JPS5940264B2 - Eddy current flaw detection method - Google Patents

Eddy current flaw detection method

Info

Publication number
JPS5940264B2
JPS5940264B2 JP52036337A JP3633777A JPS5940264B2 JP S5940264 B2 JPS5940264 B2 JP S5940264B2 JP 52036337 A JP52036337 A JP 52036337A JP 3633777 A JP3633777 A JP 3633777A JP S5940264 B2 JPS5940264 B2 JP S5940264B2
Authority
JP
Japan
Prior art keywords
detection
signals
2max
find
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52036337A
Other languages
Japanese (ja)
Other versions
JPS53121687A (en
Inventor
英彰 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP52036337A priority Critical patent/JPS5940264B2/en
Publication of JPS53121687A publication Critical patent/JPS53121687A/en
Publication of JPS5940264B2 publication Critical patent/JPS5940264B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は鋼管等の渦流探傷方法に関するものである。[Detailed description of the invention] This invention relates to an eddy current flaw detection method for steel pipes and the like.

従来、渦流探傷装置においては、検出コイルからの信号
電圧を位相弁別回路により、その信号の互に直交する2
つの直流電圧信号を取り出し(X信号、Y信号)、これ
をCRT表示装置の水平および垂直偏向板に印加するこ
とによつて、第1図のように信号電圧の位相及び振幅に
相応する位置でスポット表示することが行なわれている
Conventionally, in an eddy current flaw detection device, a phase discrimination circuit converts the signal voltage from the detection coil into two signals that are orthogonal to each other.
By extracting two DC voltage signals (X signal, Y signal) and applying them to the horizontal and vertical deflection plates of the CRT display device, the Spot display is being carried out.

そして欠陥の評価の際、X成分あるいはY成分のみを有
する信号を取り出して、その大きさで評価することも行
なわれている。さらに例えば第2図に示すようにY軸に
対称な選定される扇状領域内の信号のみを欠陥信号とし
て評価する装置も開発されている。しかしながら、欠陥
表示スポットの軌跡は、多くの場合8字形を描くが、欠
陥からの信号、被検材の寸法変化による信号等種々雑多
であり、多くの場合、第3図のようにその8字形は幅広
いループを描く。
When evaluating defects, a signal having only an X component or a Y component is extracted and evaluated based on its magnitude. Furthermore, as shown in FIG. 2, for example, an apparatus has been developed that evaluates only signals within a selected fan-shaped area symmetrical about the Y axis as defect signals. However, the trajectory of the defect display spot often draws a figure 8 shape, but there are various signals such as signals from defects and signals due to dimensional changes in the inspected material, and in many cases, the trajectory is shaped like a figure 8 as shown in Figure 3. draws a wide loop.

そのため位相を最適に調整しても軌跡は扇形領域内外を
出入して、その分離は困難であり、判定不能もしくは粗
い判別ができるのみであるOところで8字形のスポツト
表示軌跡が欠陥の姓状と対応できることは一般によく知
られた渦流探傷の基本であり、概念的には振幅の大きさ
が欠陥の大きさに対応し、傾きおよび位相が欠陥の大き
さに加えて欠陥の表面からの深さ位置および種類にそれ
ぞれ対応する。
Therefore, even if the phase is adjusted optimally, the trajectory moves inside and outside the fan-shaped area, making it difficult to separate them, making it impossible to determine or only making a rough distinction.By the way, the figure-eight spot display trajectory is a sign of a defect. This is the basis of well-known eddy current flaw detection; conceptually, the amplitude corresponds to the defect size, and the slope and phase correspond to the defect size as well as the depth from the defect surface. Corresponds to location and type respectively.

この発明は前記事情に鑑みて提案されたものであり、扇
状領域を二以上に細分化すること、最大振幅時の位相お
よびその時の振幅を与える点がどの細分化された扇状領
域にあるかにより判断すること、さらに必要により探傷
周波数の異なるパターン相互を総合的に勘案して判定す
ることによつて、この種の探傷における種々雑多な変動
要素を適格に処理し、もつて正確な欠陥判定を可能なら
しめんとするものである。
This invention was proposed in view of the above-mentioned circumstances, and it is possible to subdivide a fan-shaped area into two or more parts, and to determine which sub-divided fan-shaped area the phase at the maximum amplitude and the point giving the amplitude at that time are located. By comprehensively considering patterns with different flaw detection frequencies as necessary, various miscellaneous variables in this type of flaw detection can be properly handled, and accurate defect determination can be achieved. We hope that it is possible.

次にこの発明を第4図〜第9図によつて説明すると、検
出コイルからの信号電圧を位相弁別回路により、その信
号の互に直交する二つの直流電圧信号を取り出し、X,
Y成分のある瞬時における直流出力をVX,VYとし、
これをCRT表示装置に表示した場合、その瞬時におけ
るスポツトがPであるとすれば、その軌跡は第4図のよ
うに8字形ループを描く。
Next, the present invention will be explained with reference to FIGS. 4 to 9. Two mutually orthogonal DC voltage signals are extracted from the signal voltage from the detection coil using a phase discrimination circuit,
Let the DC output at a certain moment of the Y component be VX, VY,
When this is displayed on a CRT display, assuming that the spot at that instant is P, its locus will draw a figure-eight loop as shown in FIG.

(イ)Y〉0およびVx2+VY2≧α(基準値)なる
条件において、V2−Vx2+VY2を計算する。
(a) Calculate V2-Vx2+VY2 under the conditions that Y>0 and Vx2+VY2≧α (reference value).

したがつてVはある瞬時における振巾Lを与える。(ロ
)そしてV2の最大値2maxを求める。
Therefore, V gives the amplitude L at a certain instant. (b) Then, find the maximum value 2max of V2.

したがつて2maxは最大振巾Lmaxを与える。(ハ
)またV2maxを与える時間(最大振幅時)をYt−
t1とし、そのt−T,における一を求めVxる。
Therefore, 2max gives the maximum amplitude Lmax. (c) Also, the time to provide V2max (at maximum amplitude) is Yt-
Let t1 be the one at t-T, and find Vx.

その時のX軸となす角度θt−t1はVY tanθ1=t1−一なる関係があるから、VxY θ1−1 −Tan−1 − として演算によつ1Xて
求めることができる。
Since the angle θt-t1 formed with the X axis at that time has the relationship VY tanθ1=t1-1, it can be calculated by 1X as VxY θ1-1 - Tan-1 -.

このθ1−11およびV2maxを要素として、第7図
のように組合せにより分類すれば、第6図のような一部
欠除扇形領域Sl,S2,S3として区分できる。
If these θ1-11 and V2max are used as elements and are classified according to combinations as shown in FIG. 7, they can be classified as partially cut out fan-shaped regions Sl, S2, and S3 as shown in FIG. 6.

なお、これら領域はそれ以上に細分化できることは勿論
である。このように二以上に欠陥判断領域を区分化した
場合において、被検材からの出力によりCRT表示装置
に表示させVmaxおよびθがどの領域にあるかにより
欠陥を判定するのである。
It goes without saying that these areas can be further subdivided. When the defect determination area is divided into two or more areas in this manner, defects are determined based on which area Vmax and θ are displayed on the CRT display device based on the output from the material to be inspected.

たとえば、第8図のように疵の種類および深さを判定す
るとともに、Vmaxのレベルによつてその大きさを判
定する。一方、第9図は態様を異にする例で、送りロー
ラ1によつて送られる被検材2のラインに、所定近接間
隔αを置いて探傷周波数の異なる二つの検出コイル3,
3′を設け、それぞれの信号電圧を位相弁別回路を通し
て、それぞれの周波数に基く別個の疵情報を得る。
For example, as shown in FIG. 8, the type and depth of the flaw are determined, and the size thereof is determined based on the level of Vmax. On the other hand, FIG. 9 shows an example of a different mode, in which two detection coils 3 with different flaw detection frequencies are placed at a predetermined proximity interval α on the line of the test material 2 sent by the feed roller 1.
3' is provided, and each signal voltage is passed through a phase discrimination circuit to obtain separate flaw information based on each frequency.

そして被検材2の検出コイル3,3′に対する相対移動
速度を考慮し、検出コイル3下に位置する疵が検出コイ
ル3′下にくるまで時間を必要な分解能をもつシストレ
ジスタ一により遅延させることにより、検出コイル3と
検出コイル3′との疵情報をマツチングさせて総合的に
判定すれは、探傷周波数により欠陥信号の特性が異なる
ことを有効に利用して、正確な判断が可能となる。なお
、検出コイル一探傷装置系についてはさらに多数の系を
用意してもよい。以上の通り、この発明によれば、欠陥
の有無だけでなく、種類、大きさ、深さについて正確な
判定が可能となる。
Then, considering the relative movement speed of the specimen 2 with respect to the detection coils 3 and 3', the time required for the flaw located under the detection coil 3 to come under the detection coil 3' is delayed by a cyst register 1 having the necessary resolution. By matching the flaw information from the detection coil 3 and the detection coil 3' and making a comprehensive judgment, it is possible to make an accurate judgment by effectively utilizing the fact that the characteristics of the defect signal differ depending on the flaw detection frequency. . Note that a larger number of detection coil-flaw detection device systems may be prepared. As described above, according to the present invention, it is possible to accurately determine not only the presence or absence of a defect, but also the type, size, and depth.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は表示装置における位相・振巾を示す説明図、第
2図および第3図は従来法の説明のためのスポツト軌跡
図、第4図は最大振幅時の位相・振巾の表示図、第5図
は検出コイルからの出力電圧と時間との相関図、第6図
は細分化の一例を示す図、第7図は分類法を示す図、第
8図は疵判定法の説明図、第9図は態様を異にする検出
例の構成図である。 1・・・・・・送りローラ、2・・・・・・被検材、3
,3′・・・・・・検出コイル。
Figure 1 is an explanatory diagram showing the phase and amplitude in the display device, Figures 2 and 3 are spot trajectory diagrams for explaining the conventional method, and Figure 4 is a diagram showing the phase and amplitude at the maximum amplitude. , Fig. 5 is a correlation diagram between the output voltage from the detection coil and time, Fig. 6 is a diagram showing an example of subdivision, Fig. 7 is a diagram showing the classification method, and Fig. 8 is an explanatory diagram of the flaw determination method. , FIG. 9 is a configuration diagram of a detection example with different modes. 1...Feed roller, 2...Test material, 3
, 3'...Detection coil.

Claims (1)

【特許請求の範囲】 1 検出コイルからの信号電圧を位相弁別回路により相
互に直交するX信号およびY信号を取り出し、ある時間
におけるX信号およびY信号の大きさをV_X、V_Y
として、(イ)V_Y>0およびV_X_^2+V_Y
_^2≧α(基準値)なる条件においてV^2=V_X
_^2+V_Y_2^を計算し、(ロ)そのV^2の最
大値V^2maxを求め、(ハ)そのV^2maxを与
える時間におけるV_Y/V_Xを求め、Θ=tan^
−^1(V_Y/V_X)を演算し、座標系に表示した
場合におけるV_Y>0なる第1象限および第2象限を
X軸となす角度と原点からの振幅半径との組合せにより
中心側が欠除した一部欠除扇形で少くとも二以上の判定
領域に区分し、前記算出したVmaxおよびΘがどの判
定領域にあるかにより欠陥の状態を判定することを特徴
とする渦流探傷方法。 2 被探傷材の移送方向に間隔を置いて探傷周波数の異
なる複数の検出コイルを設け、それぞれの検出コイルか
らの出力信号を位相弁別回路により相互に直交するX信
号およびY信号を取り出し、ある時間におけるX信号お
よびY信号の大きさをV_X、V_Yとして、(イ)V
_Y>0およびV_X_^2+V_Y_^2≧α(基準
値)なる条件においてV^2=V_X_^2+V_Y_
^2を計算し、(ロ)そのV^2の最大値V^2max
を求め、(ハ)そのV^2maxを与える時間における
V_Y/V_Xを求め、Θ=tan^−^1(V_Y/
V_X)を演算し、座標系に表示した場合におけるV_
Y>0なる第1象限および第2象限を、X軸となす角度
と原点からの振幅半径との組合せにより中心側が欠除し
た一部欠除扇形で少くとも二以上の判定領域に区分し、
前記VmaxおよびΘがどの判定領域にあるかを判断す
ると共にそれぞれの検出探傷系の結果を総合的に判断す
ることにより欠陥の状態を判定することを特徴とする渦
流探傷方法。
[Claims] 1. X and Y signals that are orthogonal to each other are extracted from the signal voltage from the detection coil using a phase discrimination circuit, and the magnitudes of the X and Y signals at a certain time are determined as V_X, V_Y.
As, (a) V_Y>0 and V_X_^2+V_Y
Under the condition that _^2≧α (reference value), V^2=V_X
Calculate _^2+V_Y_2^, (b) find the maximum value V^2max of that V^2, (c) find V_Y/V_X at the time to give that V^2max, and Θ=tan^
-^1 (V_Y/V_X) is calculated and displayed in the coordinate system, and the center side is deleted due to the combination of the angle between the first and second quadrants of V_Y>0 and the X axis and the amplitude radius from the origin. An eddy current flaw detection method characterized in that the defect is divided into at least two or more determination regions in a sector-like shape with a partial cutout, and the state of the defect is determined based on which determination region the calculated Vmax and Θ are in. 2. A plurality of detection coils with different detection frequencies are provided at intervals in the direction of transport of the material to be detected, and the output signals from each detection coil are extracted by a phase discrimination circuit into X and Y signals that are orthogonal to each other. Assuming that the magnitudes of the X signal and Y signal are V_X and V_Y, (a) V
Under the conditions of _Y>0 and V_X_^2+V_Y_^2≧α (reference value), V^2=V_X_^2+V_Y_
Calculate ^2, and (b) find the maximum value of V^2, V^2max.
(c) Find V_Y/V_X at the time that gives V^2max, and calculate Θ=tan^-^1(V_Y/
V_X) when calculated and displayed in the coordinate system
Divide the first and second quadrants where Y>0 into at least two or more determination regions in a partially-deleted sector shape with the center side deleted by a combination of the angle formed with the X axis and the amplitude radius from the origin,
An eddy current flaw detection method characterized in that the condition of a defect is determined by determining in which determination region the Vmax and Θ are located and by comprehensively determining the results of each detection flaw detection system.
JP52036337A 1977-03-31 1977-03-31 Eddy current flaw detection method Expired JPS5940264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52036337A JPS5940264B2 (en) 1977-03-31 1977-03-31 Eddy current flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52036337A JPS5940264B2 (en) 1977-03-31 1977-03-31 Eddy current flaw detection method

Publications (2)

Publication Number Publication Date
JPS53121687A JPS53121687A (en) 1978-10-24
JPS5940264B2 true JPS5940264B2 (en) 1984-09-28

Family

ID=12467008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52036337A Expired JPS5940264B2 (en) 1977-03-31 1977-03-31 Eddy current flaw detection method

Country Status (1)

Country Link
JP (1) JPS5940264B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246689Y2 (en) * 1982-11-17 1987-12-18

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028210Y2 (en) * 1980-01-31 1990-02-27
JPS58151552A (en) * 1982-03-04 1983-09-08 Shin Nippon Hihakai Kensa Kk Signal analyzing device of eddy current flaw detector
FR2541772B1 (en) * 1983-02-24 1985-06-14 Aerospatiale PROCESS AND DEVICE FOR THE NON-DESTRUCTIVE EXAMINATION OF RIVERED OR SIMILAR JUNCTIONS USING AN EDDY CURRENT PROBE
JPS59166858A (en) * 1983-03-14 1984-09-20 Tokushu Toryo Kk Eddy current flaw detecting method of pipe using interpolating coil
JPS6082852A (en) * 1983-10-12 1985-05-11 Kobe Steel Ltd Flaw analyzing apparatus of tubular material
JPH0776764B2 (en) * 1986-08-27 1995-08-16 日立電線株式会社 Eddy current flaw detector
JP2005201778A (en) * 2004-01-16 2005-07-28 Japan Techno Mate Corp Eddy current flaw detector and noise filtering method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246689Y2 (en) * 1982-11-17 1987-12-18

Also Published As

Publication number Publication date
JPS53121687A (en) 1978-10-24

Similar Documents

Publication Publication Date Title
RU2342653C2 (en) Method for nondestructive testing of pipes and device for its realisation
EP0107844B1 (en) Eddy-current defect-detecting system for metal tubes
JPS5940264B2 (en) Eddy current flaw detection method
US5311127A (en) Method and apparatus for inspecting metal tubes employing magnetically induced eddy currents
US4881031A (en) Eddy current method and apparatus for determining structural defects in a metal object without removing surface films or coatings
US6566871B2 (en) Process and device for testing a workpiece by means of eddy currents
JPH059744B2 (en)
KR930701743A (en) Vortex imaging system
US3609531A (en) Combined leakage field and eddy current flaw detector
US3895290A (en) Defect detection system using an AND gate to distinguish specific flaw parameters
EP0619487A2 (en) System and method for non-desturctive plate examination
Oukhellou et al. Dedicated sensor and classifier of rail head defects
US10775346B2 (en) Virtual channels for eddy current array probes
US4891986A (en) Apparatus for inspecting articles
US4837510A (en) Device for suppression and/or separation of signals due to magnetic oxide scales in hot cast billets
JPH09171005A (en) Method for discriminating kind of defect by ultrasonic flaw detection
JPS63221211A (en) Ultrasonic thickness measuring method for laminar body
JPS60125560A (en) Method for inspecting metal surface
JPS62255861A (en) Signal memory-processor
JPH03185353A (en) Eddy current flaw detection
JPH09292350A (en) Nondestructive inspection method by radar image processing system
JPH09229910A (en) Method for ultrasonic angle beam flaw detection
Knauss et al. Subsurface crack signals in time-resolved acoustic microscopy
JPH0342789B2 (en)
JP2962194B2 (en) Plate wave ultrasonic inspection method and apparatus