JPS6117360Y2 - - Google Patents

Info

Publication number
JPS6117360Y2
JPS6117360Y2 JP1981186814U JP18681481U JPS6117360Y2 JP S6117360 Y2 JPS6117360 Y2 JP S6117360Y2 JP 1981186814 U JP1981186814 U JP 1981186814U JP 18681481 U JP18681481 U JP 18681481U JP S6117360 Y2 JPS6117360 Y2 JP S6117360Y2
Authority
JP
Japan
Prior art keywords
waveform
line
buried line
length
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981186814U
Other languages
Japanese (ja)
Other versions
JPS5891700U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18681481U priority Critical patent/JPS5891700U/en
Publication of JPS5891700U publication Critical patent/JPS5891700U/en
Application granted granted Critical
Publication of JPS6117360Y2 publication Critical patent/JPS6117360Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、高炉、転炉その他の工業用炉におけ
る内張耐火物の損耗状態を判定する装置であつ
て、炉壁に埋設した線路に電波を印加してその反
射波を自動的に解析し、炉内内張耐火物の損耗状
態を可視図的に表示することのできる装置に関す
るものである。
[Detailed description of the invention] [Field of industrial application] The present invention is a device for determining the state of wear and tear on the refractory lining in blast furnaces, converters, and other industrial furnaces. This invention relates to a device that can apply radio waves, automatically analyze the reflected waves, and visually display the state of wear and tear on the refractory lining in a furnace.

[従来技術とその問題点] 従来、高炉、転炉等の炉内内張耐火物の損耗状
態を判定するため、内張耐火物中に線路を埋設
し、該埋設線路に階段波を同軸ケーブル、電圧分
配器等を介して印加し、該埋設線路からの反射波
を電圧分配器から取出し、該反射波の波形中か
ら、埋設線路の始端部に対応する波形部と終端部
に対応する波形部を検出することにより埋設線路
の長さを算出し、内張耐火物の損耗状態を判定し
ていた。反射波形中の該埋設線路の始端及び終端
を検知する方法として、反射波形を記録針を用い
て記録したり、或いはオシロスコープの画面に表
示して手作業的に判別する方法が広く用いられて
いた。しかしながら、この方法では、多大の労力
と時間を要するだけでなく、読取り誤差に起因す
る測定誤差を生じる欠点があつた。又、単に線路
の長さを求める方法において、階段波を印加して
反射波形から線路の長さを求める際に、反射波形
の一階微分の値から線路の終端位置を自動的に検
知する方法が既に知られている。しかしながら、
耐火物の損耗状態を判定するために用いられる埋
設線路は、炉の種々の場所での耐火物の損耗を検
知する必要があるから、その埋設場所に応じて
種々の長さの線路が用いられ、更には、埋設線路
に接続する同軸ケーブルも種々の長さのものが同
時に設置されているために、従来知られている方
法ではこれらの種々の長さの線路について自動的
にその長さを検知することができない。のみなら
ず、該反射波形中には、埋設線路長を算出する上
で有害又は不要のノイズがかなり含まれているこ
とが頻繁にあり、これがために埋設線路長の算出
にミスが生じ易いという欠点があつた。更に又高
炉等長期間連続的に稼動する炉にあつては、耐火
物の損耗状態を検知する装置の精度が、長期間に
わたつて維持されねばならないが、従来知られて
いる方法では、定期的に人手を介して装置の精度
を検査する方法しかなく、長期間正確に耐火物の
損耗状況を自動的に検出することが困難であつ
た。
[Prior art and its problems] Conventionally, in order to determine the wear condition of the refractory lining inside a blast furnace, converter, etc., a line was buried in the refractory lining, and a staircase wave was connected to the buried line using a coaxial cable. , is applied via a voltage divider etc., the reflected wave from the buried line is taken out from the voltage divider, and from the waveform of the reflected wave, a waveform part corresponding to the starting end of the buried line and a waveform corresponding to the terminal end are obtained. By detecting the length of the buried line, the length of the buried line was calculated and the state of wear and tear of the refractory lining was determined. As a method of detecting the start and end ends of the buried line in the reflected waveform, it has been widely used to record the reflected waveform with a recording needle, or to display it on the screen of an oscilloscope and manually distinguish it. . However, this method not only requires a great deal of labor and time, but also has the disadvantage of causing measurement errors due to reading errors. In addition, in the method of simply determining the length of a line, when applying a step wave and determining the length of the line from the reflected waveform, there is a method of automatically detecting the end position of the line from the value of the first derivative of the reflected waveform. is already known. however,
Since it is necessary to detect the wear and tear of the refractory at various locations in the furnace, buried lines used to determine the state of wear and tear on the refractory are used with different lengths depending on the buried location. Furthermore, since coaxial cables of various lengths are installed at the same time to connect to buried lines, conventionally known methods cannot automatically calculate the lengths of these lines of various lengths. cannot be detected. Not only that, but the reflected waveform often contains a considerable amount of noise that is harmful or unnecessary when calculating the length of the buried line, and this can easily lead to errors in calculating the length of the buried line. There were flaws. Furthermore, in furnaces that operate continuously for long periods of time, such as blast furnaces, the accuracy of the equipment that detects the wear and tear of refractories must be maintained over a long period of time. The only way to manually inspect the accuracy of the device is to manually inspect the accuracy of the device, and it has been difficult to accurately and automatically detect the state of wear and tear on the refractory over a long period of time.

本考案は、上記の如き従来の内張耐火物の損耗
状態判定装置の問題点を全て解消し、長期にわた
り耐火物の損耗状態を正確且つ自動的に判定する
新規な装置を提供することを目的とする。
The purpose of the present invention is to solve all the problems of the conventional wear condition determination device for refractory linings as described above, and to provide a new device that accurately and automatically determines the wear condition of refractory linings over a long period of time. shall be.

[問題点を解決するための手段] 高炉等の炉の内張耐火物中の埋設線路に同軸ケ
ーブル等を介して階段波を印加し、該階段波の反
射波を解析して前記埋設線路の長さを測定するこ
とにより炉内の内張耐火物の損耗状態を判定する
手段の主要点は、前記階段波の反射波中から埋設
線路部分で反射した波形部分を含む所定幅の波形
部を抽出拡大する抽出拡大回路と、該抽出拡大回
路から出力される拡大波形信号を入力して埋設線
路の始端波形部を微分法によつて検出するととも
に、該拡大波形信号中の予め設定された所定位置
における所定幅の波形部分を限定して該限定部分
の波形を2階微分以上にわたる高次微分によつて
埋設線路の終端波形部を検出する両端検出回路
と、該両端検出回路から出力される信号を入力し
埋設線路両端間の信号伝播時間を算出する時間算
出回路と、該時間算出回路から出力される伝播時
間信号を入力しこの伝播時間を予め別に設けた長
さ既知の標準線路につき前記と同様にして求めた
標準伝播時間と対比することによつて埋設線路の
長さを算出する線路長算出回路とを備えしめたと
ころにある。
[Means for solving the problem] A staircase wave is applied to the buried line in the refractory lining of a furnace such as a blast furnace via a coaxial cable, etc., and the reflected wave of the staircase wave is analyzed to determine the direction of the buried line. The main point of the means for determining the state of wear and tear of the refractory lining in the furnace by measuring the length is to extract a waveform portion of a predetermined width from the reflected wave of the step wave, including the waveform portion reflected from the buried line portion. An extraction and expansion circuit extracts and expands, and an expansion waveform signal output from the extraction and expansion circuit is input to detect the starting end waveform part of the buried line by a differential method, and a predetermined predetermined value in the expansion waveform signal is input. a both-ends detection circuit that limits a waveform portion of a predetermined width at a position and detects the terminal waveform portion of the buried line by high-order differentiation of the waveform of the limited portion over second order differentiation; and an output from the both-ends detection circuit. A time calculation circuit that inputs a signal and calculates the signal propagation time between both ends of the buried line, and a standard line of known length that inputs the propagation time signal output from the time calculation circuit and sets this propagation time separately in advance. and a line length calculation circuit that calculates the length of the buried line by comparing it with the standard propagation time obtained in the same manner.

[作用] 上記の解決手段によれば、抽出拡大回路は、埋
設線路の長さ算出に必要な反射部分が含まれてい
る所定幅の波形部を抽出拡大し、両端検出回路
は、拡大波形信号のうちの始端波形部を微分検出
すると共に、終端波形部が含まれている限定波形
部分を高次微分して終端波形部を検出するから、
埋設線路の長さ算出に必要な反射部分に不可避的
に包含される不要有害な雑音の混同を防止する。
[Operation] According to the above solution, the extraction and enlargement circuit extracts and enlarges the waveform portion of a predetermined width that includes the reflected portion necessary for calculating the length of the buried line, and the both end detection circuit extracts and enlarges the waveform portion of the enlarged waveform signal. In addition to differentially detecting the starting end waveform part, the ending waveform part is detected by performing higher-order differentiation on the limited waveform part that includes the ending waveform part.
To prevent confusion with unnecessary harmful noise that is inevitably included in a reflective part necessary for calculating the length of a buried line.

また、線路長算出回路は、埋設線路の両端間伝
播時間信号を予め別に設けた長さ既知の標準線路
についての標準伝播時間と対比するから、各回路
の測定値出力が経時的に変化することがあつて
も、埋設線路の長さ算出精度が低下するおそれは
ない。
In addition, since the line length calculation circuit compares the propagation time signal between both ends of the buried line with the standard propagation time of a standard line of known length, which is prepared separately in advance, the measured value output of each circuit will change over time. Even if there is, there is no risk that the accuracy of calculating the length of the buried line will deteriorate.

[実施例] 以下に本考案をその実施例を示す図面に基づい
て説明する。
[Examples] The present invention will be described below based on drawings showing examples thereof.

本考案に係る炉内内張耐火物の損耗状態判定装
置(以下本案装置という)は、第1図に示す如き
高炉等の炉1の内張耐火物2中に埋設された線路
3に同軸ケーブル4等を介して階段波を印加し、
該階段波の反射波を解析して埋設線路3の長さを
算出することにより内張耐火物2の損耗状態を判
定する装置である。
A device for determining the wear state of a refractory lining in a furnace according to the present invention (hereinafter referred to as the device) is a coaxial cable connected to a line 3 buried in a refractory lining 2 of a furnace 1 such as a blast furnace as shown in FIG. Applying a staircase wave through 4 mag.
This device determines the state of wear and tear on the refractory lining 2 by analyzing the reflected waves of the staircase waves and calculating the length of the buried line 3.

第2図は本案装置のブロツク線図である。同図
において6は公知の電圧分配器であつて、階段波
発生器5に接続されるとともに、線路7、同軸ケ
ーブル切換器8、同軸ケーブル4、コネクター9
を介して埋設線路3に接続されている。該電圧分
配器6は、階段波発生器5から入力された階段波
を埋設線路3に印加するとともに、該埋設線路3
からの反射波を前記階段波と重畳的に(この重量
波が本明細書にいわゆる反射波である)出力す
る。
FIG. 2 is a block diagram of the proposed device. In the same figure, reference numeral 6 denotes a known voltage divider, which is connected to the staircase wave generator 5, as well as a line 7, a coaxial cable switch 8, a coaxial cable 4, and a connector 9.
It is connected to the buried line 3 via. The voltage divider 6 applies the staircase wave input from the staircase wave generator 5 to the buried line 3 and
The reflected wave is output in a superimposed manner with the staircase wave (this weight wave is referred to as a reflected wave in this specification).

10は抽出拡大回路であり、第3図に示す如き
形状の反射波を入力し、該反射波中から、埋設線
路3で反射した波形部が含まれるところの後述す
る如き予め設定された所定位置及び幅Aの波形部
を第4図に示す如く抽出拡大する。この場合、抽
出拡大回路10によつて抽出拡大される前記所定
幅Aは次の如くして決める。第3,4図におい
て、aは埋設線路3の終端31で反射した反射波
の波形部、bは埋設線路3の始端32で反射した
反肘波の波形部を夫々示し、この波形部aと波形
部bとの間隔T(時間)が、埋設線路3の長さ算
出に必要な値である。ところで、該波形部a及び
bの位置は、長年月を経ると埋設線路3の線端損
耗や機器出力の経時変化により次第に変化するも
のであるが、埋設線路3の線端損耗寸法の最大値
は耐火物の損耗最大量の経験値から推定すること
ができ、各種機器の出力の経時変化の度合もまた
経験的に知られているので、反射波形部a及びb
の位置が変化する範囲は予測出来る。この予測に
基づいて前記所定幅Aが定められるのである。す
なわち、前述の如き位置の変化が生じても、常に
反射波形部a及びbが含まれる範囲であつて、且
つ出来るだけその範囲が狭くなるように、予め前
記所定幅Aを設定し、その範囲内の波形部を抽出
拡大することにしたものである。このような抽出
拡大回路10は、例えば、抽出する波形部分の位
置及び所定幅A並びにその拡大程度を設定する設
定器101と、掃引回路102とサンプルホール
ド回路103とが図示の如く接続されてなる公知
の回路を使用することが可能である。
Reference numeral 10 denotes an extraction/enlarging circuit which inputs reflected waves having a shape as shown in FIG. Then, the waveform portion of width A is extracted and enlarged as shown in FIG. In this case, the predetermined width A to be extracted and expanded by the extraction and expansion circuit 10 is determined as follows. In Figures 3 and 4, a indicates a waveform portion of the reflected wave reflected at the terminal end 31 of the buried line 3, and b indicates a waveform portion of the anti-elbow wave reflected at the start end 32 of the buried line 3. The interval T (time) from the waveform portion b is a value necessary for calculating the length of the buried line 3. By the way, the positions of the waveform parts a and b gradually change over many years due to line end wear of the buried line 3 and changes in equipment output over time, but the maximum value of the line end wear dimension of the buried line 3 can be estimated from the empirical value of the maximum amount of wear and tear on refractories, and the degree of change over time in the output of various equipment is also known empirically, so the reflected waveform parts a and b
The range in which the position of can change can be predicted. The predetermined width A is determined based on this prediction. That is, the predetermined width A is set in advance so that even if the position changes as described above, the range always includes the reflected waveform portions a and b, and the range is as narrow as possible, the range is We decided to extract and enlarge the waveform part within. Such an extraction enlargement circuit 10 includes, for example, a setting device 101 for setting the position and predetermined width A of a waveform portion to be extracted and the degree of enlargement thereof, a sweep circuit 102, and a sample hold circuit 103, which are connected as shown in the figure. It is possible to use known circuits.

11は、該抽出拡大回路10から出力された拡
大波形信号を入力する両端検出回路である。該両
端検出回路11は、第4図に示す如き入力拡大波
を解析して終端波形部aと始端波形部bとを次の
如くして検出する回路である。すなわち、始端波
形部bは鋭く変化するから、例えば拡大波形を一
階微分することによつて検出できる。他方、終端
波形部aは、その変化度合が前記波形部bほどに
鋭くないので、例えば2階微分するなどのより高
次の微分によつて検出するのが望ましい。なお、
拡大波形には、埋設線路3のシール部14に基づ
き第4図にeとして示す反射雑音や同じくfとし
て示す本案装置の電源を共通電源とする溶接機等
の使用による雑音などの波形部を不可避的に包含
するため、微分によつて終端波形部aを検出する
際に、混同の虞れがあるので、本考案において
は、波形部aの検出にあたり、予め次のようにし
て設定された所定幅Eの波形部内から終端波形部
aを検出することにして上記の如き混同を防止し
ている。終端波形部aの位置は、前述の如く埋設
線路3の線端損耗や機器の出力の経時変化によつ
て次第に変化するけれども、その変化範囲は、耐
火物2の損耗による変動範囲(第1図C,D参
照)、及び機器の出力の経時変化の度合の範囲等
により経験上予め一定の範囲内に止まるものであ
る。例えば、第4図においては、波形部cから波
形部dの範囲がその変化範囲である。従つて、そ
の変化範囲を含み且つ出来るだけ狭い範囲の波形
部を指定出来るように、微分対象となる波形の微
分開始位置及び微分終了位置(すなわち両者によ
つて特定される所定幅E)を決定するのである。
このようにすることによつて、前述の如き雑音に
妨害されることなく終端波形部aの検出が出来る
のである。
Reference numeral 11 denotes a both-end detection circuit to which the enlarged waveform signal outputted from the extraction enlargement circuit 10 is input. The both ends detection circuit 11 is a circuit that analyzes the input expanded wave as shown in FIG. 4 and detects the end waveform part a and the start waveform part b in the following manner. That is, since the starting edge waveform portion b changes sharply, it can be detected by, for example, first-order differentiation of the enlarged waveform. On the other hand, since the degree of change of the terminal waveform part a is not as sharp as that of the waveform part b, it is desirable to detect it by higher-order differentiation such as second-order differentiation. In addition,
The enlarged waveform inevitably contains waveform parts such as reflected noise shown as e in FIG. Therefore, when detecting the terminal waveform part a by differentiation, there is a risk of confusion. Therefore, in the present invention, when detecting the waveform part a, a predetermined By detecting the terminal waveform part a from within the waveform part of width E, the above-mentioned confusion is prevented. As mentioned above, the position of the terminal waveform part a gradually changes due to line end wear of the buried line 3 and changes over time in the output of the equipment, but the range of change is the same as the range of change due to wear of the refractory 2 (Fig. 1). (see C and D), and the range of the degree of change over time in the output of the equipment, etc., and it will stay within a certain range based on experience. For example, in FIG. 4, the range from waveform portion c to waveform portion d is the range of change. Therefore, the differentiation start position and differentiation end position (i.e., the predetermined width E specified by both) of the waveform to be differentiated are determined so that a waveform portion that includes the change range and is as narrow as possible can be specified. That's what I do.
By doing this, the terminal waveform portion a can be detected without being disturbed by the noise as described above.

15は時間算出回路であつて、該両端検出回路
11から出力された両端信号を入力し、埋設線路
3の両端間の信号伝播時間Tを算出する。16は
線路長算出回路であつて、該時間算出回路15か
ら出力された伝播時間信号Tを入力し、該伝播時
間Tを炉外に別に設けた予め長さの判明している
標準線路17について予め同様にして求め記憶い
ておいた伝播時間と対比することによつて、埋設
線路3の長さを算出する。標準線路17は埋設線
路3と同一材質、同一構造のものであり、同軸ケ
ーブル18、コネクター13を介して前記同軸ケ
ーブル切換器8に接続されている。19は損耗状
態判定回路であつて、前記線路算出回路16から
出力された線路長信号を入力し、該埋設線路長に
基づき内張耐火物の損耗状態を判定する。20は
表示器であつて、該損耗状態判定回路19からの
出力信号に基づき、炉内内張耐火物の損耗状態を
図示する。なお、第2図において、3′,3″は長
さの異なる埋設線路であつて、同軸ケーブル切換
器8に接続されている。
Reference numeral 15 denotes a time calculation circuit which inputs the both-end signals outputted from the both-end detection circuit 11 and calculates the signal propagation time T between both ends of the buried line 3. 16 is a line length calculation circuit which inputs the propagation time signal T outputted from the time calculation circuit 15 and calculates the propagation time T for a standard line 17 whose length is known in advance and which is provided separately outside the furnace. The length of the buried line 3 is calculated by comparing it with the propagation time previously determined and stored. The standard line 17 is made of the same material and has the same structure as the buried line 3, and is connected to the coaxial cable switch 8 via a coaxial cable 18 and a connector 13. Reference numeral 19 denotes a wear condition determination circuit which inputs the line length signal output from the line calculation circuit 16 and judges the wear condition of the lining refractory based on the buried line length. Reference numeral 20 denotes a display, which indicates the wear state of the furnace lining refractory based on the output signal from the wear state determination circuit 19. In FIG. 2, 3' and 3'' are buried lines of different lengths, which are connected to the coaxial cable switch 8.

次に本案装置の機能を説明する。 Next, the functions of the present device will be explained.

まず、標準線路17を同軸ケーブル切換器8に
よつて、線路7に接続し、該標準線路17に階段
波を印加する。該階段波の反射波は電圧分配器6
から取出され、抽出拡大回路10に入力される。
該抽出拡大回路10において、標準線路17で反
射した波形部分を含む所定位置、幅Aの波形部が
抽出拡大され出力される。該抽出拡大回路10か
ら出力された拡大波形信号はA/D変換器12を
へて両端検出回路11に入力され、微分法によつ
て標準線路17の始端が検出される。また、予め
設定された所定位置における所定幅Eの波形内か
ら標準線路17の終端が微分法によつて検出され
る。なお、標準線路17は年月を経ても短縮しな
いのでそれを考慮して前記所定位置、幅Aや所定
位置、幅Eを設定することはいうまでもない。該
両端検出回路11から出力された信号は時間算出
回路15に入力され、該信号に基き、標準線路1
7中の段階波の標準伝播時間が算出され出力され
る。該標準伝播時間信号は線路長算出回路18に
入力され、記憶される。
First, the standard line 17 is connected to the line 7 by the coaxial cable switch 8, and a staircase wave is applied to the standard line 17. The reflected wave of the staircase wave is sent to the voltage divider 6.
, and is input to the extraction/enlargement circuit 10.
In the extraction/enlarging circuit 10, a waveform portion of a predetermined position and width A including the waveform portion reflected by the standard line 17 is extracted, enlarged, and output. The expanded waveform signal output from the extraction and expansion circuit 10 passes through the A/D converter 12 and is input to the both ends detection circuit 11, where the starting end of the standard line 17 is detected by the differential method. Further, the terminal end of the standard line 17 is detected from within the waveform of a predetermined width E at a predetermined position by the differential method. Incidentally, since the standard line 17 does not shorten over time, it goes without saying that the predetermined position and width A and the predetermined position and width E are set in consideration of this fact. The signal output from the both-end detection circuit 11 is input to the time calculation circuit 15, and based on the signal, the standard line 1
The standard propagation time of the step wave in 7 is calculated and output. The standard propagation time signal is input to the line length calculation circuit 18 and stored.

次に、測定しようとする埋設線路3を線路7に
切換接続する。該埋設線路3に段階波を印加し、
その反射波を前述の如くして各種処理し、時間算
出回路15から該埋設線路3の伝播時間Tを出力
する。該伝播時間信号Tを入力した線路長算出回
路16は、前述した如くして予め記憶しておいた
標準線路17の標準時間と前記伝播時間Tとを比
較し、埋設線路3の長さを算出する。このように
することによつて時間算出回路15等の回路の測
定値出力が経時変化しても、埋設線路3の長さを
正確に算出することができる。埋設線路3の長さ
信号は損耗状態判定回路19に入力される。
Next, the buried line 3 to be measured is switched and connected to the line 7. Applying a stepped wave to the buried line 3,
The reflected wave is subjected to various processing as described above, and the propagation time T of the buried line 3 is outputted from the time calculation circuit 15. The line length calculation circuit 16 inputting the propagation time signal T compares the propagation time T with the standard time of the standard line 17 stored in advance as described above, and calculates the length of the buried line 3. do. By doing so, even if the measured value output of a circuit such as the time calculation circuit 15 changes over time, the length of the buried line 3 can be calculated accurately. The length signal of the buried line 3 is input to a wear state determination circuit 19.

同様にして、他の埋設線路3′,3″,…の長さ
信号が損耗状態判定回路19に次々と入力され
る。該損耗状態判定回路19は、各埋設線路3,
3′,3″…等の長さに基づき、内張耐火物2の損
耗状態を判定し、表示器20へ判定信号を出力す
る。該表示器は炉の内張耐火物2の損耗状態を図
形的に表示する。
Similarly, the length signals of the other buried lines 3', 3'', ... are input one after another to the wear condition determination circuit 19.
The wear condition of the lining refractory 2 is determined based on the lengths such as 3', 3'', etc., and a judgment signal is output to the display 20.The display indicates the wear condition of the furnace lining refractory 2. Display graphically.

なお、各埋設線路3,3′,3″…及び標準線路
17の切換並びに該切換に伴う抽出拡大回路10
の所定幅の設定変更並びに両端検出回路11の所
定幅の設定変更は、例えばタイミング制御回路2
1によつて自動的に、切換えられ、又設定変更さ
れるのが望ましい。
In addition, the switching of each buried line 3, 3', 3''... and standard line 17, and the extraction expansion circuit 10 associated with the switching
For example, the timing control circuit 2 can change the setting of the predetermined width of the
It is desirable that the switching and settings be changed automatically by 1.

また、平均回路を、A/D変換器12と両端検
出回路11との間に介設したもよい(図示省
略)。その場合には、階段波発生回路5によつ
て、複数個の階段波を埋設線路3に印加してお
き、A/D変換器12から出力される複数個デイ
ジタル化された波形信号の互いに対応する各波形
部位のデータ値の平均を、平均回路によつて各算
出することにより、平均化された拡大波形信号を
得る。このようにすることによつて、一時的に発
生した雑音をカツト出来るのである。
Also, an averaging circuit may be interposed between the A/D converter 12 and the both-end detection circuit 11 (not shown). In that case, a plurality of staircase waves are applied to the buried line 3 by the staircase generating circuit 5, and the average of the data values of the corresponding waveform portions of the plurality of digitized waveform signals output from the A/D converter 12 is calculated by the averaging circuit, thereby obtaining an averaged expanded waveform signal. In this way, it is possible to cut out noise that occurs temporarily.

[考案の効果] 以上述べたところから明らかな如く、本案装置
は、反射波の分析にあたり、波形を拡大して解析
するので、精度よく埋設線路の長さを算出するこ
とが出来るとともに、長さを算出するにあたり、
不必要な波形や雑音をカツトするので埋設線路の
長さを正確に算出することが出来る。また、長年
月経て機器の出力が変化しても、標準線路を利用
して埋設線路の長さを算出しているので長さ算出
精度が低下する心配はないという長所を有するの
である。
[Effects of the invention] As is clear from the above, the device of the present invention magnifies the waveform when analyzing reflected waves, so it is possible to calculate the length of the buried line with high accuracy, and also to calculate the length of the buried line. In calculating,
Since unnecessary waveforms and noise are cut out, the length of the buried line can be calculated accurately. Furthermore, even if the output of the equipment changes over many years, the length of the buried line is calculated using the standard line, so there is no concern that the accuracy of length calculation will deteriorate.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本案装置の実施例を説明するた
めのものであつて、第1図は高炉炉底部の断面
図、第2図は本案判定装置のブロツク線図、第3
図は反射波の波形図、第4図は反射波の一部拡大
波形図である。 1……炉、2……内張耐火物、3……埋設線
路、5……階段波発生器、10……抽出拡大回
路、11……両端検出回路、15……時間算出回
路、16……線路長算出回路、17……標準線
路、19……損耗状態判定回路、20……表示
器。
The drawings are all for explaining an embodiment of the proposed device, and FIG. 1 is a sectional view of the bottom of the blast furnace, FIG. 2 is a block diagram of the proposed device, and FIG.
The figure is a waveform diagram of the reflected wave, and FIG. 4 is a partially enlarged waveform diagram of the reflected wave. DESCRIPTION OF SYMBOLS 1... Furnace, 2... Lining refractory, 3... Buried line, 5... Staircase wave generator, 10... Extraction expansion circuit, 11... Both ends detection circuit, 15... Time calculation circuit, 16... ... Line length calculation circuit, 17 ... Standard line, 19 ... Wear state judgment circuit, 20 ... Display device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高炉等の炉の内張耐火物中の埋設線路に同軸ケ
ーブル等を介して階段波を印加し、該階段波の反
射波を解析して前記埋設線路の長さを測定するこ
とにより炉内の内張耐火物の損耗状態を判定する
装置において、前記階段波の反射波中から埋設線
路部分で反射した波形部分を含む所定幅の波形部
を抽出拡大する抽出拡大回路と、該抽出拡大回路
から出力される拡大波形信号を入力した埋設線路
の始端波形部を微分法によつて検出するととも
に、該拡大波形信号中の予め設定された所定位置
における所定幅の波形部分を限定して該限定部分
の波形を2階微分以上にわたる高次微分によつて
埋設線路の終端波形部を検出する両端検出回路
と、該両端検出回路から出力される信号を入力し
埋設線路両端間の信号伝播時間を算出する時間算
出回路と、該時間算出回路から出力される伝播時
間信号を入力しこの伝播時間を予め別に設けた長
さ既知の標準伝播時間と対比することによつて埋
設線路の長さを算出する線路長算出回路とを備
え、算出した埋設線路の長さに基づいて炉内の内
張耐火物の損耗状態を判定することを特徴とする
炉内内張耐火物の損耗状態判定装置。
A staircase wave is applied to a buried line in the refractory lining of a furnace such as a blast furnace via a coaxial cable, and the reflected wave of the staircase wave is analyzed to measure the length of the buried line. In a device for determining the state of wear of a refractory lining, an extraction and expansion circuit extracts and expands a waveform portion of a predetermined width including a waveform portion reflected by a buried line portion from the reflected wave of the step wave, and from the extraction and expansion circuit. The starting end waveform part of the buried line into which the output enlarged waveform signal is input is detected by differential method, and a waveform part of a predetermined width at a predetermined position in the enlarged waveform signal is limited and the limited part is A both-end detection circuit detects the end waveform portion of the buried line by high-order differentiation over the second-order differential or higher of the waveform, and a signal output from the both-end detection circuit is input to calculate the signal propagation time between both ends of the buried line. The length of the buried line is calculated by inputting the propagation time signal outputted from the time calculation circuit and the propagation time signal outputted from the time calculation circuit and comparing this propagation time with a standard propagation time of which length is previously set. What is claimed is: 1. A wear state determination device for a furnace lining refractory, comprising: a line length calculation circuit, and determining a wear state of the furnace lining refractory based on the calculated length of the buried line.
JP18681481U 1981-12-14 1981-12-14 Equipment for determining wear status of furnace lining refractories Granted JPS5891700U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18681481U JPS5891700U (en) 1981-12-14 1981-12-14 Equipment for determining wear status of furnace lining refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18681481U JPS5891700U (en) 1981-12-14 1981-12-14 Equipment for determining wear status of furnace lining refractories

Publications (2)

Publication Number Publication Date
JPS5891700U JPS5891700U (en) 1983-06-21
JPS6117360Y2 true JPS6117360Y2 (en) 1986-05-27

Family

ID=29989089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18681481U Granted JPS5891700U (en) 1981-12-14 1981-12-14 Equipment for determining wear status of furnace lining refractories

Country Status (1)

Country Link
JP (1) JPS5891700U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838207A (en) * 1971-09-18 1973-06-05
JPS49133207A (en) * 1973-04-26 1974-12-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838207A (en) * 1971-09-18 1973-06-05
JPS49133207A (en) * 1973-04-26 1974-12-20

Also Published As

Publication number Publication date
JPS5891700U (en) 1983-06-21

Similar Documents

Publication Publication Date Title
JP5306802B2 (en) Discharge and discharge position measurement device for ultra-high frequency parts of high-voltage power equipment
EP2044445B1 (en) Signal analyzer and method for signal analysis
Lederman et al. A data fusion approach for track monitoring from multiple in-service trains
JP6489651B2 (en) Partial discharge measuring device, partial discharge measuring method, and program
KR920010692A (en) Partial discharge detection device and method of gas insulated switchgear
JP3378166B2 (en) Pulse signal classification device
KR20070096498A (en) Partial discharge measurement system for power cable
KR100915712B1 (en) Partial discharge location detection system and method of detecting a discharge location
JP6611991B1 (en) Condition monitoring device
JP5921169B2 (en) Electromagnetic noise distribution detector
JPS6117360Y2 (en)
JPH03218421A (en) Oscillation mode measuring device
JP4715034B2 (en) Eddy current flaw detector
CN116147547A (en) Nondestructive testing system for detecting depth of concrete opening crack
JPH08219751A (en) Method for measuring thickness of refractories using elastic wave
JP2013544369A (en) System frequency response test using continuous sweep frequency
KR20180123263A (en) Detecting System of Location of Partial Discharge For Power Cable And Method Of The Same
JP2002139377A (en) Equipment failure diagnosis apparatus
JP3082571B2 (en) Signal processing device
KR20150037288A (en) Apparatus and method for estimating partial discharge
CN113295765B (en) Method for detecting grouting defects of pore canal
JP6888329B2 (en) Abnormality diagnosis device
KR101905767B1 (en) Apparatus for determining faults of line
JP3866693B2 (en) Vehicle detection device
JPH08248085A (en) Load cut-off test analyzing system