JPH0377772A - Method and device for infrared heating type reflow soldering - Google Patents

Method and device for infrared heating type reflow soldering

Info

Publication number
JPH0377772A
JPH0377772A JP21261889A JP21261889A JPH0377772A JP H0377772 A JPH0377772 A JP H0377772A JP 21261889 A JP21261889 A JP 21261889A JP 21261889 A JP21261889 A JP 21261889A JP H0377772 A JPH0377772 A JP H0377772A
Authority
JP
Japan
Prior art keywords
joined
temperature difference
conveyor
temperature
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21261889A
Other languages
Japanese (ja)
Inventor
Takashi Usuha
薄葉 隆
Akira Sugano
菅野 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Group Corp
Original Assignee
Aiwa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aiwa Co Ltd filed Critical Aiwa Co Ltd
Priority to JP21261889A priority Critical patent/JPH0377772A/en
Publication of JPH0377772A publication Critical patent/JPH0377772A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder

Abstract

PURPOSE:To prevent defective soldering by preheating material to be joined on a conveyor up to the specified temperature, regulating the temperature difference generated by size of a packaging component, etc., and heating quickly the material to be joined whose temperature difference is regulated above the melting point of solder to carry out soldering. CONSTITUTION:The packaging component 9 is mounted on cream solder 11 on a substrate 8 to form the material 10 to be joined. When the material 10 to be joined is mounted on the conveyor 7 and put in a preheating part 3 of a furnace main body 1, it is heated by stages in order from the ordinary temperature to 160 deg.C and sent to a temperature difference regulation part 4 where the temperature difference among the packaging components 9 generated on the preheating part 3 is regulated by an air blasting means. When the material 10 to be joined is then proceeded in a reflow part 5, the material 10 to be joined is irradiated with a halogen lamp and heated to the specified temperature and the solder 11 is molten and the packaging component 9 is joined to the substrate 8 which is then put in a cooling part 6 and cooled rapidly by fans 18. By this method, even the substrate on which an Al electrolytic capacitor, etc., which are components having low heat resistance are packaged mixedly can be prevented from defective soldering.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、赤外線加熱式リフローハンダ付け方法およ
び赤外線加熱式リフローハンダ付け装置に間し、特に、
実装部品の熱シヨツク防止の予備加熱において、実装部
品の大小および配置の粗密によって発生した上昇温度の
バラツキを常温以上で調整してリフローハンダ付けを行
なう赤外線加熱式リフローハンダ付け方法および赤外線
加熱式リフローハンダ付け装置に間する。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to an infrared heating reflow soldering method and an infrared heating reflow soldering apparatus, and in particular,
Infrared heating reflow soldering method and infrared heating reflow soldering method that performs reflow soldering by adjusting the temperature rise caused by the size of the mounted components and the sparseness and density of their placement at room temperature or above during preheating to prevent thermal shock of the mounted components. Connect to soldering equipment.

「従来の技術」 近年、電子工業の技術開発に伴い、電子機器の小型化が
促進され、従来のリード線付きの部品に代わってチップ
部品が多く用いられるようになった。
"Prior Art" In recent years, with technological development in the electronics industry, the miniaturization of electronic devices has been promoted, and chip components have come to be used in place of conventional components with lead wires.

そして、そのチップ部品を効率よく実装するために表面
実装法が導入され、微小箇所へ能率的ζこ接合するハン
ダ付け方法としてリフロー法が多く採用されるようにな
った。
In order to efficiently mount these chip components, the surface mounting method was introduced, and the reflow method came to be widely used as a soldering method for efficiently bonding to minute locations.

そのリフロ一方法に広く用いられているものとして、第
8図で示すような赤外線加熱式リフロー装置がある。
One widely used reflow method is an infrared heating type reflow apparatus as shown in FIG.

この第8図において、隔壁2によって予備加熱部3と、
リフロ一部5および冷却部6とに区分されている。
In FIG. 8, a preheating section 3 is connected to a partition wall 2;
It is divided into a reflow part 5 and a cooling part 6.

上記の炉本体1は、矢印方向に走行するコンベア7が中
段に配設されている。
In the above-mentioned furnace body 1, a conveyor 7 running in the direction of the arrow is disposed in the middle stage.

予備加熱部3は、アルミニウム電解コンデンサ等の耐熱
弱部品が急加熱によって破損したり、特性が劣化するの
を防止すると共に、フラ・ソクスを活性化させるために
設けられたもので、熱コントロールができるように2〜
4セクシヨンに分割されている。
The preheating section 3 is provided to prevent weak heat-resistant components such as aluminum electrolytic capacitors from being damaged or their characteristics deteriorate due to sudden heating, and to activate the FLA SOCS. 2~
It is divided into 4 sections.

そして、この予備加熱部3において、走行するコンベア
7に載置された被接合材lOが順次加熱されるために、
コンベア7を挟んで遠赤外線照射用のパネルヒータ12
が熱源として配置され、被接合材10が常温から160
℃の加熱温度で2〜3分程度加熱される。
In this preheating section 3, the materials to be joined 1O placed on the traveling conveyor 7 are sequentially heated.
Panel heater 12 for far infrared irradiation across conveyor 7
is placed as a heat source, and the material to be joined 10 is heated from room temperature to 160°C.
It is heated for about 2 to 3 minutes at a heating temperature of ℃.

コンベア7に載置される被接合材10は、例えば第5図
で示すように、前工程において、基板8にクリームハン
ダ11が供給され実装部品9が搭載されたものである。
As shown in FIG. 5, for example, the bonded material 10 placed on the conveyor 7 is one in which cream solder 11 is supplied to a board 8 and a mounting component 9 is mounted thereon in the previous process.

リフロ一部5は、短時間で塗布したハンダを溶かし、実
装部品9を基板8に接合する。第8図で示す例において
は、波長域0. 7〜3μmのハロゲンランプ16がコ
ンベア7を挟んで対設され、ハンダ溶融温度183℃の
場合に約220℃で10秒〜30秒加熱する。
The reflow part 5 melts the applied solder in a short time and joins the mounted component 9 to the board 8. In the example shown in FIG. 8, the wavelength range 0. Halogen lamps 16 of 7 to 3 μm are placed opposite to each other across the conveyor 7, and heat the solder at about 220° C. for 10 to 30 seconds when the solder melting temperature is 183° C.

また、冷却部6は、コンベア7を挟んでファン17.1
7が対設され、リフロ一部5での工程終了後の基板8、
実装部品9を急冷する。
The cooling unit 6 also includes a fan 17.1 with the conveyor 7 in between.
7 are arranged opposite to each other, and the substrate 8 after the process in the reflow part 5 is completed,
The mounted component 9 is rapidly cooled.

「発明が解決しようとする課題」 前述した従来のりフロー炉において、極端な例として例
えば、第4図で示すように、一方において比較的大きな
QFP形LSIやコンデンサC1抵抗R等の実装部品9
が密集し、他方において、耐熱弱部品であるアルミニウ
ム電解コンデンサ19、スライドスイッチ、ジャック、
コネクタ等の実装部品9が孤立して配置された実装形態
では、第9図で示すように、予備加熱部3およびリフロ
一部5で50℃〜70℃の温度差が生した。
"Problems to be Solved by the Invention" In the conventional glue flow furnace described above, for example, as shown in FIG.
On the other hand, aluminum electrolytic capacitors 19, slide switches, jacks, which are weak heat-resistant parts,
In a mounting configuration in which mounted components 9 such as connectors are arranged in isolation, a temperature difference of 50° C. to 70° C. occurs between the preheating section 3 and the reflow section 5, as shown in FIG.

この温度差によって、一方において孤立し高温となった
実装部品9が熱で破損したり、変形したり、特性劣化す
る等が起こり、他方において、ハンダが充分に溶融せず
にハンダ不良を起すことがあった。
Due to this temperature difference, on the one hand, the isolated and high-temperature mounted component 9 may be damaged, deformed, or have characteristics deteriorated due to heat, and on the other hand, the solder may not melt sufficiently, causing solder failure. was there.

また、今後において、搭載する実装部品の多様化、多品
種化を考慮すると、上記のような事態の発生することが
増加することが考えられる。
Furthermore, in the future, considering the diversification and variety of mounted components, the occurrence of the above-mentioned situations is likely to increase.

この発明は、上記のような点に鑑みなされたものて、大
型と小型の実装部品が例え密と疎に混合しても、ハンダ
不良や熱損傷、熱劣化を起すことなく、連続的に実装ハ
ンダ付けが行えるリフローハンダ1寸は方法およびリフ
ローハンダ付装置の提供を目的とする。
This invention was developed in view of the above points, and even if large and small components are mixed densely and sparsely, they can be mounted continuously without causing soldering defects, thermal damage, or thermal deterioration. The object of the present invention is to provide a reflow soldering method and a reflow soldering device that can perform soldering.

「課題を解決するための手段」 上述の課題を解決するため、この発明においては、基板
上にハンダを挟んで実装部品が搭載された被接合材を走
行するコンベアに載置し、該コンベア上の被接合材を常
温から160℃で段階的に加熱する予備加熱工程と、 実装部品の大小、配置の粗密により発生する加熱予備工
程における温度差を常温以上で調整する温度差r!4!
1工程と、 温度差!lluがなされた被接合材をハンダの溶融点以
上に急速加熱し、実装部品を基板に接合するリフローハ
ンダ工程とを順次行なうことを特徴とするもの、および
基板上にハンダを挟んで実装部品が搭載された被接合材
を走行するコンベアに載置し、該コンベア上の被接合材
を常温から160℃て段階的に加熱する手段とを備えた
予備加熱部と、 実装部品の大小、配置の粗密により予備加熱部で発生し
た温度差を送風手段で!g!整する温度差調整部と、 温度差調整がなされた被接合材をハンダの溶融点以上で
急速加熱し、実装部品を基板に接合するリフロー部と、
からなることを特徴とするものである。
"Means for Solving the Problems" In order to solve the above-mentioned problems, in the present invention, a material to be joined, on which a mounted component is mounted on a board with solder interposed therebetween, is placed on a running conveyor, and The temperature difference between the preheating process in which the materials to be joined are heated stepwise from room temperature to 160°C and the temperature difference in the heating preparatory process that occurs due to the size of the mounted components and the density and density of their arrangement is adjusted to above room temperature. 4!
1 process and temperature difference! A method characterized by sequentially performing a reflow soldering process in which the material to be joined which has been subjected to llu is rapidly heated above the melting point of the solder and the mounted component is joined to the board, and a method in which the mounted component is bonded to the board by sandwiching the solder. A preheating section includes means for placing the loaded materials to be joined on a running conveyor and heating the materials to be joined on the conveyor stepwise from room temperature to 160 degrees Celsius; Use air blowing means to eliminate the temperature difference that occurs in the preheating section due to density! g! a temperature difference adjustment section that adjusts the temperature difference, and a reflow section that rapidly heats the materials to be joined after adjusting the temperature difference above the melting point of the solder to join the mounted components to the board.
It is characterized by consisting of.

「作 用」 第5図に示すように、前工程において、基板8上にクリ
ームハンダ11が供給された後に、そのクリームハンダ
ll上に実装部品9が搭載されて被接合材10となる。
"Function" As shown in FIG. 5, in the pre-process, after the cream solder 11 is supplied onto the board 8, the mounting component 9 is mounted on the cream solder 11 to form the bonded material 10.

第1図の工程図に示すように、上記の被接合材10を連
続的に走行するコンベア7に載置し、コンベア7が矢印
方向に走行して炉本体1の予備加熱部3に入ると、被接
合材1oは、コンベア7の矢印方向の進行に伴い、常温
から160”Cに順次段階的に加熱され、温度差調整部
4に送られる。
As shown in the process diagram of FIG. 1, the above-mentioned materials to be welded 10 are placed on the continuously running conveyor 7, and the conveyor 7 runs in the direction of the arrow and enters the preheating section 3 of the furnace body 1. As the conveyor 7 moves in the direction of the arrow, the materials 1o to be joined are successively heated in stages from room temperature to 160''C, and then sent to the temperature difference adjusting section 4.

この時、被接合材10が例えば第4図で示すように、一
方に比較的大型のQFP形LSIとコンデンサC1抵抗
R等が密集した状態で搭載され、他方に耐熱側部品のア
ルミニウム電解コンデンサ19が孤立した状態で搭載さ
れた極端な例においては、第9図で示すように30〜5
0℃以上の差が発生する。
At this time, as shown in FIG. 4, for example, the material to be bonded 10 is mounted with a relatively large QFP type LSI, a capacitor C1 resistor R, etc. packed together on one side, and an aluminum electrolytic capacitor 19 as a heat-resistant component on the other side. In an extreme case where the unit is mounted in isolation, 30 to 5
A difference of 0°C or more occurs.

コンベア7が走行する温度差調整部4において、予備加
熱部3で発生した実装部品9.9間の温度差の調整が、
送風手段によって!l!J整される。すなわち、送風手
段によって、孤立したアルミニウム電解コンデンサ19
が急冷し、比較的大型のQFP形LSIとコンデンサC
5抵抗R等が密集したブロックが遅冷され、両者が略同
−温度若しくは孤立したアルミニウム電解コンデンサ1
9が10℃〜20℃低くなる。
In the temperature difference adjustment section 4 where the conveyor 7 runs, the temperature difference between the mounted components 9 and 9 generated in the preheating section 3 is adjusted.
By means of air blowing! l! J will be adjusted. That is, the isolated aluminum electrolytic capacitor 19 is
is rapidly cooled, and a relatively large QFP type LSI and capacitor C
5. A block packed with resistors R, etc. is slowly cooled, and both are at approximately the same temperature or an isolated aluminum electrolytic capacitor 1.
9 becomes 10°C to 20°C lower.

次に、温度調整がなされた被接合材10を載せたコンベ
ア7がリフロ一部5内に進行する。このリフロ一部5に
おいて、ハロゲンランプ16,1Gによって10〜30
秒間照射される。ハロゲンランプ16.16で照射され
た被接合材10は、約220℃に加熱され塗布されたハ
ンダ11が溶融し、実装部品9が基板8に接合される。
Next, the conveyor 7 carrying the temperature-adjusted materials 10 to be joined advances into the reflow part 5. In this reflow part 5, 10 to 30
irradiated for seconds. The material to be joined 10 irradiated with the halogen lamp 16 , 16 is heated to approximately 220° C., the applied solder 11 is melted, and the mounted component 9 is joined to the substrate 8 .

次いて、コンベア7の走行に伴い、冷却部6に入り、上
下に対設されたファン17.17で急冷され、部品が実
装された基板として次工程に送られる。
Next, as the conveyor 7 moves, the substrate enters the cooling section 6, is rapidly cooled by fans 17 and 17 arranged vertically, and is sent to the next process as a board with components mounted thereon.

「実 施 例」 続いて、この発明の実施例について、図面を参照して詳
細に説明する。
"Embodiments" Next, embodiments of the present invention will be described in detail with reference to the drawings.

第2図は、この発明に係るリフローハンダ付装置の実施
の第1例を示す概略断面図である。
FIG. 2 is a schematic sectional view showing a first example of implementation of the reflow soldering apparatus according to the present invention.

この第2図において、炉本体1は、隔壁2によって、3
セクシヨンに区分された予備加熱部3と、温度差調整部
4と、リフロ一部5および冷却部6とに区分されている
In this FIG. 2, the furnace body 1 is divided into three
It is divided into a preheating section 3 divided into sections, a temperature difference adjustment section 4, a reflow section 5, and a cooling section 6.

また、炉本体1には、矢印方向に走行するコンベア7が
第2図で示すように中段に配設されている。
Furthermore, a conveyor 7 that runs in the direction of the arrow is disposed in the middle of the furnace body 1, as shown in FIG.

各予備加熱部3は、例えば、第4図で示す基板8および
実装部品9とからなる被接合材IOをゆっくり加熱する
ことによって急激な加熱による熱損傷、熱劣化を防止す
ると共に、フラックスを活性化させるために設けた。
Each preheating section 3 prevents thermal damage and thermal deterioration caused by rapid heating by slowly heating the material IO to be joined, which is made up of a substrate 8 and a mounted component 9 shown in FIG. 4, for example, and activates the flux. It was set up to make it easier to understand.

基板8、実装部品9とからなる被接合材10は、例えば
第5図で示すように前工程において、基板8にクリーム
ハンダ11が供給され、実装部品9が搭載されたもので
ある。この予備加熱部3は、被接合材10を順次加熱昇
温するためにコンベア7を挟んで遠赤外線照利用のパネ
ルまたは棒ヒータが熱源として配置されると共に、加熱
した空スを対流させるファン13.13が配置され、コ
ンベア7上に載置された被接合材10を160℃程度に
加熱する。
The material to be bonded 10 consisting of a substrate 8 and a mounted component 9 is obtained by, for example, as shown in FIG. 5, cream solder 11 is supplied to the substrate 8 and the mounted component 9 is mounted in the previous step. In this preheating section 3, panels or bar heaters using far infrared rays are arranged as a heat source across the conveyor 7 to sequentially heat and raise the temperature of the materials 10 to be joined, and a fan 13 that causes the heated air to circulate .13 is placed, and the materials to be joined 10 placed on the conveyor 7 are heated to about 160°C.

上記の予備加熱部3で予備加熱が行なわれる被加熱材1
0が、例えば第4図で示すように、一方においてQFP
形LSIやコンデンサC2抵抗R等が密集し、他方にお
いて耐熱側部品であるアルミニウム電解コンデンサ19
が孤立した実装形態では、第3図で示すように大きなバ
ラツキが生じていた。
Material to be heated 1 to be preheated in the above preheating section 3
0 on the other hand, as shown in FIG.
Type LSI, capacitor C2 resistor R, etc. are crowded together, and on the other hand, there is an aluminum electrolytic capacitor 19 which is a heat-resistant component.
In the implementation form in which there are isolated cases, large variations occur as shown in FIG.

温度差調整部4は、この発明で新たに設けたセクション
で、前述のように予備加熱された実装部品9の上昇温度
のバラツキを調整する。
The temperature difference adjusting section 4 is a section newly provided in the present invention, and adjusts the variation in the temperature rise of the mounted component 9 that has been preheated as described above.

この温度調整部4は、可能な限り隣接した予備加熱部3
とリフロ一部5とエアカーテン(図示しない)等で断熱
し、予備加熱効果を損なうことなく上昇温度のバラツキ
を解消するために、コンベア7を挟んで吸気ファン14
と排気ファン15が対設されている*4&、4bは、各
々温度差調整部4の上下m璧に開口した吸気口、排気口
である。
This temperature adjustment section 4 is arranged as close as possible to the preheating section 3.
The reflow part 5 is insulated with an air curtain (not shown), etc., and an intake fan 14 is installed across the conveyor 7 in order to eliminate variations in temperature rise without impairing the preheating effect.
*4&, 4b, to which the exhaust fan 15 is disposed, are an intake port and an exhaust port, respectively, which are open at the top and bottom of the temperature difference adjustment section 4.

なお、前工程で高l!lに加熱された小型で孤立してい
る実装部品9の方が、加熱されにくかった大型で密集さ
れに実装部品9より冷め易いので、この温度差!l!!
整部4において、小型で孤立している実装部品9の上r
#湿温度大型で密集した実装部品9より低くすることが
、次工程を考慮して望ましい。
In addition, high l! This temperature difference is due to the fact that the small, isolated mounted components 9 that are heated to a temperature of 100 mm cool down more easily than the large, closely packed components 9 that are less likely to be heated. l! !
In the adjustment section 4, the upper part of the mounted component 9, which is small and isolated, is
#It is desirable to set the humidity temperature lower than that of the large and densely mounted components 9 in consideration of the next process.

ノフロ一部6は、温度差調整部4て温度が調整された実
装部品9のクリームハンダ1itt溶融し、短時rrJ
1(10秒〜30秒)で実装部品9を基板8に接着する
The Noflo part 6 melts the cream solder 1itt of the mounted component 9 whose temperature has been adjusted by the temperature difference adjustment part 4, and the solder is melted for a short time.
1 (10 seconds to 30 seconds) to bond the mounted component 9 to the board 8.

このリフロ一部5においては、第1図および第2図で示
すように矢印方向に走行するコンベア7を挟んで波長域
0.7〜3μmのハロゲンランプ16.16または3〜
15μmの遠赤外線棒ヒータが刻設されると共に、加熱
した空気を対流させるファン17.17が配設されてい
る。
In this reflow part 5, as shown in FIGS. 1 and 2, halogen lamps 16.
A 15 μm far-infrared rod heater is carved, and a fan 17.17 for convection of heated air is provided.

そして、基板8にプリントしたクリームハンダ11の溶
融温度183℃の場合には、加熱温度220℃前後で加
熱する。
If the melting temperature of the cream solder 11 printed on the substrate 8 is 183°C, the heating temperature is about 220°C.

それによって、クリームハンダ11が溶融し実装部品9
が基板8に接合される。
As a result, the cream solder 11 melts and the mounted component 9
is bonded to the substrate 8.

冷却部6は、第2図で示すように送気用のファン18.
18がコンベア7を挟んで対設されている。
As shown in FIG. 2, the cooling unit 6 includes an air supply fan 18.
18 are arranged opposite to each other with the conveyor 7 interposed therebetween.

そして、このファン18.18によってリフローll3
5から送り出された被接合材lOを急冷する。
And reflow ll3 by this fan 18.18
The material to be joined lO sent out from 5 is rapidly cooled.

次に、この発明に係る赤外線加熱式リフローハンダ付方
法の一例について、工程順に説明する。
Next, an example of the infrared heating type reflow soldering method according to the present invention will be explained in order of steps.

(a−1)前工程(実装部品搭載工程)第5図で示すよ
うに基板8上にクリームハンダ11が供給された後に、
クリームハンダ11上に実装部品9が搭載されて被接合
材10として次工程に送られる。
(a-1) Pre-process (mounted component mounting process) As shown in FIG. 5, after the cream solder 11 is supplied onto the board 8,
The mounting component 9 is mounted on the cream solder 11 and sent to the next process as a bonded material 10.

(a>予備加熱工程 コンベア7上の被接合材10を常温から160℃で段階
的に加熱する。
(a> Preheating step The materials 10 to be joined on the conveyor 7 are heated stepwise from room temperature to 160°C.

前工程で基板8上に搭載されたQFP形LSI、コンデ
ンサC1抵抗R、アルミニウム電解コンデンサ19等の
実装部品9が急激な熱ショックで破損したり、特性が劣
化するのを防止するために常温から160℃で段階的に
加熱し、被接合材10を約160℃に加熱する。
In order to prevent the QFP type LSI, capacitor C1 resistor R, aluminum electrolytic capacitor 19, and other mounted components 9 mounted on the board 8 in the previous process from being damaged or their characteristics deteriorating due to sudden thermal shock, they are heated from room temperature. The material to be joined 10 is heated to about 160°C by heating stepwise at 160°C.

この予備加熱工程における加熱時間は、約2分〜3分と
し、ゆっくり段階的に加熱する。
The heating time in this preheating step is approximately 2 to 3 minutes, and the heating is performed slowly in stages.

加熱された被接合材lOは、次工程に送られる。The heated material to be joined lO is sent to the next process.

(b)温度差11整工程 実装部品9の大小および配置の粗密により発生する船舶
予備工程における温度差を常温以上で調整する。
(b) Temperature Difference 11 Adjustment Process Temperature differences in the ship preliminary process caused by the size of the mounted components 9 and the spacing and density of their arrangement are adjusted to above room temperature.

予備加熱工程で予備加熱が行なわれる被加熱材10が、
例えば極端な例として第4図で示すように、一方におい
て比較的大型のQFP形LSIやコンデンサC,抵抗R
等が密集し、他方において耐熱弱部品であるアルミニウ
ム電解コンデンサ19が孤立した状態の実装形態では、
第3図のグラフで示すような結果となった。すなわち、
予備加熱が終了したときにおいて、QFP形LSIやコ
ンデンサC1抵抗R等が密集して搭載された部位の加熱
温度が120℃であるのに対し、孤立したアルミニウム
電解コンデンサ19の加熱温度が150℃と30度の開
きがあった。
The material to be heated 10 that is preheated in the preheating step is
For example, as an extreme example, as shown in Figure 4, on the one hand, a relatively large QFP type LSI, capacitor C, and resistor
etc. are crowded together, and on the other hand, the aluminum electrolytic capacitor 19, which is a weak heat-resistant component, is isolated.
The results were as shown in the graph of FIG. That is,
When preheating is completed, the heating temperature of the part where the QFP type LSI, capacitor C1 resistor R, etc. are densely mounted is 120°C, while the heating temperature of the isolated aluminum electrolytic capacitor 19 is 150°C. There was a 30 degree gap.

このまま、リフローH5に供給すると、孤立したアルミ
ニウム電解コンデンサ19が急加熱されて機能が破壊さ
れる虞れがあると共に、アルミニウム電解コンデンサ1
9の加熱時間、加熱温度に合わせると、密集部で熱不足
による接合不良が生じるようになる。
If the aluminum electrolytic capacitor 19 is supplied to the reflow H5 in this state, there is a risk that the isolated aluminum electrolytic capacitor 19 will be rapidly heated and its function will be destroyed.
If the heating time and heating temperature are adjusted to 9, bonding failures will occur in dense areas due to insufficient heat.

よって、この発明においては、例えば第1図および第2
図で示すように、温度差調整部4の下方に間口した吸a
口4aから吸気ファン14で冷たい外気を吸い込み、上
方に開口した排スロ4bから排2ファン15で熱い空2
を排出する。
Therefore, in this invention, for example, FIGS.
As shown in the figure, a suction a opening is provided below the temperature difference adjusting section 4.
The intake fan 14 sucks in cold outside air from the opening 4a, and the hot air 2 is sucked in by the exhaust fan 15 from the upwardly opened exhaust slot 4b.
discharge.

これによって、孤立しているアルミニウム電解コンデン
サ19が急冷し、比較的大型のQFP形LSIとコンデ
ンサC1抵抗R等が密集したブロックが遅冷され、両者
が略同−温度若しくは孤立したアルミニウム電解コンデ
ンサ19が−10℃〜−20℃低くなる。
As a result, the isolated aluminum electrolytic capacitor 19 is rapidly cooled, and the block in which the relatively large QFP type LSI, capacitor C1 resistor R, etc. are densely cooled is slowly cooled, and both are at approximately the same temperature or the isolated aluminum electrolytic capacitor 19 is cooled down slowly. becomes -10°C to -20°C lower.

(c)リフロー工程 温度差調整がなされた被接合材10をハンダの溶融点以
上に急速加熱し、実装部品を基板に接合する。
(c) Reflow process The material 10 to be joined, which has been subjected to temperature difference adjustment, is rapidly heated to a temperature higher than the melting point of the solder, and the mounted components are joined to the board.

温度l!I整がなされた被接合材10を載せたコンヘア
7がリフロ一部5内に進行する。このリフロ一部5にお
いて、ハロゲンランプ16.16によって10〜30秒
間照射された被接合材10は、約220℃に加熱され塗
布されたハンダ11が溶融し、実装部品9が基板8に接
合される。
Temperature l! The conhair 7 carrying the I-aligned workpiece 10 advances into the reflow part 5. In this reflow part 5, the material to be bonded 10 is irradiated with a halogen lamp 16.16 for 10 to 30 seconds and is heated to about 220° C., the applied solder 11 is melted, and the mounted component 9 is bonded to the board 8. Ru.

(c+1)急冷工程 次いで、コンベア7の走行に伴い冷却部6に入り、上下
に対設されたファン18.18で急冷され、部品が実装
された基板として次工程に送られる。
(c+1) Quenching process Next, as the conveyor 7 runs, the substrate enters the cooling section 6, is rapidly cooled by fans 18 and 18 arranged vertically, and is sent to the next process as a board with components mounted thereon.

第6図および第7図で示すものは、この発明の実施の第
2例を示すもので、実施第1例における炉本体1を2分
割すると共に、温度差調整部4をオーブン形状としたも
のである。
6 and 7 show a second embodiment of the present invention, in which the furnace body 1 in the first embodiment is divided into two parts, and the temperature difference adjusting section 4 is shaped like an oven. It is.

従って、予備加熱部3は、独立した炉本体21内に形成
され、隔壁2.2で3セクシヨンに区分されている。ま
た、リフロ一部5および冷却部6は、独立した炉本体3
1内に形成されている。
Therefore, the preheating section 3 is formed in an independent furnace body 21 and is divided into three sections by partition walls 2.2. In addition, the reflow part 5 and the cooling part 6 are connected to an independent furnace main body 3.
It is formed within 1.

この第2実施例における温度差調整部4においては、第
6図で示すように、コンベア7を挟んで送2ファン24
.24が対設されている。また、この温度差調整部4は
、オーブン形式なので、第7図のグラフで示すように調
整効果が発揮される。
In the temperature difference adjusting section 4 in this second embodiment, as shown in FIG.
.. 24 are provided oppositely. Furthermore, since the temperature difference adjustment section 4 is of oven type, the adjustment effect is exhibited as shown in the graph of FIG.

「発明の効果」 以上のように、この発明はリフローハンダにおいて、予
備加熱した基板および実装部品の加熱ムラを解消すると
共に、加熱され易い実装部品の温度を低下させてからリ
フローするもので、大型のQFP形LSIや耐熟弱部品
であるアルミニウム電解コンデンサ、スライドスイッチ
、コネクタ等が混載実装される基板であっても、ハンダ
不良や過熱による破損、変形、特性劣化等を起さずに実
装が行える。
"Effects of the Invention" As described above, the present invention eliminates uneven heating of preheated boards and mounted components in reflow soldering, and lowers the temperature of mounted components that are easily heated before reflowing. Even on boards on which QFP type LSIs, aluminum electrolytic capacitors, slide switches, connectors, etc., which are weak aging-resistant components, are mounted together, it can be mounted without causing damage, deformation, or characteristic deterioration due to poor soldering or overheating. I can do it.

従って、今後における実装部品の多様化、多品種化にと
って極めて有効である。
Therefore, it is extremely effective for the diversification and variety of mounted components in the future.

グラフ、第8図は従来例i置の概略断面図、第9図は従
来例の被加熱材の温度変化を示すグラフである。
FIG. 8 is a schematic sectional view of the conventional example at position i, and FIG. 9 is a graph showing the temperature change of the heated material in the conventional example.

炉本体 予備加熱部 温度差!11整部 リフロ一部Furnace body Preheating section Temperature difference! 11 Orthopedic Department Reflow part

【図面の簡単な説明】[Brief explanation of drawings]

Claims (2)

【特許請求の範囲】[Claims] (1)基板上にハンダを挟んで実装部品が搭載された被
接合材を走行するコンベアに載置し、該コンベア上の被
接合材を常温から160℃で段階的に加熱する予備加熱
工程と、 実装部品の大小、配置の粗密により発生する加熱予備工
程における温度差を常温以上で調整する温度差調整工程
と、 温度差調整がなされた被接合材をハンダの溶融点以上に
急速加熱し、実装部品を基板に接合するリフローハンダ
工程とを順次行なうことを特徴とする赤外線加熱式リフ
ローハンダ付け方法。
(1) A preheating step in which the materials to be joined, on which the components are mounted with solder sandwiched between them, are placed on a running conveyor, and the materials to be joined on the conveyor are heated in stages from room temperature to 160°C. , a temperature difference adjustment step in which the temperature difference in the preliminary heating step that occurs due to the size of the mounted components and the sparseness and density of the arrangement is adjusted to above room temperature, and the materials to be joined after the temperature difference adjustment are rapidly heated above the melting point of the solder. An infrared heating reflow soldering method characterized by sequentially performing a reflow soldering process for bonding mounted components to a board.
(2)基板上にハンダを挟んで実装部品が搭載された被
接合材を走行するコンベアに載置し、該コンベア上の被
接合材を常温から160℃で段階的に加熱する手段とを
備えた予備加熱部と、実装部品の大小、配置の粗密によ
り予備加熱部で発生した温度差を送風手段で調整する温
度差調整部と、 温度差調整がなされた被接合材をハンダの溶融点以上で
急速加熱し、実装部品を基板に接合するリフロー部と、
からなることを特徴とする赤外線加熱式リフローハンダ
付け装置。
(2) A means for placing a material to be joined on which a mounted component is mounted on a board with solder sandwiched therebetween on a running conveyor, and heating the material to be joined on the conveyor in stages from room temperature to 160°C. a temperature difference adjustment part that uses an air blower to adjust the temperature difference that occurs in the preheating part due to the size of the mounted components and the sparseness of their arrangement; A reflow part that rapidly heats up and joins the mounted components to the board,
An infrared heating reflow soldering device comprising:
JP21261889A 1989-08-18 1989-08-18 Method and device for infrared heating type reflow soldering Pending JPH0377772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21261889A JPH0377772A (en) 1989-08-18 1989-08-18 Method and device for infrared heating type reflow soldering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21261889A JPH0377772A (en) 1989-08-18 1989-08-18 Method and device for infrared heating type reflow soldering

Publications (1)

Publication Number Publication Date
JPH0377772A true JPH0377772A (en) 1991-04-03

Family

ID=16625661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21261889A Pending JPH0377772A (en) 1989-08-18 1989-08-18 Method and device for infrared heating type reflow soldering

Country Status (1)

Country Link
JP (1) JPH0377772A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2818088A1 (en) * 2000-12-11 2002-06-14 Air Liquide METHOD FOR PRODUCING A SOLDERING BETWEEN METAL BALLS OF AN ELECTRONIC COMPONENT AND HOST RANGES OF A CIRCUIT AND SOLDERING OVEN FOR THE IMPLEMENTATION OF THIS PROCESS
US7094993B2 (en) * 1999-08-23 2006-08-22 Radiant Technology Corp. Apparatus and method for heating and cooling an article
CN102528196A (en) * 2010-12-24 2012-07-04 中国电子科技集团公司第十八研究所 Welding method for temperature-difference power generating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471571A (en) * 1987-09-11 1989-03-16 Senju Metal Industry Co Reflow furnace
JPH01138059A (en) * 1987-11-07 1989-05-30 Heraeus Quarzschmelze Gmbh Penetrating furnace for brazing electrical constitutional member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471571A (en) * 1987-09-11 1989-03-16 Senju Metal Industry Co Reflow furnace
JPH01138059A (en) * 1987-11-07 1989-05-30 Heraeus Quarzschmelze Gmbh Penetrating furnace for brazing electrical constitutional member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7094993B2 (en) * 1999-08-23 2006-08-22 Radiant Technology Corp. Apparatus and method for heating and cooling an article
FR2818088A1 (en) * 2000-12-11 2002-06-14 Air Liquide METHOD FOR PRODUCING A SOLDERING BETWEEN METAL BALLS OF AN ELECTRONIC COMPONENT AND HOST RANGES OF A CIRCUIT AND SOLDERING OVEN FOR THE IMPLEMENTATION OF THIS PROCESS
WO2002049401A1 (en) * 2000-12-11 2002-06-20 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for making a solder between metallic balls of an electronic component and mounting lands of a circuit and soldering furnace therefor
US7156283B2 (en) 2000-12-11 2007-01-02 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for making a solder between metallic balls of an electronic component and mounting lands of a circuit and soldering furnace therefor
CN102528196A (en) * 2010-12-24 2012-07-04 中国电子科技集团公司第十八研究所 Welding method for temperature-difference power generating device

Similar Documents

Publication Publication Date Title
US4771929A (en) Focused convection reflow soldering method and apparatus
TWI240336B (en) Manufacturing apparatus of electronic device, manufacturing method of electronic device, and manufacturing program of electronic device
JPH0377772A (en) Method and device for infrared heating type reflow soldering
JPH01262069A (en) Heating device for substrate and heating method
JPH05245624A (en) Device and method for reflowing solder
JPH09246712A (en) Reflow soldering method and apparatus therefor
JPH1051133A (en) Reflow method and equipment
JP2001320163A (en) Reflow device and its board heating method
JPH02263569A (en) Heating furnace
JP2003133718A (en) Reflow apparatus and method
JP4041627B2 (en) Heating device and heating method
JPS6179293A (en) Method of mounting electronic part
JPS62144876A (en) Temperature controller for circuit board under conveyance
JP7028835B2 (en) Heating furnace and transfer heating equipment
JPS61289967A (en) Continuous heater
JPH04269895A (en) Reflow solder method for printed board
JPH1098262A (en) Reflowing apparatus
JPH05152733A (en) Printed wiring board for surface mount
JPH04164387A (en) Method and furnace for making reflowing to printed board
JP4252819B2 (en) Reflow preheat drying method and apparatus
JPH05110242A (en) Board
JPH0335869A (en) Reflow furnace
JPS62203669A (en) Reflow device for printed circuit board loading chip parts
JP2001308511A (en) Method and device for reflow soldering
JPH01181966A (en) Substrate heating device