼材の腐食状態に対する各環境因子の影響度に基づき決定したものである。 In addition, each coefficient of the annual average temperature T (° C.), the annual average humidity H (% RH), and the adhesion electrolytic mass V (mg / m 2 ) in the above formula (2) is the influence of each environmental factor on the corrosion state of the steel material. It is determined based on the degree.

年平均気温T(℃)および年平均湿度H(%RH)は、鋼材が使用される予定の大気環境に設置された百葉箱等により実際に測定することで求めてもよいし、気象庁等が公表している気象観測地点のデータを用いて求めてもよい。
付着電解質量の電解質としては、鋼材の腐食に影響を与える塩化物、硫酸塩、炭酸塩などが好ましく、この中でも、影響が最も大きく、付着量が多いことにより分析も容易である塩化物が最も好ましい。
The annual average temperature T (° C) and annual average humidity H (% RH) may be obtained by actual measurements using a 100-leaf box installed in the atmospheric environment where the steel is to be used. It may be obtained using the data of the meteorological observation point.
As the electrolyte of the adhered electrolysis mass, chlorides, sulfates, carbonates, etc. that affect the corrosion of steel materials are preferable. Among these, chlorides that have the greatest effect and are easy to analyze due to the large amount of adhesion are the most. preferable.

ここで、腐食状態を推定する場所に飛来してくる電解質の量を求める場合であれば、例えばJIS Z2381(屋外曝露試験方法通則)の参考2あるいは参考3に規定されている方法で算出することができる。硫黄酸化物量あるいは海塩粒子量の測定に係わる参考3の方法では、まず、ガーゼを120mm×240mmの大きさに切り、純水で十分に塩化物を浸出させた後、よく乾燥させる。そして当該ガーゼを二つ折りにして、内寸が100mm×100mmの木枠にはめ込む。これを、鋼材が使用される予定である大気環境の直接雨が当たらない通風の良いところに1ヶ月垂直に曝露し、曝露後、木枠からガーゼを取り外してClイオン量を化学分析することにより測定を行えばよい。 Here, if the amount of electrolyte flying to the place where the corrosion state is estimated is calculated, for example, it is calculated by the method prescribed in Reference 2 or Reference 3 of JIS Z2381 (General Rules for Outdoor Exposure Test Methods) Can do. In the method of Reference 3 relating to the measurement of the amount of sulfur oxides or the amount of sea salt particles, first, the gauze is cut into a size of 120 mm × 240 mm, the chloride is sufficiently leached with pure water, and then dried well. Then, the gauze is folded in half and fitted into a wooden frame having an inner dimension of 100 mm × 100 mm. By chemically analyzing the ion content - which were exposed to 1 month perpendicular to best of direct rain it does not strike ventilation air quality is expected to steel is used, after exposure, to remove the gauze from crate Cl Measurement may be performed according to

しかしながら、鋼材の腐食状態を支配するのは実際に鋼材に付着した電解質の量であって、同じ大気環境であっても、設置角度(水平方向に対する鋼材表面の角度)により付着電解質量は若干異なる結果となるため、より正確に鋼材の腐食状態の推定を行うためには、推定対象となる鋼材が設置される際に予定している設置角度における付着電解質量を算出するのが好ましい。   However, the amount of electrolyte that actually adheres to the steel material dominates the corrosion state of the steel material. Even in the same atmospheric environment, the attached electrolytic mass varies slightly depending on the installation angle (angle of the steel material surface relative to the horizontal direction). Therefore, in order to more accurately estimate the corrosion state of the steel material, it is preferable to calculate the adhesion electrolytic mass at the installation angle planned when the steel material to be estimated is installed.

詳細には、付着電解質量は、複数の鋼材を水平方向に対し異なる角度で設置した後、それぞれの当該鋼材に付着した水溶液に含まれる電解質の量から、前記付着電解質量を当該鋼材の水平方向に対する角度ごとに求め、前記付着電解質量と当該鋼材の水平方向に対する角度との対応関係を求める電解質量測定工程と、前記電解質量測定工程によって求めた前記対応関係の中から、前記推定対象となる鋼材の水平方向に対する角度に応じた付着電解質量を選択する電解質量選択工程と、から算出されるものであることが好ましい。   Specifically, the attached electrolytic mass is determined by calculating the attached electrolytic mass from the amount of the electrolyte contained in the aqueous solution attached to each steel material after the plurality of steel materials are installed at different angles with respect to the horizontal direction. From each of the correspondences obtained by the electrolytic mass measurement step for obtaining the correspondence between the attached electrolytic mass and the angle with respect to the horizontal direction of the steel material, and the correspondence obtained by the electrolytic mass measurement step. It is preferably calculated from an electrolytic mass selection step of selecting an attached electrolytic mass according to an angle of the steel material with respect to the horizontal direction.

また、付着電解質量は、設置角度(水平方向に対する鋼材表面の角度)だけでなく、設置方位(鋼材表面が向いている方角)ごとに電解質量を算出(電解質量測定工程)し、電解質量を選択(電解質量選択工程)してもよい。   In addition to the installation angle (the angle of the steel surface relative to the horizontal direction), the adhesion electrolysis mass is calculated for each installation orientation (direction in which the steel surface is facing) (electrolytic mass measurement step), You may select (electrolytic mass selection process).

なお、設置角度、設置方位を考慮した付着電解質量を算出する場合は、例えば、電気伝導率の変化から付着した塩分濃度を計測する表面塩分計を用いるか、または、次のような、ガーゼ拭き取り方法により測定を行ってもよい。   In addition, when calculating the adhesion electrolysis mass considering the installation angle and installation orientation, for example, use a surface salinity meter that measures the concentration of adhering salt from the change in electrical conductivity, or wipe off gauze as follows: You may measure by a method.

この方法では、まず、試験パネル(所定の鋼材)を、鋼材が使用される予定である大気環境に、予定している設置角度、設置方位となるように曝露する。ここで、試験パネルの曝露期間は、短すぎると付着電解質量が少なく、測定誤差が大きくなるため、3日以上が好ましく、5日以上がより好ましい。また、曝露期間は長くても問題なく、例えば、30日程度であってもよい。
なお、試験パネルの大きさについては、小さすぎると付着電解質量が少なく、測定誤差が大きくなるため、30cm×30cm以上が好ましい。また、試験パネルの取り扱いを考慮すると100cm×100cm以下が好ましい。
In this method, first, a test panel (predetermined steel material) is exposed to an atmospheric environment where the steel material is to be used so as to have a planned installation angle and installation orientation. Here, if the exposure period of the test panel is too short, the attached electrolytic mass is small and the measurement error is large, so that it is preferably 3 days or more, and more preferably 5 days or more. Further, there is no problem even if the exposure period is long, and for example, it may be about 30 days.
Note that the size of the test panel is preferably 30 cm × 30 cm or more, because if the test panel is too small, the amount of attached electrolysis is small and the measurement error increases. In consideration of handling of the test panel, 100 cm × 100 cm or less is preferable.

そして、曝露後の試験パネル表面を純水で湿らせたガーゼで拭き取ることにより、当該ガーゼに含まれる水分中に試験パネル表面の電解質を溶解させる。その後、容量既知の純水に当該ガーゼを浸漬させ、電解質の濃度を化学分析により測定し、試験パネル表面に付着していた電解質物質の量を算出する。
なお、曝露後の試験パネル表面を純水で洗浄し、回収した当該洗浄水を試験溶液として、電解質の濃度を化学分析により測定することも可能である。
And the electrolyte of the test panel surface is dissolved in the water | moisture content contained in the said gauze by wiping off the test panel surface after exposure with the gauze moistened with the pure water. Thereafter, the gauze is immersed in pure water with a known capacity, the concentration of the electrolyte is measured by chemical analysis, and the amount of the electrolyte substance adhering to the test panel surface is calculated.
In addition, it is also possible to wash | clean the test panel surface after exposure with a pure water, and to measure the density | concentration of electrolyte by a chemical analysis using the collect | recovered said wash water as a test solution.

なお、この環境腐食指数算出工程は、鋼材を使用する予定の大気環境の環境因子(年平均気温、年平均湿度、付着電解質量)をそれぞれ求め、その後、各環境因子に基づき環境腐食指数を求めてもよい。
また、場所と関連付けられた複数の環境因子(年平均気温、年平均湿度、付着電解質量)に関するデータを、事前にデータベースに入力しておき、鋼材を使用する予定の場所を入力すると、データベース内から対応(同一または近似)する場所の環境因子が選択され、選択された環境因子に基づき環境腐食指数を算出する構成となっていてもよい。
さらに、付着電解質量については、場所だけではなく、設置角度、設置方位の全てに関連付けられたデータをデータベースに入力しておき、鋼材を使用する予定の場所および設置角度、設置方位を入力することで、更に正確な付着電解質量を選択することができる構成となっていてもよい。
In addition, this environmental corrosion index calculation process calculates the environmental factors (annual average temperature, annual average humidity, adhesion electrolysis mass) of the atmospheric environment where the steel is to be used, and then calculates the environmental corrosion index based on each environmental factor. May be.
In addition, if data related to multiple environmental factors (annual average temperature, annual average humidity, adhesion electrolysis mass) associated with a location are entered in the database in advance and the location where the steel is to be used is entered, The environmental factor of the place corresponding (same or approximate) is selected, and the environmental corrosion index may be calculated based on the selected environmental factor.
In addition, for the electrolytic electrolytic mass, enter not only the location but also the data related to the installation angle and installation orientation in the database, and enter the location, installation angle and installation orientation where the steel will be used. Thus, it may be configured such that a more accurate attached electrolytic mass can be selected.

(推定工程)
推定工程とは、前記環境腐食指数の異なる複数の大気環境において前記鋼材腐食指数の異なる複数の鋼材を使用した場合の当該鋼材の腐食状態をそれぞれ観察することで予め算出した鋼材腐食指数と環境腐食指数と腐食状態との関係から得られる境界に対して、前記鋼材腐食指数算出工程および前記環境腐食指数算出工程によって算出した鋼材腐食指数および環境腐食指数が、当該境界で分けられるいずれの領域に位置するかによって、前記推定対象となる鋼材の腐食状態を推定する工程である。
(Estimation process)
The estimation process means that the steel corrosion index and the environmental corrosion calculated in advance by observing the corrosion state of each steel material when a plurality of steel materials having different steel corrosion indexes are used in a plurality of atmospheric environments having different environmental corrosion indexes. With respect to the boundary obtained from the relationship between the index and the corrosion state, the steel material corrosion index and the environmental corrosion index calculated by the steel material corrosion index calculation process and the environmental corrosion index calculation process are located in any region divided by the boundary. This is a step of estimating the corrosion state of the steel material to be estimated depending on whether or not

ここで、鋼材腐食指数と環境腐食指数と腐食状態との関係とは、所定の鋼材腐食指数の鋼材が、所定の環境腐食指数の大気環境において、いかなる腐食状態となるのかを観測し、複数の観測結果から、鋼材腐食指数と環境腐食指数と腐食状態との3つの関連性を明確にしたものである。   Here, the relationship between the steel material corrosion index, the environmental corrosion index, and the corrosion state means that the steel material having a predetermined steel material corrosion index is observed in a corrosive state in an atmospheric environment having a predetermined environmental corrosion index. From the observation results, three relationships among the steel material corrosion index, the environmental corrosion index, and the corrosion state are clarified.

具体的には、当該関係は、X軸に環境腐食指数Ke、Y軸に鋼材腐食指数Kmをとり、複数の腐食状態の観察結果をXY平面上にプロットすることで、錆が安定に保護層として形成される領域(図1中の「錆の剥離なし」)と、錆が層状に剥離する領域(図1中の「錆の剥離あり」)が示された図1のグラフのような関係である。
なお、境界とは、図1において、錆が安定に保護層として形成される領域と、錆が層状に剥離する領域を分けている点線のことである。
Specifically, the relationship is such that the environmental corrosion index Ke is taken on the X axis, the steel material corrosion index Km is taken on the Y axis, and the observation results of a plurality of corrosion states are plotted on the XY plane, so that the rust is stably protected. The relationship shown in the graph of FIG. 1 showing the region formed as “No rust peeling” in FIG. 1 and the region where rust peels in layers (“With rust peeling” in FIG. 1). It is.
In addition, a boundary is a dotted line which divides | segments the area | region where rust is stably formed as a protective layer in FIG. 1, and the area | region where rust peels in layers.

また、当該関係は、図1のようなグラフで示されるものであってもよいし、数式またはテーブルで示されるものであってもよい。なお、数式やテーブルを用いる場合も、図1のグラフを用いる場合と同様に、鋼材腐食指数と環境腐食指数と腐食状態との関係から境界を求め、鋼材腐食指数および環境腐食指数が、当該境界で分けられるいずれの領域に位置するかを判断することで腐食状態を推定すればよい。   Further, the relationship may be shown by a graph as shown in FIG. 1, or may be shown by a mathematical expression or a table. In the case of using mathematical formulas and tables, as in the case of using the graph of FIG. 1, the boundary is obtained from the relationship between the steel corrosion index, the environmental corrosion index, and the corrosion state. What is necessary is just to estimate a corrosion state by judging in which area | region divided by (1).

なお、観察結果は、多ければ多いほど、錆が安定に保護層として形成される領域(図1中の「錆の剥離なし」)と、錆が層状に剥離する領域(図1中の「錆の剥離あり」)との境界が明確になり、当該境界部分における鋼材の腐食状態の推定をより正確に行うことができる。
よって、「錆の剥離なし」と「錆の剥離あり」との境界近傍の観察結果は3点以上が好ましく、5点以上がより好ましい。
The more observation results, the more the area where rust is stably formed as a protective layer (“no rust peeling” in FIG. 1) and the area where rust peels in layers (“rust” in FIG. 1). ”), And the corrosion state of the steel material at the boundary portion can be estimated more accurately.
Therefore, the observation result in the vicinity of the boundary between “without rust peeling” and “with rust peeling” is preferably 3 or more, and more preferably 5 or more.

なお、鋼材腐食指数と環境腐食指数と腐食状態との関係を算出するにあたり、所定の鋼材を所定の大気環境に設置後、どれほどの期間が経過した後の観測結果(鋼材の腐食状態)を用いるかは、測定対象となる鋼材に要求される推定期間(設置からの経過期間)に基づき決定すればよい。例えば、測定対象となる鋼材について、設置から5年経過後の腐食状態を推定したい場合は、鋼材腐食指数と環境腐食指数と腐食状態との関係を算出する際の観測結果(鋼材の腐食状態)は、設置後から5年以上経過した結果を用いることが好ましい。   In calculating the relationship between the steel corrosion index, the environmental corrosion index, and the corrosion state, use the observation results (corrosion state of the steel material) after a certain period of time after installing the predetermined steel material in the predetermined atmospheric environment. It may be determined based on the estimated period (elapsed period from installation) required for the steel material to be measured. For example, if you want to estimate the corrosion state after 5 years from the installation of the steel material to be measured, the observation results when calculating the relationship between the steel corrosion index, the environmental corrosion index, and the corrosion state (corrosion state of the steel material) It is preferable to use the result of 5 years or more after installation.

前記の全ての工程は、コンピュータ等が備える処理手段に行わせることができる。
具体的には、キーボードやマウス等の入力手段により、鋼材の組成、鋼材の使用予定場所、鋼材の設置角度・設置方位を入力すると、入力されたデータに基づき処理手段が鋼材腐食指数Kmを算出するとともに(鋼材腐食指数算出工程)、環境腐食指数Keを算出する(環境腐食指数算出工程)。なお、環境腐食指数Keを算出するにあたっては、データベース内に記憶されているデータ(場所、設置角度、設置方位と関連付けられた年平均気温、年平均湿度、付着電解質量)から、入力された場所および設置角度・設置方位と対応(同一または近似)した年間平均温度・年間平均湿度・付着電解質量を選択する処理を処理手段が行う構成となっていてもよい。
そして、算出された鋼材腐食指数Km、環境腐食指数Keが、データベースに記憶されている図1のXY平面上の境界(点線)で分けられたいずれの領域(錆が安定に保護層として形成される領域であるか、錆が層状に剥離する領域であるか)に該当するかについて処理手段により判断され、その結果が、モニター等の出力手段に表示される。
All the above steps can be performed by processing means provided in a computer or the like.
Specifically, when the steel composition, the planned use location of the steel material, the installation angle and orientation of the steel material are input using input means such as a keyboard and a mouse, the processing means calculates the steel material corrosion index Km based on the input data. In addition, the environmental corrosion index Ke is calculated (environmental corrosion index calculating process). In calculating the environmental corrosion index Ke, the location entered from the data stored in the database (location, installation angle, annual average temperature associated with the installation orientation, annual average humidity, attached electrolytic mass) In addition, the processing means may be configured to perform a process of selecting an annual average temperature, an annual average humidity, and an attached electrolytic mass corresponding (identical or approximate) to the installation angle and installation orientation.
The calculated steel material corrosion index Km and environmental corrosion index Ke are stored in the database in any region (rust is stably formed as a protective layer) on the boundary (dotted line) on the XY plane of FIG. The processing means determines whether the region corresponds to the region where the rust is peeled off or the region where the rust peels in layers, and the result is displayed on an output unit such as a monitor.

以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されず、特許請求の範囲に記載した本発明の要旨を逸脱しない範囲で適宜設計変更可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and the design can be appropriately changed without departing from the gist of the present invention described in the claims.

次に、本発明の鋼材の腐食状態推定方法について、実施例を用いて具体的に説明する。
国内の5つの場所(A−E)において、鋼材(供試鋼材)4種(M1−M4)の腐食状態、すなわち錆が剥離を起こすか否かの予測と検証を行った。所定の場所の年平均気温Tおよび年平均湿度Hは、気象庁の公開データのなかで、所定の場所に最も近い地点のデータを用いた。また、付着電解質量Vは以下の方法で測定した。
Next, the method for estimating the corrosion state of the steel material of the present invention will be specifically described with reference to examples.
At five locations in Japan (AE), the corrosion state of four types of steel materials (test steel materials) (M1-M4), that is, whether or not rust causes peeling was verified and verified. As the annual average temperature T and the annual average humidity H of the predetermined place, data of a point closest to the predetermined place is used in the public data of the Japan Meteorological Agency. Moreover, the adhesion electrolysis mass V was measured by the following method.

エポキシ樹脂系塗料(厚さ250μm)を塗布した30cm×30cmの塗装鋼板(厚さ2mm)を試験パネルとして所定の場所に30日間曝露し、ガーゼ拭取り法により付着した塩分(Clイオン)量を測定した。なお、試験パネルを設置した場所には屋根を設けて、試験パネルに降雨が直接あたらないように設置した。 30 cm x 30 cm coated steel sheet (thickness 2 mm) coated with epoxy resin paint (thickness 250 μm) is exposed to a predetermined place as a test panel for 30 days, and the amount of salt (Cl ion) attached by gauze wiping method Was measured. In addition, the roof was provided in the place where the test panel was installed, and it installed so that rain might not hit a test panel directly.

[鋼材腐食指数および環境腐食指数]
実施例において、鋼材腐食指数Kmおよび環境腐食指数Keは、下記式(1)および(2)に基づき算出した。なお、下記式中の[%M]は添加元素Mの添加量(重量%)を示し、Tは所定の場所の年平均気温(℃)、Hは所定の場所の年平均湿度(%RH)、Vは前記測定方法により得られた付着電解質量(mg/m)を示している。
Km=[%Si]+[%Mn]+[%Cu]+[%Ni]+[%Cr]+[%Ti]・・・(1)
Ke=1000/(0.5×T+H+63×V)・・・(2)
[Steel corrosion index and environmental corrosion index]
In the examples, the steel material corrosion index Km and the environmental corrosion index Ke were calculated based on the following formulas (1) and (2). In the following formula, [% M] indicates the amount of additive element M added (% by weight), T is the average annual temperature (° C.) at a predetermined location, and H is the annual average humidity (% RH) at a predetermined location. , V represents the electrolysis mass (mg / m 2 ) obtained by the measurement method.
Km = [% Si] + [% Mn] + [% Cu] + [% Ni] + [% Cr] + [% Ti] (1)
Ke = 1000 / (0.5 × T + H + 63 × V) (2)

下記の表1には、各供試鋼材の化学組成(%)と鋼材腐食指数Kmを示し、下記の表2には、所定の場所の環境因子(年平均温度、年平均湿度、付着電解質量)および環境腐食指数Keを示した。   Table 1 below shows the chemical composition (%) and steel corrosion index Km of each test steel, and Table 2 below shows the environmental factors (annual average temperature, annual average humidity, adhesion electrolytic mass) at a predetermined location. ) And the environmental corrosion index Ke.

Figure 2011247642
Figure 2011247642

Figure 2011247642
Figure 2011247642

表1に示した4種の供試鋼材を所定の場所に曝露し、腐食状態を調査した。曝露した供試鋼材のサイズはいずれも150mm×70mm×5mmである。なお、供試鋼材の曝露場所は付着電解質測定用の試験パネルを設置した場所に隣接する場所であり、屋根を設けて、供試鋼材に降雨が直接あたらないように設置した。所定の場所に1種につき各3枚の供試鋼材を設置し、3枚すべてに錆の剥離が認められない場合を「錆の剥離なし」とし、3枚のうち1枚以上に錆の剥離が認められた場合を「錆の剥離あり」と評価した。
試験結果は下記の表3に示す通りであり、鋼材腐食指数Kmおよび環境腐食指数Keによって、錆の剥離の状態は異なる結果となった。なお、表3の「○」は錆の剥離なし、「×」は錆の剥離あり、「−」は試験未実施を示している。そして、経過年数(年)は、供試鋼材を設置してから腐食状態を確認した時点までの年数である。
Four kinds of test steel materials shown in Table 1 were exposed to a predetermined place, and the corrosion state was investigated. The size of the exposed test steel is 150 mm × 70 mm × 5 mm. The exposed location of the test steel was a location adjacent to the location where the test panel for measuring the attached electrolyte was installed, and a roof was provided so that the test steel was not directly exposed to rain. Three test steels are installed for each type at a predetermined location, and when no rust peeling is observed on all three sheets, “no rust peeling” is assumed, and one or more of the three pieces are rust peeled. The case where rust was observed was evaluated as “with rust peeling”.
The test results are as shown in Table 3 below, and the rust peeling state differs depending on the steel material corrosion index Km and the environmental corrosion index Ke. In Table 3, “◯” indicates no rust peeling, “×” indicates rust peeling, and “−” indicates that the test was not performed. The elapsed time (year) is the number of years from when the test steel material is installed to when the corrosion state is confirmed.

Figure 2011247642
Figure 2011247642

図1は、X軸に環境腐食指数Ke、Y軸に鋼材腐食指数Kmをとり、表3の試験結果をプロットしたものである。図1に表されているように、錆の剥離なしの領域と錆の剥離ありの領域を明確に分けることができた(図1の点線)。
この実施例により、図1に記載の鋼材腐食指数と環境腐食指数と腐食状態とを対応付けた関係を用いることで、推定対象となる鋼材の環境腐食指数Keと鋼材腐食指数Kmから鋼材の腐食状態を正確に推定することができることがわかった。また、図1に記載の関係を用いることで、推定対象となる鋼材の腐食状態を推定するにあたり、当該鋼材の腐食実験等を行う必要がなくなるため、極めて簡便に鋼材の腐食状態を推定することができることがわかった。
FIG. 1 is a plot of the test results in Table 3, with the environmental corrosion index Ke on the X axis and the steel material corrosion index Km on the Y axis. As shown in FIG. 1, the region without rust peeling and the region with rust peeling could be clearly separated (dotted line in FIG. 1).
According to this embodiment, by using the relationship in which the steel corrosion index, the environmental corrosion index, and the corrosion state shown in FIG. 1 are associated, the corrosion of the steel material is calculated from the environmental corrosion index Ke and the steel corrosion index Km of the steel material to be estimated. It was found that the state can be estimated accurately. In addition, by using the relationship shown in FIG. 1, it is not necessary to conduct a corrosion experiment or the like of the steel material when estimating the corrosion state of the steel material to be estimated, so the corrosion state of the steel material can be estimated extremely simply. I found out that

Claims (6)

鋼材自体の特性からみた当該鋼材の腐食のしやすさを示す鋼材腐食指数と、当該鋼材が使用される大気環境の特性からみた当該鋼材の腐食のしやすさを示す環境腐食指数とを用いて、当該大気環境で使用される鋼材の腐食状態を推定するための腐食状態推定方法であって、
推定対象となる鋼材に含まれる2つ以上の元素の量から、当該鋼材の鋼材腐食指数を算出する鋼材腐食指数算出工程と、
前記推定対象となる鋼材が使用される大気環境の状態を示す2つ以上の環境因子から、当該大気環境の環境腐食指数を算出する環境腐食指数算出工程と、
前記環境腐食指数の異なる複数の大気環境において前記鋼材腐食指数の異なる複数の鋼材を使用した場合の当該鋼材の腐食状態をそれぞれ観察することで予め算出した鋼材腐食指数と環境腐食指数と腐食状態との関係から得られる境界に対して、前記鋼材腐食指数算出工程および前記環境腐食指数算出工程によって算出した鋼材腐食指数および環境腐食指数が、当該境界で分けられるいずれの領域に位置するかによって、前記推定対象となる鋼材の腐食状態を推定する推定工程を含むことを特徴とする腐食状態推定方法。
Using a steel corrosion index indicating the ease of corrosion of the steel material from the characteristics of the steel material itself and an environmental corrosion index indicating the ease of corrosion of the steel material from the characteristics of the atmospheric environment in which the steel material is used A corrosion state estimation method for estimating the corrosion state of steel used in the atmospheric environment,
A steel corrosion index calculating step of calculating a steel corrosion index of the steel material from the amount of two or more elements contained in the steel material to be estimated;
From two or more environmental factors indicating the state of the atmospheric environment in which the steel material to be estimated is used, an environmental corrosion index calculating step of calculating an environmental corrosion index of the atmospheric environment;
The steel corrosion index, the environmental corrosion index, and the corrosion state calculated in advance by observing the corrosion state of the steel materials when using a plurality of steel materials having different steel corrosion indexes in a plurality of atmospheric environments having different environmental corrosion indexes. With respect to the boundary obtained from the relationship, the steel material corrosion index and the environmental corrosion index calculated by the steel corrosion index calculation step and the environmental corrosion index calculation step, depending on which region is divided by the boundary, A corrosion state estimation method comprising an estimation step of estimating a corrosion state of a steel material to be estimated.
前記腐食状態とは、前記鋼材の表面に形成される錆の剥離の有無であることを特徴とする請求項1に記載の腐食状態推定方法。   The said corrosion state is the presence or absence of peeling of the rust formed in the surface of the said steel materials, The corrosion state estimation method of Claim 1 characterized by the above-mentioned. 前記鋼材腐食指数は、前記鋼材に含まれるCu、Ni、CrおよびTiのうちの2種以上の量から算出される値であることを特徴とする請求項1および請求項2のいずれか1項に記載の腐食状態推定方法。   3. The steel material corrosion index is a value calculated from two or more kinds of Cu, Ni, Cr and Ti contained in the steel material. The corrosion state estimation method described in 1. 前記鋼材腐食指数は、前記鋼材に含まれるCu、Ni、CrおよびTiのうちの2種以上の量を変数とする一次関数によって算出されるものであることを特徴とする請求項3に記載の腐食状態推定方法。   4. The steel material corrosion index is calculated by a linear function having two or more kinds of Cu, Ni, Cr and Ti contained in the steel material as variables. Corrosion state estimation method. 前記環境腐食指数は、前記大気環境における年平均気温、年平均湿度、および付着電解質量のうちの2種以上を変数とする算出式によって算出される値であり、
前記付着電解質量は、単位時間の間に前記鋼材の単位面積に付着する電解質の量であることを特徴とする請求項1〜4のいずれか1項に記載の腐食状態推定方法。
The environmental corrosion index is a value calculated by a calculation formula using two or more of annual average temperature, annual average humidity, and attached electrolytic mass in the atmospheric environment as variables,
The corrosion state estimation method according to any one of claims 1 to 4, wherein the attached electrolytic mass is an amount of an electrolyte attached to a unit area of the steel material during a unit time.
前記環境腐食指数算出工程で算出される環境腐食指数が、少なくとも前記付着電解質量を用いて算出される場合において、
前記環境腐食指数算出工程で前記環境腐食指数を算出するために用いられる前記付着電解質量は、
複数の鋼材を水平方向に対し異なる角度で設置した後、それぞれの当該鋼材に付着した水溶液に含まれる電解質の量から、前記付着電解質量を当該鋼材の水平方向に対する角度ごとに求め、前記付着電解質量と当該鋼材の水平方向に対する角度との対応関係を求める電解質量測定工程と、
前記電解質量測定工程によって求めた前記対応関係の中から、前記推定対象となる鋼材の水平方向に対する角度に応じた付着電解質量を選択する電解質量選択工程と、から算出されるものであることを特徴とする請求項5に記載の腐食状態推定方法。
In the case where the environmental corrosion index calculated in the environmental corrosion index calculation step is calculated using at least the attached electrolytic mass,
The attached electrolytic mass used for calculating the environmental corrosion index in the environmental corrosion index calculation step is:
After installing a plurality of steel materials at different angles with respect to the horizontal direction, from the amount of electrolyte contained in the aqueous solution attached to each steel material, the attached electrolytic mass is determined for each angle with respect to the horizontal direction of the steel material, the attached electrolyte Electrolytic mass measurement step for determining the correspondence between the amount and the angle of the steel material with respect to the horizontal direction;
From the correspondence obtained by the electrolytic mass measurement step, an electrolytic mass selection step of selecting an adhesion electrolytic mass according to an angle with respect to the horizontal direction of the steel material to be estimated is calculated. The corrosion state estimation method according to claim 5, wherein the corrosion state is estimated.
JP2010118520A 2010-05-24 2010-05-24 Method for estimating the corrosion state of steel Expired - Fee Related JP5352530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010118520A JP5352530B2 (en) 2010-05-24 2010-05-24 Method for estimating the corrosion state of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010118520A JP5352530B2 (en) 2010-05-24 2010-05-24 Method for estimating the corrosion state of steel

Publications (2)

Publication Number Publication Date
JP2011247642A true JP2011247642A (en) 2011-12-08
JP5352530B2 JP5352530B2 (en) 2013-11-27

Family

ID=45413097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010118520A Expired - Fee Related JP5352530B2 (en) 2010-05-24 2010-05-24 Method for estimating the corrosion state of steel

Country Status (1)

Country Link
JP (1) JP5352530B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138856A (en) * 2018-02-14 2019-08-22 三菱重工業株式会社 Damage condition assessment device, damage condition assessment method, and program

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250841A (en) * 1988-03-31 1989-10-05 Kubota Ltd Corrosion predicting method for buried tube
JPH10221238A (en) * 1997-01-31 1998-08-21 Nippon Steel Corp Material selecting method and material selecting device for oil well pipe tubing
JPH10237601A (en) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd Neutral chloride corrosion resistant austenitic stainless steel
JP2000290754A (en) * 1999-04-05 2000-10-17 Nkk Corp High corrosion resistance clad steel and chimney for coal fired power plant
JP2000290755A (en) * 1999-04-05 2000-10-17 Nkk Corp High corrosion resistance steel and chimney for coal fired power plant
WO2003006957A1 (en) * 2001-07-12 2003-01-23 Nippon Steel Corporation Method for predicting degree of corrosion of weather-resistant steel
JP2006053122A (en) * 2003-12-26 2006-02-23 Jfe Steel Kk Life prediction method for steel material, and design method for steel material and structure
JP2006208346A (en) * 2004-02-24 2006-08-10 Jfe Steel Kk Method and device for predicting life of steel product, and computer program
JP2007529630A (en) * 2004-03-22 2007-10-25 ニューコア・コーポレーション High copper low alloy steel sheet
JP2009197262A (en) * 2008-02-20 2009-09-03 Sanyo Special Steel Co Ltd Austenitic stainless steel having excellent whole surface corrosion resistance
JP2009250845A (en) * 2008-04-08 2009-10-29 Kobe Steel Ltd Environmental factor measuring method, thickness decrease prediction method of steel material, and selection method of steel material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250841A (en) * 1988-03-31 1989-10-05 Kubota Ltd Corrosion predicting method for buried tube
JPH10221238A (en) * 1997-01-31 1998-08-21 Nippon Steel Corp Material selecting method and material selecting device for oil well pipe tubing
JPH10237601A (en) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd Neutral chloride corrosion resistant austenitic stainless steel
JP2000290754A (en) * 1999-04-05 2000-10-17 Nkk Corp High corrosion resistance clad steel and chimney for coal fired power plant
JP2000290755A (en) * 1999-04-05 2000-10-17 Nkk Corp High corrosion resistance steel and chimney for coal fired power plant
WO2003006957A1 (en) * 2001-07-12 2003-01-23 Nippon Steel Corporation Method for predicting degree of corrosion of weather-resistant steel
JP2006053122A (en) * 2003-12-26 2006-02-23 Jfe Steel Kk Life prediction method for steel material, and design method for steel material and structure
JP2006208346A (en) * 2004-02-24 2006-08-10 Jfe Steel Kk Method and device for predicting life of steel product, and computer program
JP2007529630A (en) * 2004-03-22 2007-10-25 ニューコア・コーポレーション High copper low alloy steel sheet
JP2009197262A (en) * 2008-02-20 2009-09-03 Sanyo Special Steel Co Ltd Austenitic stainless steel having excellent whole surface corrosion resistance
JP2009250845A (en) * 2008-04-08 2009-10-29 Kobe Steel Ltd Environmental factor measuring method, thickness decrease prediction method of steel material, and selection method of steel material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6007012126; 三木千壽 他: '無塗装橋梁用鋼材の耐候性合金指標および耐候性評価方法の提案' 土木学会論文集 No. 738 I-64, 200307, pp.271-281 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138856A (en) * 2018-02-14 2019-08-22 三菱重工業株式会社 Damage condition assessment device, damage condition assessment method, and program

Also Published As

Publication number Publication date
JP5352530B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
Soares et al. Influence of environmental factors on corrosion of ship structures in marine atmosphere
JP3909057B2 (en) Corrosion prediction method for weathering steel
JP4706279B2 (en) Steel life prediction method and apparatus, and computer program
JP5066955B2 (en) Corrosion rate evaluation method
JP4724649B2 (en) Method for estimating corrosion rate of structures using ACM sensor
Topa et al. A transient multi-ion transport model for galvanized steel corrosion protection
JP2007263923A (en) Method for diagnosing deterioration due to corrosion of wiring fitting for power transmission
Feng et al. Galvanic attack of coated Al alloy panels in laboratory and field exposure
JP6635135B2 (en) Corrosion sensor design method and corrosion sensor manufacturing method
JP5066160B2 (en) Method for predicting steel sheet thickness reduction
Van Den Steen et al. Predicting the effect of droplet geometry and size distribution on atmospheric corrosion
JP6299794B2 (en) Corrosion sensor design method and corrosion sensor manufacturing method
WO2018092264A1 (en) Corrosion assessment method
JP2005337838A (en) Corrosion deterioration evaluation device and method, computer program and recording medium
JP2020148541A (en) Corrosion speed estimation device, corrosion speed estimation method, and program
JP5352530B2 (en) Method for estimating the corrosion state of steel
Yoon et al. Atmospheric corrosion of silver in outdoor environments and modified accelerated corrosion chambers
WO2022210151A1 (en) Method for predicting amount of corrosion in steel material, system for predicting amount of corrosion in steel material, program for predicting amount of corrosion in steel material, and method for proposing steel material
Adikari et al. Prediction of atmospheric corrosion—A Review
Babutzka et al. Investigation of the salinization of steel surfaces in marine environment
JP2018054606A (en) Method for estimating corrosion of metal by numerical analysis
Cui et al. Experimental and computational evaluation of the protection provided by an aluminum cladding to AA2024-T3 exposed at a seacoast environment
Abdul-Wahab et al. Atmospheric corrosion of metals
Knotkova et al. Corrosivity of atmospheres–derivation and use of information
JP7006718B2 (en) Corrosion amount prediction method and equipment and steel material selection method using this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5352530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees