JPH0378579B2 - - Google Patents
Info
- Publication number
- JPH0378579B2 JPH0378579B2 JP58040576A JP4057683A JPH0378579B2 JP H0378579 B2 JPH0378579 B2 JP H0378579B2 JP 58040576 A JP58040576 A JP 58040576A JP 4057683 A JP4057683 A JP 4057683A JP H0378579 B2 JPH0378579 B2 JP H0378579B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- defect
- signal
- eddy current
- current flaw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000007547 defect Effects 0.000 claims description 37
- 238000001514 detection method Methods 0.000 claims description 17
- 238000012360 testing method Methods 0.000 description 5
- 230000002950 deficient Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/9046—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Description
【発明の詳細な説明】
この発明は内挿コイルを用いた管の渦流探傷法
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an eddy current flaw detection method for tubes using an interpolated coil.
渦流探傷法では一般に材料中の欠陥は検出コイ
ルのインピーダンス変化として検出される。渦流
探傷法は抵抗分および誘導分よりなるベクトルの
欠陥信号を出力する。 In the eddy current flaw detection method, defects in the material are generally detected as changes in the impedance of the detection coil. The eddy current flaw detection method outputs a vector defect signal consisting of a resistive component and an inductive component.
内挿コイルを用いた管の渦流探傷法では、欠陥
信号の振幅は欠陥の深さだけではなく、欠陥の断
面積にも依存するので、浅い欠陥でも開口面積が
大きいときには振幅も大きくなる。したがつて、
1チヤンネル式記録の信号表示、すなわち振幅の
みを表示する方法では正確に欠陥の深さを知るこ
とはできない。 In tube eddy current testing using an interpolated coil, the amplitude of the defect signal depends not only on the depth of the defect but also on the cross-sectional area of the defect, so even if the defect is shallow, the amplitude will be large when the opening area is large. Therefore,
It is not possible to accurately determine the depth of a defect by displaying a single-channel recording signal, that is, by displaying only the amplitude.
一方、欠陥の深さは欠陥信号の位相によく対応
することが知られている。また、ASME(米国機
械学会)の規格には欠陥信号の位相によつて欠陥
の深さを検出することが規定されている。欠陥信
号の位相は試験周波数によつて大きく変化する
が、上記規定ではリフトオフなどによる雑音信号
の位相を0、すなわち雑音信号はx軸上に現われ
るようにしたとき、標準試験片の貫通ドリル穴に
対する位相が135度となるように試験周波数を選
定することになつている。この場合、欠陥信号の
位相は0〜180度の範囲内で変化する。 On the other hand, it is known that the depth of a defect corresponds well to the phase of the defect signal. Furthermore, the ASME (American Society of Mechanical Engineers) standards stipulate that the depth of a defect is detected based on the phase of a defect signal. The phase of the defect signal varies greatly depending on the test frequency, but in the above regulations, when the phase of the noise signal due to lift-off etc. is set to 0, that is, the noise signal appears on the x-axis, the The test frequency is to be selected so that the phase is 135 degrees. In this case, the phase of the defect signal varies within a range of 0 to 180 degrees.
ところで、位相を観測する一つの方法として、
2チヤンネル式記録の渦流探傷器の二つの出力信
号をX−YレコーダまたはCRTに送つていわゆ
る8字形パターンを描かせ、この8字パターンの
傾き角度から欠陥信号の位相を知る方法がある。
しかし、この方法では、位相が小さいと8字形パ
ターンがほとんどx軸に重なり、位相を読み取る
ことができない。また、前記のように雑音信号の
位相を0としたとき、欠陥信号と雑音信号との識
別が困難となる。 By the way, one way to observe the phase is
There is a method in which the two output signals of a two-channel recording eddy current flaw detector are sent to an X-Y recorder or CRT to draw a so-called figure-eight pattern, and the phase of the defect signal is determined from the inclination angle of this figure-eight pattern.
However, with this method, if the phase is small, the figure-8 pattern almost overlaps the x-axis, making it impossible to read the phase. Further, when the phase of the noise signal is set to 0 as described above, it becomes difficult to distinguish between a defective signal and a noise signal.
この発明は渦流探傷における上記問題を解決す
るためになされたもので、欠陥信号の位相の読取
りが正確かつ容易な内挿コイルを用いた管の渦流
探傷法を提供しようとするものである。 This invention was made to solve the above-mentioned problems in eddy current flaw detection, and aims to provide an eddy current flaw detection method for tubes using an interpolation coil that allows accurate and easy reading of the phase of a defect signal.
この発明の管の渦流探傷方法は、検出コイルを
管内に挿入して管軸に沿つて移動し、検出コイル
のインピーダンス変化を検出し、位相θの出力ベ
クトルを欠陥信号とする渦流探傷法において、欠
陥の深さおよび雑音の大きさに応じて2〜5の整
数nを選択し、前記出力ベクトルのx成分および
y成分を変数とし、三角関数のn倍角公式に基づ
く演算により、位相nθの表示ベクトルのX成分
およびY成分をそれぞれ求め、求めた表示ベクト
ルのX成分およびY成分により欠陥を表示する。 The eddy current flaw detection method for tubes of the present invention involves inserting a detection coil into the tube and moving it along the tube axis, detecting changes in the impedance of the detection coil, and using an output vector of phase θ as a defect signal. Select an integer n from 2 to 5 depending on the depth of the defect and the magnitude of noise, use the x and y components of the output vector as variables, and display the phase nθ by calculation based on the n-times angle formula of trigonometric functions. The X component and Y component of the vector are determined, respectively, and the defect is displayed using the determined X component and Y component of the display vector.
上記のように欠陥信号の位相を整数倍すること
によつて、欠陥指示パターンはパターン表示の基
線(x軸)に対し大きな角度でもつて現われ、位
相を容易に読み取ることができる。特に、欠陥の
深さが浅くて欠陥指示パターンがx軸に接近し、
位相の読取りが困難な場合、この発明は有効であ
る。また、欠陥信号のx成分が雑音信号を示す場
合、雑音信号と欠陥信号との識別は容易となる。 By multiplying the phase of the defect signal by an integer as described above, the defect indicating pattern appears at a large angle with respect to the base line (x-axis) of the pattern display, and the phase can be easily read. In particular, when the depth of the defect is shallow and the defect indication pattern approaches the x-axis,
This invention is effective when it is difficult to read the phase. Further, when the x component of the defective signal indicates a noise signal, it becomes easy to distinguish between the noise signal and the defective signal.
位相を整数倍する演算は通常のアナログまたは
デジタル演算回路によつて行うことができる。こ
のような回路は渦流探傷器内に組み込むことがで
き、既設の渦流探傷器にあつては補助装置として
探傷器に接続することも可能である。位相の倍数
を切りのよい整数とすることによつて演算回路は
簡単となる。また、位相の倍数は2〜5程度が適
当である。倍数が極端に大きくなると深い欠陥の
場合に欠陥表示パターンが360度以上回転し、正
確な位相の読取りができない。この点から、位相
の倍数は数段に切り換え可能とすることが好まし
い。たとえば、通常の深さ0.3mm程度の欠陥を検
出する場合には位相は2倍に拡大される。また、
欠陥が微小で、リフトオフなどの雑音信号と欠陥
信号の間の位相が極めて小さい場合には位相は5
倍に拡大される。 The operation of multiplying the phase by an integer can be performed by an ordinary analog or digital arithmetic circuit. Such a circuit can be incorporated into an eddy current flaw detector, or in the case of an existing eddy current flaw detector, it can be connected to the flaw detector as an auxiliary device. By setting the phase multiple to a well-rounded integer, the arithmetic circuit becomes simple. Further, a phase multiple of about 2 to 5 is appropriate. If the multiple is extremely large, the defect display pattern will rotate more than 360 degrees in the case of a deep defect, making accurate phase reading impossible. From this point of view, it is preferable that the phase multiple can be switched in several stages. For example, when detecting a defect with a normal depth of about 0.3 mm, the phase is magnified twice. Also,
If the defect is minute and the phase between the noise signal such as lift-off and the defect signal is extremely small, the phase is 5.
will be expanded twice.
以下、位相の倍数が2である場合を例とし、こ
の発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described using a case where the phase multiple is 2 as an example.
2チヤンネル式渦流探傷器の出力(欠陥)信号
をxおよびyとする。出力信号の振幅をA、位相
をθとすれば、
x=Acosθ
y=Asinθ ……(1)
xおよびyについて次の演算を行う。 Let x and y be the output (defect) signals of the two-channel eddy current flaw detector. If the amplitude of the output signal is A and the phase is θ, then x=Acosθ y=Asinθ (1) The following calculations are performed for x and y.
X=(x2−y2)/√x2+y2=A2(cos2θ−sin2
θ)/A=Acos2θ
X=(x2−y2)/√x2+y2=A2(cos2θ−sin2
θ)/A=Acos2θ
Y=2xy/√x2+y2=2A2sinθ・cosθ/A=Asin2θ…
…(2)
式(1)および(2)を比較すれば明らかなように、求
められたXおよびYはそれぞれ欠陥信号の振幅を
そのままとし、位相のみを2倍に拡大した信号の
成分を表わしている。成分XおよびYのベクトル
信号をCRTなどの表示装置に入力すれば位相が
2倍となつた欠陥指示パターンが表示される。 X=( x2 − y2 )/ √x2 + y2 = A2 ( cos2θ − sin2
θ)/A=Acos2θ X=( x2 − y2 )/ √x2 + y2 = A2 ( cos2θ − sin2
θ)/A=Acos2θ Y=2xy/√x 2 +y 2 =2A 2 sinθ・cosθ/A=Asin2θ…
...(2) As is clear from comparing Equations (1) and (2), the obtained X and Y each represent the component of the signal with the amplitude of the defect signal unchanged and only the phase expanded by twice. ing. If vector signals of components X and Y are input to a display device such as a CRT, a defect indicating pattern with twice the phase will be displayed.
第1図は上記演算を行う信号変換装置のブロツ
ク図であり、各回路で処理された信号の流れも示
している。 FIG. 1 is a block diagram of a signal conversion device that performs the above calculation, and also shows the flow of signals processed in each circuit.
信号変換装置2は渦流探傷器1に接続され、欠
陥信号xおよびyが入力される。2乗回路3およ
び4はそれぞれ渦流探傷器1からの信号xおよび
yを2乗し、x2およびy2を出力する。乗算回路5
は信号xおよびyの積を求める。減算回路6およ
び加算回路7はx2およびy2の差および和を求め
る。2倍回路8は乗算回路5からの信号xyを2
倍する。平方根回路9は信号X2+Y2の平方根を
求め、除算回路10および11に出力する。除算
回路10はX(=(x2−y2)/√2+2)を、除算
回路11はY(=2xy/√2+2)を求める。こ
のようにして求めた信号XおよびYはX−Yレコ
ーダあるいはCRTに出力され、欠陥信号がパタ
ーン表示される。 The signal conversion device 2 is connected to the eddy current flaw detector 1 and receives defect signals x and y. The squaring circuits 3 and 4 square the signals x and y from the eddy current flaw detector 1, respectively, and output x 2 and y 2 . Multiplication circuit 5
finds the product of the signals x and y. Subtraction circuit 6 and addition circuit 7 calculate the difference and sum of x 2 and y 2 . The doubling circuit 8 converts the signal xy from the multiplication circuit 5 into 2
Multiply. Square root circuit 9 finds the square root of signal X 2 +Y 2 and outputs it to division circuits 10 and 11. The division circuit 10 calculates X (=(x 2 −y 2 )/√ 2 + 2 ), and the division circuit 11 calculates Y (=2xy/√ 2 + 2 ). The signals X and Y thus obtained are output to an X-Y recorder or CRT, and the defective signal is displayed in a pattern.
次にこの発明の渦流探傷法の実験例について説
明する。 Next, an experimental example of the eddy current flaw detection method of the present invention will be explained.
実験に用いた試験品は外径32mm、肉厚1.5mmの
アルミニウム管に人工欠陥(平底ドリル穴および
円周溝)をASMEの規格に基づき加工したもの
である。検出コイルは外径24mm、幅2mmの円周溝
に0.1mmφのエナメル線を110ターン巻いたもの
で、2個の検出コイルを中心間隔6mmをおいて配
置した。試験周波数は8KHzで、貫通ドリル穴に
対する信号の位相は133度であつた。検出コイル
は管内を0.216m/sの速度で移動した。 The test product used in the experiment was an aluminum tube with an outer diameter of 32 mm and a wall thickness of 1.5 mm, with artificial defects (flat-bottom drill holes and circumferential grooves) machined according to ASME standards. The detection coil was made by winding 110 turns of 0.1 mmφ enamelled wire in a circumferential groove with an outer diameter of 24 mm and a width of 2 mm, and two detection coils were arranged with a center spacing of 6 mm. The test frequency was 8KHz and the signal phase for the through drill hole was 133 degrees. The detection coil moved inside the tube at a speed of 0.216 m/s.
第2図および第3図はそれぞれ実験結果を示し
ている。 FIGS. 2 and 3 each show the experimental results.
第2図は管に設けられた平底ドリル穴の直径お
よび深さ(肉厚に対する比率%)に対する信号の
変化を示している。雑音信号は位相が0で、x軸
上に信号が表われている。従来の8字形パターン
は振幅は同じであるが、位相が2倍である0字形
パターンに変換され表示されている。 FIG. 2 shows the variation of the signal with respect to the diameter and depth (% of wall thickness) of a flat-bottom drilled hole in a tube. The phase of the noise signal is 0, and the signal appears on the x-axis. The conventional figure-8 pattern is converted into a figure-0 pattern, which has the same amplitude but twice the phase, and is displayed.
第3図は管に設けられた円周溝の幅および深さ
に対する信号の変化を示している。第2図と同様
に8字形パターンは位相が2倍である0字形パタ
ーンに変換され表示されている。また、第3図は
欠陥(円周溝)の深さに応じて位相が大きくなつ
ていることを示している。 FIG. 3 shows the variation of the signal with respect to the width and depth of the circumferential groove provided in the tube. As in FIG. 2, the 8-shaped pattern is converted into a 0-shaped pattern with twice the phase and displayed. Furthermore, FIG. 3 shows that the phase increases depending on the depth of the defect (circumferential groove).
この発明は前記実施例に限られるものではな
い。たとえば、位相の倍数は2に限らず、3,
4,5等であつてもよい。この場合、探傷器から
の欠陥信号は三角関数の3倍角、4倍角等の公式
を用いて演算処理される。 This invention is not limited to the above embodiments. For example, the phase multiple is not limited to 2, but 3,
It may be 4, 5, etc. In this case, the defect signal from the flaw detector is processed using trigonometric formulas such as triple angle and quadruple angle.
第1図はこの発明の方法の実施に用いる信号変
換装置の一例を示すもので、装置のブロツク図、
第2図および第3図はそれぞれこの発明の実験例
を示すもので、欠陥表示パターン図である。
1……渦流探傷器、2……信号変換装置、3,
4……2乗回路、5……乗算回路、6……減算回
路、7……加算回路、8……2倍回路、9……平
方根回路、10,11……除算回路。
FIG. 1 shows an example of a signal converting device used to carry out the method of the present invention, and shows a block diagram of the device,
FIGS. 2 and 3 each show an experimental example of the present invention, and are defect display pattern diagrams. 1...Eddy current flaw detector, 2...Signal conversion device, 3,
4...Squaring circuit, 5...Multiplication circuit, 6...Subtraction circuit, 7...Addition circuit, 8...Doubling circuit, 9...Square root circuit, 10, 11...Divide circuit.
Claims (1)
動し、検出コイルのインピーダンス変化を検出
し、位相θの出力ベクトルを欠陥信号とする渦流
探傷法において、欠陥の深さおよび雑音の大きさ
に応じて2〜5の整数nを選択し、前記出力ベク
トルのx成分およびy成分を変数とし、三角関数
のn倍角公式に基づく演算により、位相nθの表
示ベクトルのX成分およびY成分をそれぞれ求
め、求めた表示ベクトルのX成分およびY成分に
より欠陥を表示することを特徴とする内挿コイル
を用いた管の渦流探傷法。1 In the eddy current flaw detection method, a detection coil is inserted into the pipe and moved along the pipe axis to detect changes in the impedance of the detection coil, and the output vector of phase θ is used as a defect signal. Select an integer n from 2 to 5 according to , use the x component and y component of the output vector as variables, and calculate the An eddy current flaw detection method for pipes using an interpolation coil, characterized in that defects are displayed by the X and Y components of the obtained display vector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4057683A JPS59166858A (en) | 1983-03-14 | 1983-03-14 | Eddy current flaw detecting method of pipe using interpolating coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4057683A JPS59166858A (en) | 1983-03-14 | 1983-03-14 | Eddy current flaw detecting method of pipe using interpolating coil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59166858A JPS59166858A (en) | 1984-09-20 |
JPH0378579B2 true JPH0378579B2 (en) | 1991-12-16 |
Family
ID=12584307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4057683A Granted JPS59166858A (en) | 1983-03-14 | 1983-03-14 | Eddy current flaw detecting method of pipe using interpolating coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59166858A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4902448B2 (en) * | 2007-07-10 | 2012-03-21 | 株式会社日立製作所 | Defect identification method and defect identification apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4945795A (en) * | 1972-09-02 | 1974-05-01 | Nippon Steel Corp | Kubifurikiko o jusuru choonpatanshokushi |
JPS53121687A (en) * | 1977-03-31 | 1978-10-24 | Sumitomo Metal Ind | Vortex flow crack detecting method |
JPS5793251A (en) * | 1980-12-02 | 1982-06-10 | Hara Denshi Sokki Kk | Device for detecting flaw by eddy current |
-
1983
- 1983-03-14 JP JP4057683A patent/JPS59166858A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4945795A (en) * | 1972-09-02 | 1974-05-01 | Nippon Steel Corp | Kubifurikiko o jusuru choonpatanshokushi |
JPS53121687A (en) * | 1977-03-31 | 1978-10-24 | Sumitomo Metal Ind | Vortex flow crack detecting method |
JPS5793251A (en) * | 1980-12-02 | 1982-06-10 | Hara Denshi Sokki Kk | Device for detecting flaw by eddy current |
Also Published As
Publication number | Publication date |
---|---|
JPS59166858A (en) | 1984-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8680852B2 (en) | Method and apparatus for phase sensitive detection of eddy current measurements | |
JPS5975146A (en) | Vortex flaw detector for metallic pipe | |
JP2007086034A (en) | Method for measuring rotational accuracy | |
US4496904A (en) | Eddy current measurement apparatus for non-destructive testing in the vicinity of a fastener | |
US6566871B2 (en) | Process and device for testing a workpiece by means of eddy currents | |
US20050046593A1 (en) | Reconfigurable sensor signal demodulation system | |
JPH0378579B2 (en) | ||
JPS6111654A (en) | Method of forming color band type display | |
JPH03218421A (en) | Oscillation mode measuring device | |
US4706022A (en) | Rotating-probe defect detecting device | |
JP2798199B2 (en) | Noise Removal Method in Eddy Current Testing | |
US7095410B2 (en) | Method for generating and displaying complex data utilizing color-coded signals | |
JP2004354218A (en) | Digital eddy current defect detection test device | |
JPS59166859A (en) | Eddy current flaw detector for pipe provided with interpolating coil | |
KR100250325B1 (en) | Axle spindle displacement profile production method for driving simulation of a vehicle | |
JPH075408Y2 (en) | Metal flaw detection probe | |
JPH11287830A (en) | Detection method and device of phase component of sign wave signal | |
JPS586458A (en) | Hot eddy current flaw detecting method of steel material | |
JP2610424B2 (en) | Eddy current flaw detector | |
JPS5835455A (en) | Eddy current flaw detector | |
JPS6050408A (en) | Coordinate measuring machine wherein measuring errors due to vibration are made less | |
JPS63266318A (en) | Abnormal sound generating point probing device | |
JPS6117360Y2 (en) | ||
JPS61251779A (en) | Measuring method for partial discharge | |
JPS59111057A (en) | Non-destructive inspection apparatus |