JPH09292350A - Nondestructive inspection method by radar image processing system - Google Patents

Nondestructive inspection method by radar image processing system

Info

Publication number
JPH09292350A
JPH09292350A JP13097796A JP13097796A JPH09292350A JP H09292350 A JPH09292350 A JP H09292350A JP 13097796 A JP13097796 A JP 13097796A JP 13097796 A JP13097796 A JP 13097796A JP H09292350 A JPH09292350 A JP H09292350A
Authority
JP
Japan
Prior art keywords
measurement
medium
inspection method
target
processing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13097796A
Other languages
Japanese (ja)
Other versions
JP3658643B2 (en
Inventor
Taketo Uomoto
魚本健人
Yoshitaka Kato
加藤佳孝
Shakkin Boku
錫均 朴
Masaru Yoshizawa
勝 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIYUTO KOSOKU DORO GIJUTSU CENTER
University of Tokyo NUC
Original Assignee
SHIYUTO KOSOKU DORO GIJUTSU CENTER
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIYUTO KOSOKU DORO GIJUTSU CENTER, University of Tokyo NUC filed Critical SHIYUTO KOSOKU DORO GIJUTSU CENTER
Priority to JP13097796A priority Critical patent/JP3658643B2/en
Publication of JPH09292350A publication Critical patent/JPH09292350A/en
Application granted granted Critical
Publication of JP3658643B2 publication Critical patent/JP3658643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable detecting the position and the magnitude of a target based on the direction and the position of the vector by obtaining the image to be measured in the ground or inside concrete by a radar, and obtaining the gradient vector having the high intensity from the measured image. SOLUTION: The electromagnetic waves are irradiated from a plurality of measuring positions on the strength line at the surface of, e.g. concrete layer, by a radar; the reflected waves are received and the measured image in the concrete layer is obtained. Then, the gradient vector having the high intensity in the signals from the target of the image to be measured is obtained. With the measured position as the reference, the lower intersecting point of the straight lines in the direction of the gradient vector located at the lower position of the circle whose radius is the vertical distance to the surface of the target is obtained. Thus, the shape or the position of the target can be obtained nondestructively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コンクリートや地
中にある鉄筋や空隙など、媒質中の異なる誘電率の目標
物を検査するレ−ダ画像処理システムによる非破壊検査
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-destructive inspection by a radar image processing system for inspecting a target object having different permittivity in a medium such as concrete or reinforcing bars and voids in the ground.

【0002】[0002]

【従来の技術】従来から地中探査レーダ又は鉄筋探査レ
−ダによって、破壊することなく地中の空隙やコンクリ
ート中の鉄筋などの目標物を調査している。
2. Description of the Related Art Conventionally, an underground exploration radar or a reinforcing bar exploration radar has been used to investigate targets such as voids in the ground and reinforcing bars in concrete without destruction.

【0003】しかし、従来の方法では、次のような問題
点がある。 <イ>レーダから発せられた信号は一定のビーム幅で広
がって伝搬するために、空隙などの目標物の画像は実際
の形状と異なって広がった画像として表されるため、画
像から目標物の有無を判断する場合、技術者の経験に依
るところが多く、その大きさや形状を検出することは困
難であった。 <ロ>鉄筋コンクリートの場合には、コンクリート内に
鉄筋が狭い間隔で配置されており、複数の鉄筋からの反
射が強いために、反射波の散乱および干渉などにより各
鉄筋からの反射波の前縁が区別しにくくなる。そのため
に、鉄筋位置の検出が困難であった。
However, the conventional method has the following problems. <a> Since the signal emitted from the radar spreads and propagates with a constant beam width, the image of the target object such as a gap is displayed as an image that spreads differently from the actual shape. When determining the presence or absence, it often depends on the experience of the engineer, and it is difficult to detect the size and shape. <B> In the case of reinforced concrete, since the reinforcing bars are arranged at narrow intervals in the concrete and the reflection from multiple reinforcing bars is strong, the leading edge of the reflected wave from each reinforcing bar due to scattering and interference of reflected waves. Becomes difficult to distinguish. Therefore, it was difficult to detect the position of the reinforcing bar.

【0004】[0004]

【発明が解決しようとする課題】本発明は、異なった媒
質中にある目標物の位置や大きさ(形状)を容易に検査
する方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for easily inspecting the position and size (shape) of a target object in different media.

【0005】[0005]

【課題を解決するための手段】本発明は、媒質中に存在
する目標物を検出するレ−ダ画像処理システムによる非
破壊検査方法において、媒質表面の直線上の複数の測定
位置から電磁波を照射し、その反射波を受信し、媒質内
の測定画像を求め、測定画像の目標物からの信号中で強
度の大きいグラディエントベクトルを求め、測定位置を
基準にし、その下方に位置する該グラディエントベクト
ル方向の直線と目標物の表面までの垂直距離を半径とす
る円の下測交点を求め、目標物の形状又は位置を求める
ことを特徴とする、レ−ダ画像処理システムによる非破
壊検査方法、又は、媒質中に存在する複数配列された鉄
筋を検査するレ−ダ画像処理システムによる非破壊検査
方法において、媒質表面の直線上の複数の測定位置から
電磁波を照射し、その反射波を受信し、媒質内の測定画
像を求め、媒質表面からの一定深さ毎に測定画像の線図
を求め、各線図毎に平均線を求め、平均値以上の強度を
積分し、最大積分値となる線図の深さから鉄筋の深さを
求めることを特徴とする、レ−ダ画像処理システムによ
る非破壊検査方法にある。
SUMMARY OF THE INVENTION The present invention is a non-destructive inspection method by a radar image processing system for detecting a target existing in a medium, in which electromagnetic waves are emitted from a plurality of measurement positions on a straight line of the medium surface. Then, the reflected wave is received, the measurement image in the medium is obtained, the gradient vector with a large intensity is obtained in the signal from the target of the measurement image, the measurement position is set as a reference, and the gradient vector direction located below the measurement vector is determined. Non-destructive inspection method by a radar image processing system, characterized in that the shape or position of the target object is obtained by obtaining the lower measurement intersection of a circle whose radius is the vertical distance between the straight line and the surface of the target object, or In a non-destructive inspection method by a radar image processing system for inspecting a plurality of arranged reinforcing bars existing in a medium, electromagnetic waves are irradiated from a plurality of measurement positions on a straight line of the medium surface, The reflected wave is received, the measurement image in the medium is obtained, the diagram of the measurement image is obtained at each constant depth from the medium surface, the average line is obtained for each diagram, and the intensity above the average value is integrated, A nondestructive inspection method by a radar image processing system is characterized in that the depth of the reinforcing bar is obtained from the depth of the diagram which becomes the maximum integrated value.

【0006】[0006]

【発明の実施の形態】以下、図面を用いて本発明の実施
の形態を説明する。 <イ>非破壊検査の解析方法の概要 空隙などの目標物を有する媒質、例えば図1のように球
形の空隙を有する砂層の上にコンクリート層を有する地
層を非破壊的に検査する。そこで、地表の測定面に沿っ
て探査レーダ(UG−V33地中探査レ−ダ、(株)三
井造船)を移動し、各測定位置毎に地中に探査レーダか
ら電磁波を放射し、その反射波を受信し、画像処理をし
て空隙や鉄筋などの目標物の位置や形状を求める。探査
レーダは例えば3素子ダイポール、3偏波モード動作の
アンテナ方式であり、20MHz〜1GHzの広帯域周
波数の高分解能型である。
Embodiments of the present invention will be described below with reference to the drawings. <A> Outline of analysis method of nondestructive inspection A medium having a target such as a void, for example, a stratum having a concrete layer on a sand layer having a spherical void as shown in FIG. 1 is nondestructively inspected. Therefore, an exploration radar (UG-V33 underground exploration radar, Mitsui Shipbuilding Co., Ltd.) is moved along the measurement surface of the surface of the earth, and an electromagnetic wave is radiated from the exploration radar into the ground at each measurement position and its reflection is performed. The waves are received and image processing is performed to obtain the position and shape of the target such as voids and reinforcing bars. The exploration radar is, for example, a three-element dipole, three-polarization mode operation antenna system, and is a high resolution type with a wide band frequency of 20 MHz to 1 GHz.

【0007】レーダから発せられた信号は、一定のビー
ム幅で広がって伝搬するため、目標物から反射して戻る
信号画像は、実際の目標物の形状とは異なっている。そ
のため、図1のように実際の空隙に対するレーダの測定
結果は、図1の右側の場合、実線で示したように球形空
隙の目標物から反射して戻るので、レーダ画面上では、
垂直方向から受信したと見なして垂直な点線の先端部に
目標物があるように表示される。
Since the signal emitted from the radar spreads and propagates with a constant beam width, the signal image reflected and returned from the target differs from the actual shape of the target. Therefore, in the case of the right side of FIG. 1, the measurement result of the radar for the actual air gap as shown in FIG. 1 reflects from the target object of the spherical air gap as shown by the solid line and returns, so that on the radar screen,
It is assumed that the target is received from the vertical direction, and the target is displayed at the tip of the vertical dotted line.

【0008】その結果、レーダ画面上では、図2のよう
に目標物の球形空隙が曲線Bのように上方に凸の広がっ
た曲線として現れる。即ち、斜めに入射した各信号の直
線(Y=tanθn(X−Xn))は、円の軌跡((X
−Xn)2 +Y2 =Yn2 )に従いレーダの測定面と直
交する方向の深さとして表示される。
As a result, on the radar screen, as shown in FIG. 2, the spherical void of the target appears as a curve B which is upwardly convex as shown by curve B. That is, the straight line (Y = tan θn (X−Xn)) of each signal obliquely incident is a locus ((X
It is displayed as the depth in the direction orthogonal to the measurement surface of the radar according to -Xn) 2 + Y 2 = Yn 2 ).

【0009】このようにして得られたレーダによる測定
画像は、図3のように処理される。即ち、計算を効率よ
くするために、必要又は有意領域を設定する(S1)。
次に、ノイズとなる表面波を除去し、測定位置を原点に
するために時間軸の零点調整を行う(S2)。更にノイ
ズを抑制するために、画像の平滑化を行う(S3)。次
に、鉄筋と空隙などの目標物を分けるために、検出対象
の区分や対象別区間のブロック化を行う(S4)。ここ
で分けられた空隙と鉄筋について各々の処理を行い、こ
れらの結果を基にして区間別の画像の合成を行い(S
5)、更に平滑化処理を行う(S6)。
The radar-measured image thus obtained is processed as shown in FIG. That is, in order to make the calculation efficient, a necessary or significant area is set (S1).
Next, the surface wave that becomes noise is removed, and the zero point of the time axis is adjusted to make the measurement position the origin (S2). Further, in order to suppress noise, the image is smoothed (S3). Next, in order to separate the target objects such as the reinforcing bars and the voids, the division of the detection target and the segmentation by target are blocked (S4). The voids and the reinforcing bars divided here are subjected to respective processings, and based on these results, image synthesis for each section is performed (S
5) Further, smoothing processing is performed (S6).

【0010】<ロ>空隙形状の復元 レーダの位置が空隙の真上に近づく程、直進に近い信号
の影響を強く受けるため反射信号の強度はより強くな
る。即ち、画面上では移動するレ−ダと固定された空隙
間の位置の変化による反射信号の強度が画像の濃淡の差
として示される。したがって、逆に画像の濃淡の変化が
最大になる方向は、レーダからの信号が空隙の任意面に
当たって反射して戻る信号の方向を示すと考えられる。
<B> Restoration of air gap shape The closer the position of the radar is to just above the air gap, the stronger the influence of a signal that is closer to a straight line, and the stronger the intensity of the reflected signal. That is, on the screen, the intensity of the reflected signal due to the change in the position between the moving radar and the fixed air gap is shown as the difference in light and shade of the image. Therefore, conversely, the direction in which the change in the grayscale of the image is the maximum is considered to indicate the direction of the signal from the radar, which is reflected by returning to the arbitrary surface of the air gap.

【0011】このことから、図2のように得られたレー
ダ画像表示の任意の座標(Xn、Yn)における深さY
nが半径となる円を測定位置の座標(Xn、0)を中心
にして円を描く。これを対称区間の半分である0からm
までの区間で画像表示座標ごとに求めると式(1)とな
る。つづいて、座標(Xn、Yn)において画像の濃淡
強度のグラディエントベクトルG(Xn、Yn)を式
(2)により求め、そのときのベクトルの方向(傾き)
は式(3)により計算する(ただし、この場合の傾きの
方向は反射波の位相がレーダの信号処理方式などによっ
て変わる可能性があるため、符号の調整が必要な場合が
ある)。
From this, the depth Y at arbitrary coordinates (Xn, Yn) of the radar image display obtained as shown in FIG.
A circle whose radius is n is drawn with the coordinate (Xn, 0) of the measurement position as the center. This is 0 to m which is half of the symmetrical section
Equation (1) is obtained for each image display coordinate in the section up to. Subsequently, the gradient vector G (Xn, Yn) of the grayscale intensity of the image at the coordinates (Xn, Yn) is obtained by the equation (2), and the vector direction (tilt) at that time
Is calculated by Equation (3) (however, in the tilt direction in this case, the sign of the reflected wave may need to be adjusted because the phase of the reflected wave may change depending on the signal processing method of the radar).

【0012】即ち、もとの空隙の形状は式(1)の円と
式(4)の直線が合う交点中で下向値(下測交点)を求
めて描くと、復元が可能であり、これにより空隙の形状
や位置を検出することができる。このことは、図1の左
側の場合を例にとると、点線下部(反射波のサイン波形
の部分)のレーダ画像表示位置を実線のようにグラディ
エントベクトルの方向(右方向)に折り曲げると、実際
の空隙の表面の位置になる。
That is, the original shape of the void can be restored by obtaining a downward value (lower measured intersection) at the intersection where the circle of equation (1) and the straight line of equation (4) meet, This makes it possible to detect the shape and position of the void. Taking the case of the left side of Fig. 1 as an example, this is true when the radar image display position below the dotted line (the portion of the sine waveform of the reflected wave) is bent in the direction of the gradient vector (to the right) as shown by the solid line. It becomes the position of the surface of the void.

【0013】この際、解析は一定の画像強度以上の信号
に対して実施する。また、道路のように多層構造では各
層の誘電率の差による電磁波の屈折の影響を考慮しなけ
ればならない場合がある。この影響を考慮するため、式
(5)のように屈折の影響を補正すると、復元画像の収
束度がより向上する。
At this time, the analysis is performed on a signal having a certain image intensity or more. Further, in a multilayer structure such as a road, it may be necessary to consider the influence of the refraction of electromagnetic waves due to the difference in the dielectric constant of each layer. In order to take this effect into consideration, if the effect of refraction is corrected as in Expression (5), the degree of convergence of the restored image is further improved.

【0014】[0014]

【式1】 (Equation 1)

【0015】[0015]

【式2】 (Equation 2)

【0016】[0016]

【式3】 (Equation 3)

【0017】[0017]

【式4】 (Equation 4)

【0018】[0018]

【式5】 (Equation 5)

【0019】以上の点を図4のフロー図で示すと、ノイ
ズ除去方式の微分フィルタを使用して、空隙画像のグラ
ディエントベクトル処理を行い(S10)、一定大きさ
以上の最大強度のグラディエントベクトル座標を追跡し
(S11)、式3により各座標毎にグラディエント(傾
き)を算定する(S12)。次に、各座標毎にY値(表
面からの深さ)を半径にして測定位置(X、0)を中心
とする円を描き、円変換する(S13)。空隙形状を復
元するために、測定位置(X、0)を通るステップS1
2で求めたグラディエントベクトルの傾きの直線とステ
ップS13で求めた円との下向き交点(下測交点)を算
出する(S14)。ステップS11で求めた座標につい
て復元処理が終了すると(S15)、地層が多重である
場合、屈折の影響を補正する(S16)。次に、異常な
値を除去するために、復元座標の平均化処理を行い(S
17)、更に空隙形状を明確にするために空隙を1と
し、他を0とする重み関数を用いる(S18)。なお、
ステップS10では、輪郭線処理により該当座標のみに
対したグラディエントベクトル処理方式も可能である。
また、ステップS11では、空隙からの1番目と2番目
(極性が互いに反対)の反射信号中で強い信号の方を選
択する(後で深さ補正を行う)。
The above points are shown in the flow chart of FIG. 4. Gradient vector processing of the void image is performed using a noise removal type differential filter (S10), and gradient vector coordinates of maximum intensity above a certain size are obtained. Is traced (S11), and the gradient (slope) is calculated for each coordinate according to Equation 3 (S12). Next, for each coordinate, the Y value (depth from the surface) is used as a radius to draw a circle centered on the measurement position (X, 0), and the circle is converted (S13). Step S1 of passing through the measurement position (X, 0) to restore the void shape
A downward intersection (lower measured intersection) between the straight line of the gradient of the gradient vector obtained in 2 and the circle obtained in step S13 is calculated (S14). When the restoration process is completed for the coordinates obtained in step S11 (S15), the influence of refraction is corrected when the strata are multiple (S16). Next, in order to remove the abnormal value, the restoration coordinate averaging process is performed (S
17) Further, in order to clarify the shape of the void, a weighting function in which the void is 1 and the others are 0 is used (S18). In addition,
In step S10, a gradient vector processing method for only corresponding coordinates by contour processing is also possible.
Further, in step S11, the stronger signal is selected from the first and second (the polarities are opposite to each other) reflected signals from the gap (depth correction is performed later).

【0020】<ハ>鉄筋位置の同定 コンクリート内の鉄筋のように間隙が狭く、特に複鉄筋
の場合には反射信号の散乱及び干渉などにより各鉄筋の
焦点又は反射信号の前縁が区別しにくくなるので、鉄筋
の焦点部分のみを重み係数(= 1)によって強調し、他
の部分は重み係数(= 0)により画像の背景信号として
同一化させる方法を取る。
<C> Identification of rebar position The gap is narrow like rebar in concrete. Especially in the case of double rebar, it is difficult to distinguish the focus of each rebar or the leading edge of the reflex signal due to scattering and interference of the reflex signal. Therefore, only the focal portion of the reinforcing bar is emphasized by the weighting coefficient (= 1), and the other portions are made the same as the background signal of the image by the weighting coefficient (= 0).

【0021】例えば、表面近くに複鉄筋が配置され、そ
の下方に矩形の空隙がある領域のレーダ画像を図9に示
す。この画像で鉄筋からのピーク信号(山の頂点)を鉄
筋の位置と設定すると、この頂点は肉眼では把握しにく
いため、図9のデータ中で鉄筋の配筋方向と直交方向
で、水平方向の画像データの配列に対して深さ(各行)
毎に線図を描くと、鉄筋の存在しない部分の行線図は図
6のように成り、鉄筋の存在する場合で最大のピーク信
号が得られる部分の行線図は図7のように成る。なお、
図6乃至図7に於いて、縦軸は、相対強度(Relat
ive Intensity)を示し、横軸は、測定方
向の距離(Distance(cm))を示している。
For example, FIG. 9 shows a radar image of a region in which a composite reinforcing bar is arranged near the surface and a rectangular void is formed below the reinforcing bar. When the peak signal (mountain apex) from the reinforcing bar is set as the position of the reinforcing bar in this image, this apex is difficult to recognize with the naked eye. Therefore, in the data of FIG. Depth for each array of image data (each row)
Drawing each line, the line diagram of the part where the reinforcing bar does not exist is as shown in FIG. 6, and the line diagram of the part where the maximum peak signal is obtained when the reinforcing bar exists is as shown in FIG. 7. . In addition,
6 to 7, the vertical axis represents the relative intensity (Relat).
iv Intensity), and the horizontal axis represents the distance (Distance (cm)) in the measurement direction.

【0022】このように描かれた行線図の中で、例えば
図7のように一連のピーク点が最大強度となる場合の座
標が各鉄筋の位置を示している。即ち、各ピークの横方
向の列座標(三角表示部分)が鉄筋のピッチ(水平位
置)を示し、そのときの行座標が画面上の鉄筋の被覆厚
さ(垂直位置)を示している。この過程をコンピュータ
で演算するには、各行毎の平均値で直線を引き(図7の
A1)、その平均線以上の値に該当する各区間(平均線
上で山を形成している各部分)を区間別に設定してお
く。この際、鉄筋の配筋深さの差によって2つ以上のピ
ークが一次平均線(図7のA1)の上に独立せずに連結
されて存在する場合があり、その時は、一次平均線以上
の値に対してもう一回平均した値を二次平均線(A2)
として用いると、より正確に鉄筋位置を検出できる。
In the line diagram drawn in this way, for example, as shown in FIG. 7, the coordinates when a series of peak points have the maximum strength indicate the position of each rebar. That is, the column coordinates in the horizontal direction of each peak (triangular display portion) indicate the pitch of the reinforcing bars (horizontal position), and the row coordinates at that time indicate the coating thickness (vertical position) of the reinforcing bars on the screen. To calculate this process by a computer, a straight line is drawn with the average value for each row (A1 in FIG. 7), and each section corresponding to a value equal to or higher than the average line (each portion forming a mountain on the average line) Is set for each section. At this time, two or more peaks may exist on the primary average line (A1 in FIG. 7) that are not independent but are connected to each other due to the difference in the reinforcing bar reinforcement depth. Second average line (A2)
When used as, the rebar position can be detected more accurately.

【0023】即ち、平均値を比較し最大になる行を選べ
ば、その行が鉄筋の頂点、すなわち、行要素の配列中で
最大のピーク線図をなす鉄筋の垂直(深さ)位置に相当
し、この行における各区間ごとの最大値を計算すると、
鉄筋の水平位置になる。
That is, by comparing the average values and selecting the maximum line, that line corresponds to the vertex of the reinforcing bar, that is, the vertical (depth) position of the reinforcing bar forming the maximum peak diagram in the array of row elements. Then, when the maximum value for each section in this line is calculated,
The horizontal position of the rebar.

【0024】なお、鉄筋からの多重反射信号がピークに
選ばれる可能性は各行別に平均値上で+以上の値のみを
選ぶことによって避けることができる。また、複鉄筋の
場合には、両方の鉄筋の存在区間を二つのブロックに分
けると良い。また、肉眼確認と計算を並行して実施する
ことにより、より精度良く検出できる。また、正確な深
さ方向の情報が必要な場合は、誘電率のデータを考慮し
て、代表箇所のみを選び対象媒質における実際の鉄筋の
深さと画面上の鉄筋の深さを補正しておくと、正確な結
果が得られる。
The possibility that the multiple reflection signal from the reinforcing bar is selected as the peak can be avoided by selecting only a value above + on the average value for each row. Further, in the case of a double reinforcing bar, it is advisable to divide the existing section of both reinforcing bars into two blocks. Further, by performing visual confirmation and calculation in parallel, more accurate detection can be performed. If accurate depth information is required, consider the permittivity data and select only representative points to correct the actual depth of the reinforcing bar in the target medium and the depth of the reinforcing bar on the screen. And get accurate results.

【0025】以上の処理を図5のフローで示すと、ま
ず、各鉄筋からの画像は双曲線で表示されるので、複数
配列された鉄筋の場合、複数の双曲線が合成された画像
が求められる(S21)。次に、この画像の行(一定深
さ)毎の線図を図7のように求める(S22)。ステッ
プS22で求められた各行毎の線図の一次平均線及び二
次平均線を図7のA1、A2のように求める(S2
3)。更に、各行別に二次平均線以上の全区間の積分を
行い(S24)、最大積分値の行を選定し、鉄筋の深さ
を求める(S25)。二次平均線以上について各区間別
に最大値を算出し、鉄筋の水平位置を算出する(S2
6)。各鉄筋位置を明確にするために、鉄筋を1にし、
その他を0とする重み関数を用いる(S27)。なお、
ステップS23、S24、S25において、一次、二次
平均による計算中で一番多くピ−ク数がカウントされた
次数を選ぶ(場合によっては、一次平均が良い場合もあ
る)。この場合、行値の符号は正負どちらを選んでも良
いが、比較時にはかならず一方の符号のみを基準にす
る。
When the above processing is shown in the flow of FIG. 5, first, the images from the respective reinforcing bars are displayed as hyperbolas. Therefore, in the case of a plurality of arranged reinforcing bars, an image in which a plurality of hyperbolas are combined is obtained ( S21). Next, a diagram for each row (constant depth) of this image is obtained as shown in FIG. 7 (S22). The primary average line and the secondary average line of each line diagram obtained in step S22 are obtained as shown by A1 and A2 in FIG. 7 (S2
3). Further, the integration of all the sections above the secondary average line is performed for each row (S24), the row of the maximum integrated value is selected, and the depth of the reinforcing bar is obtained (S25). The maximum value is calculated for each section above the secondary average line and the horizontal position of the reinforcing bar is calculated (S2).
6). To clarify the position of each rebar, set the rebar to 1,
A weighting function that sets the others to 0 is used (S27). In addition,
In steps S23, S24, and S25, the order in which the largest number of peaks is counted in the calculation by the primary and secondary averages is selected (the primary average may be good in some cases). In this case, the sign of the row value may be either positive or negative, but at the time of comparison, only one sign is used as a reference.

【0026】以下に本発明の実施例を示す。 <イ>実施例1 図8のように砂の中に矩形の空隙(横40cm、縦10
cmのポリウレタン材料)を形成し、砂の表面から3c
mの深さに径が22cmの鉄筋を20cmの間隔で5本
配置し、更に、砂の表面から16cmの深さに同一径の
鉄筋を上方の鉄筋の間の下方に配置する。砂の面の上に
は厚さ5cmのポリウレタン層を配置する。
An embodiment of the present invention will be described below. <A> Example 1 As shown in FIG. 8, a rectangular void (40 cm wide, 10 vertical) in the sand.
cm of polyurethane material) and 3c from the sand surface
Five rebars each having a diameter of 22 cm are arranged at a depth of m at an interval of 20 cm, and further, rebars having the same diameter are arranged at a depth of 16 cm from the surface of the sand below the upper rebars. A 5 cm thick polyurethane layer is placed on the sand surface.

【0027】この空隙と鉄筋の位置と大きさを測定する
ために、レーダをポリウレタン表面の直線上を移動し
て、所定の測定位置から電磁波を地中内に照射して、空
隙や鉄筋など地中からの反射波を受信する。
In order to measure the positions and sizes of the voids and the reinforcing bars, the radar is moved along a straight line on the surface of the polyurethane, and electromagnetic waves are radiated into the ground from a predetermined measuring position, and the ground such as the voids and the reinforcing bars is radiated. Receives reflected waves from inside.

【0028】<ロ>実施例1の測定及び解析結果 実験1の測定結果を図9に示す。この測定結果は、表面
波を除去し、表面を時間軸の0に合わせて調整したもの
である。受信反射波の強度をプロットしたものが図9で
ある。図9の強度分布は、縦方向の深さにある物質から
の反射波を示すのではなく、測定位置で受信した種々の
角度の反射波の合計を下方にプロットしたものである。
この縦方向の深さ(Depth(cm))は、概略、反
射波の伝搬距離に対応している。横方向は、測定方向の
距離(Distance(cm))を示している。
<B> Measurement and Analysis Results of Example 1 The measurement results of Experiment 1 are shown in FIG. This measurement result is obtained by removing the surface wave and adjusting the surface to zero on the time axis. FIG. 9 is a plot of the intensity of the received reflected wave. The intensity distribution in FIG. 9 does not show the reflected waves from the material at the depth in the vertical direction but is a plot of the total of the reflected waves at various angles received at the measurement position, plotted below.
This vertical depth (Depth (cm)) roughly corresponds to the propagation distance of the reflected wave. The horizontal direction indicates the distance (Distance (cm)) in the measurement direction.

【0029】図9の測定データから空隙形状を復元し、
鉄筋位置を同定したものが図10である。図12は、図
9の矩形空隙に対するグラディエントベクトルを示して
おり、雑音を除去しない状態で求めたものである。実際
に適用するには、目標物を絞り、ブロック化して、雑音
を除去して使用する
The void shape is restored from the measurement data of FIG.
FIG. 10 shows the positions of the reinforcing bars. FIG. 12 shows the gradient vector for the rectangular void of FIG. 9, which is obtained without removing noise. For practical application, narrow down the target, block it, remove noise, and use

【0030】図11は、矩形空隙に対する形状の復元
(変換)過程を図式化したものである。この表示は、空
隙反射信号中で測定距離単位別一定強度以上の最大グラ
ディエントベクトルが得られた座標のみを対象基準にし
た。画像の雑音などによって、一部変換結果に多少のば
らつきが見えるが、比較的原形状に近いことが分かる。
この変換過程では、X、Y座標を画像表示上のスケール
に合わせるように注意する。なお、図11に於いて中央
の太い直線は測定表面を示し、三角印は変換前を示し、
四角印は変換後を示している。
FIG. 11 is a schematic representation of the process of restoring (converting) the shape of a rectangular void. This display is based on only the coordinates where the maximum gradient vector of a certain intensity or more in each measurement distance unit is obtained in the air gap reflection signal. Although some variation in the conversion result can be seen due to noise in the image, it can be seen that it is relatively close to the original shape.
In this conversion process, be careful to match the X and Y coordinates with the scale on the image display. In addition, in FIG. 11, the thick straight line in the center indicates the measurement surface, and the triangle mark indicates before conversion.
The square marks indicate the result after conversion.

【0031】以上の結果や方法を用いると、図10にお
いて鉄筋位置の同定(白い部分)および矩形空隙の形状
(黒い部分)が比較的明確に再現されていることが分か
る。また、反射波の電界の極性と大きさを色で表示する
と、各目標物の材料の特性を明確に区別することができ
る。
By using the above results and method, it can be seen that the identification of the reinforcing bar position (white portion) and the shape of the rectangular void (black portion) are reproduced relatively clearly in FIG. Also, by displaying the polarity and magnitude of the electric field of the reflected wave in color, the characteristics of the material of each target can be clearly distinguished.

【0032】<ハ>実施例2 図13のように砂中にポリウレタン材料から成る直径3
0cmの球形の空隙を形成し、砂の上には10cmの厚
さの無筋コンクリート層を配置した領域を用いる。空隙
は、空隙の上部がコンクリート上面から30cmの位置
に配置される。コンクリートは、W/C55%、スラン
プ5cm、圧縮強度400kg/cm2であり、砂は静
岡県富士川産砂(比重:2.61、含水率:2〜3%)
を使用した。
<C> Example 2 As shown in FIG. 13, a diameter 3 made of a polyurethane material in sand
An area in which a 0 cm spherical void is formed and a 10 cm thick layer of unreinforced concrete is placed on the sand is used. The void is arranged such that the upper part of the void is 30 cm above the concrete top surface. Concrete has W / C 55%, slump 5 cm, compressive strength 400 kg / cm 2 , and sand from Fujikawa, Shizuoka Prefecture (specific gravity: 2.61, moisture content: 2-3%).
It was used.

【0033】<ニ>実施例2の測定及び解析結果 実施例2(図13)の測定結果を図14と図15に示
す。図14は、表面波及び等方性の境界からの反射波を
除去した状態の結果である。この結果は、表面波を除去
し、表面を時間軸の0に合わせて調整したものである。
この測定データから空隙形状の復元を実施した結果を図
15に示す。図15の結果を見ると、完全に球形の形状
は現れていないが、空隙の大きさなど実際の形状に近い
結果が復元されることが分かった。なお、図14乃至図
15でも、縦方向が深さ(Depth(cm))を示
し、横方向は、測定方向の距離(Distance(c
m))を示している。
<D> Measurement and Analysis Results of Example 2 The measurement results of Example 2 (FIG. 13) are shown in FIGS. 14 and 15. FIG. 14 shows the result when the surface wave and the reflected wave from the isotropic boundary are removed. This result is obtained by removing the surface wave and adjusting the surface to zero on the time axis.
FIG. 15 shows the result of restoration of the void shape from this measurement data. From the results shown in FIG. 15, it was found that although the perfectly spherical shape did not appear, the results close to the actual shape such as the size of the void were restored. 14 to 15, the vertical direction indicates the depth (Depth (cm)), and the horizontal direction indicates the distance in the measurement direction (Distance (c)).
m)) is shown.

【0034】[0034]

【発明の効果】本発明は、次のような効果を得ることが
できる。 <イ>画像のグラディエントベクトルを利用して、目標
物の形状や位置を求めることが出来る。 <ロ>画像の行方向の強度を求め、行方向に平均化する
ことにより、鉄筋の深さと横方向の位置を求めることが
出来る。
According to the present invention, the following effects can be obtained. <B> The shape and position of the target object can be obtained using the gradient vector of the image. <B> By obtaining the strength of the image in the row direction and averaging in the row direction, the depth of the reinforcing bar and the position in the lateral direction can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】空隙のレーダ画像表示説明[Figure 1] Explanation of radar image display of air gap

【図2】空隙の実形状の復元説明図FIG. 2 is an explanatory diagram of the restoration of the actual shape of the void.

【図3】測定画像処理の全体のフロー図FIG. 3 is an overall flowchart of measurement image processing.

【図4】空隙の位置と大きさを求めるフロー図FIG. 4 is a flow chart for determining the position and size of a void.

【図5】鉄筋の位置を求めるフロー図[Fig. 5] Flow chart for determining the position of the reinforcing bar

【図6】鉄筋のない部分の横方向線図FIG. 6 is a lateral line diagram of a portion without a reinforcing bar.

【図7】鉄筋のある部分の横方向線図FIG. 7 is a lateral line diagram of a portion having a reinforcing bar.

【図8】複数鉄筋条件下の矩形空隙の配置図FIG. 8: Layout of rectangular voids under multiple rebar conditions

【図9】図8の配置の測定画像9 is a measurement image of the arrangement of FIG.

【図10】図8の配置の解析結果FIG. 10 is an analysis result of the arrangement of FIG.

【図11】空隙の現状の復元説明図FIG. 11 is an explanatory diagram of the restoration of the current state of the void.

【図12】図8のグラディエントベクトル例FIG. 12 is an example of the gradient vector of FIG.

【図13】無鉄筋条件下の球形空隙の配置図FIG. 13: Layout of spherical voids under non-rebar conditions

【図14】図13の配置の測定画像14 is a measurement image of the arrangement of FIG.

【図15】図13の配置の解析結果FIG. 15 is an analysis result of the arrangement of FIG.

フロントページの続き (72)発明者 朴 錫均 東京都港区六本木七丁目22の1 東京大学 生産技術研究所内 (72)発明者 吉沢 勝 東京都港区虎ノ門1−1−21 財団法人 首都高速道路技術センター内Front Page Continuation (72) Inventor Park Suk-hyun 7-22-1, Roppongi, Minato-ku, Tokyo Inside Institute of Industrial Science, University of Tokyo (72) Inventor Masaru Yoshizawa 1-1-21 Toranomon, Minato-ku, Tokyo Metropolitan Expressway Inside the technical center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】媒質中に存在する目標物を検出するレ−ダ
画像処理システムによる非破壊検査方法において、 媒質表面の直線上の複数の測定位置から電磁波を照射
し、その反射波を受信し、媒質内の測定画像を求め、 測定画像の目標物からの信号中で強度の大きいグラディ
エントベクトルを求め、 測定位置を基準にし、その下
方に位置する該グラディエントベクトル方向の直線と目
標物の表面までの垂直距離を半径とする円の下測交点を
求め、 目標物の形状又は位置を求めることを特徴とする、 レ−ダ画像処理システムによる非破壊検査方法。
1. A nondestructive inspection method using a radar image processing system for detecting a target existing in a medium, wherein electromagnetic waves are emitted from a plurality of measurement positions on a straight line of a medium surface and reflected waves are received. , Find the measurement image in the medium, find the gradient vector with high intensity in the signal from the target of the measurement image, and use the measurement position as the reference, and the straight line in the direction of the gradient vector below that and the surface of the target A non-destructive inspection method by a radar image processing system, characterized in that the shape or position of a target object is found by finding the lower intersection point of a circle whose radius is the vertical distance of.
【請求項2】媒質中に存在する複数配列された鉄筋を検
査するレ−ダ画像処理システムによる非破壊検査方法に
おいて、 媒質表面の直線上の複数の測定位置から電磁波を照射
し、その反射波を受信し、媒質内の測定画像を求め、 媒質表面からの一定深さ毎に測定画像の線図を求め、 各線図毎に平均線を求め、 平均値以上の強度を積分し、最大積分値となる線図の深
さから鉄筋の深さを求めることを特徴とする、 レ−ダ画像処理システムによる非破壊検査方法。
2. A non-destructive inspection method by a radar image processing system for inspecting a plurality of arranged reinforcing bars existing in a medium, wherein electromagnetic waves are radiated from a plurality of measurement positions on a straight line of a medium surface, and reflected waves thereof are reflected. , The measurement image in the medium is obtained, the diagram of the measurement image is obtained at each constant depth from the medium surface, the average line is obtained for each diagram, and the intensity above the average value is integrated, and the maximum integrated value A nondestructive inspection method using a radar image processing system, characterized in that the depth of the reinforcing bar is obtained from the depth of the line diagram.
【請求項3】媒質中に存在する複数配列された鉄筋を検
査するレ−ダ画像処理システムによる非破壊検査方法に
おいて、 媒質表面の直線上の複数の測定位置から電磁波を照射
し、その反射波を受信し、媒質内の測定画像を求め、 媒質表面からの一定深さ毎に測定画像の線図を求め、 各線図毎に平均線を求め、 平均値以上の連続した強度毎にグループ化し、各グルー
プ毎の最大値から媒質表面方向の鉄筋の位置を求めるこ
とを特徴とする、 レ−ダ画像処理システムによる非破壊検査方法。
3. A nondestructive inspection method by a radar image processing system for inspecting a plurality of arranged reinforcing bars existing in a medium, wherein electromagnetic waves are radiated from a plurality of measurement positions on a straight line of the medium surface, and reflected waves thereof are reflected. To obtain a measurement image in the medium, obtain a diagram of the measurement image at each constant depth from the surface of the medium, obtain an average line for each diagram, and group by consecutive intensities above the average value, A non-destructive inspection method by a radar image processing system, characterized in that the position of the reinforcing bar in the medium surface direction is obtained from the maximum value of each group.
【請求項4】請求項1乃至3のいずれかに記載のレ−ダ
画像処理システムによる非破壊検査方法において、 目標物付近の測定画像をブロック化することを特徴とす
る、 レ−ダ画像処理システムによる非破壊検査方法。
4. The non-destructive inspection method by the radar image processing system according to claim 1, wherein the measurement image near the target is divided into blocks. Non-destructive inspection method by system.
JP13097796A 1996-04-26 1996-04-26 Nondestructive inspection method using radar image processing system Expired - Lifetime JP3658643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13097796A JP3658643B2 (en) 1996-04-26 1996-04-26 Nondestructive inspection method using radar image processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13097796A JP3658643B2 (en) 1996-04-26 1996-04-26 Nondestructive inspection method using radar image processing system

Publications (2)

Publication Number Publication Date
JPH09292350A true JPH09292350A (en) 1997-11-11
JP3658643B2 JP3658643B2 (en) 2005-06-08

Family

ID=15047033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13097796A Expired - Lifetime JP3658643B2 (en) 1996-04-26 1996-04-26 Nondestructive inspection method using radar image processing system

Country Status (1)

Country Link
JP (1) JP3658643B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301610A (en) * 2003-03-31 2004-10-28 Secom Co Ltd Subterranean cavity detecting device
KR100490123B1 (en) * 2002-06-28 2005-05-17 임홍철 Method For Detecting Steel Reinforcing In Reinforced Concrete Structure Using Radar System
CN109324066A (en) * 2019-01-02 2019-02-12 湖南赛博诺格电子科技有限公司 A kind of synthetic plate batch detecting device and its method
JP2019190998A (en) * 2018-04-25 2019-10-31 株式会社日立情報通信エンジニアリング Cavity identification system and cavity identification method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490123B1 (en) * 2002-06-28 2005-05-17 임홍철 Method For Detecting Steel Reinforcing In Reinforced Concrete Structure Using Radar System
JP2004301610A (en) * 2003-03-31 2004-10-28 Secom Co Ltd Subterranean cavity detecting device
JP2019190998A (en) * 2018-04-25 2019-10-31 株式会社日立情報通信エンジニアリング Cavity identification system and cavity identification method
CN109324066A (en) * 2019-01-02 2019-02-12 湖南赛博诺格电子科技有限公司 A kind of synthetic plate batch detecting device and its method
CN109324066B (en) * 2019-01-02 2019-06-04 湖南赛博诺格电子科技有限公司 A kind of synthetic plate batch detector methods

Also Published As

Publication number Publication date
JP3658643B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
Tong et al. Innovative method for recognizing subgrade defects based on a convolutional neural network
JPS61107181A (en) Apparatus and method for detecting object in medium material
CN111025286B (en) Ground penetrating radar map self-adaptive selection method for water damage detection
CN103675920B (en) Nondestructive test method for depth and horizontal position of hidden crack of road base
Zhang et al. A modified method of discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces
CN103400137B (en) A kind of building geometric parameter extracting method of SAR image
US11828840B2 (en) Method for detecting moisture damage on asphalt pavement based on adaptive selection of GPR image grayscale
Ma et al. Automatic detection of steel rebar in bridge decks from ground penetrating radar data
CN116597365A (en) Underground disease object identification method based on neural network
CN103400140A (en) Method for processing ice coated on insulator on basis of improved image method
JP6750861B2 (en) Method for estimating anomalous parts of exploration target
CN108089024A (en) A kind of vehicle speed detector and method
CN108765376A (en) A kind of line scanning three-dimensional pavement data component analysis method
Chen et al. A novel image-based approach for interactive characterization of rock fracture spacing in a tunnel face
JPH10187991A (en) Method and device for pattern detection
CN105528787A (en) Polarimetric SAR image bridge detection method and device based on level set segmentation
JP3658643B2 (en) Nondestructive inspection method using radar image processing system
JP3437074B2 (en) Apparatus and method for detecting position of broken reinforcing bar in concrete pole
JP2019190998A (en) Cavity identification system and cavity identification method
WO2020184521A1 (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, facility for manufacturing steel material, method for manufacturing steel material, and steel material quality control method
Al-Nuaimy et al. Automatic detection of hyperbolic signatures in ground-penetrating radar data
CN112857312A (en) Fusion method for measuring ground settlement by different time sequence differential interference according to settlement rate
Huang et al. Research on void signal recognition algorithm of 3D ground-penetrating radar based on the digital image
CN114236538A (en) Method for evaluating internal condition of asphalt pavement structure by using three-dimensional ground penetrating radar
Krause et al. An image segmentation algorithm for the detection of rebar in bridge decks from GPR scans

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19960712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19961028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20020724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term