JPH0377659B2 - - Google Patents

Info

Publication number
JPH0377659B2
JPH0377659B2 JP57228687A JP22868782A JPH0377659B2 JP H0377659 B2 JPH0377659 B2 JP H0377659B2 JP 57228687 A JP57228687 A JP 57228687A JP 22868782 A JP22868782 A JP 22868782A JP H0377659 B2 JPH0377659 B2 JP H0377659B2
Authority
JP
Japan
Prior art keywords
temperature
semiconductor substrate
transparent member
wafer
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57228687A
Other languages
Japanese (ja)
Other versions
JPS59125621A (en
Inventor
Minoru Inoe
Haruyoshi Yagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22868782A priority Critical patent/JPS59125621A/en
Publication of JPS59125621A publication Critical patent/JPS59125621A/en
Publication of JPH0377659B2 publication Critical patent/JPH0377659B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 (1) 発明の技術分野 本発明は半導体製造装置に係り、特に、インラ
イン型スパツタ装置またはケミカル・ベーパ・デ
ボジシヨン(CVD)装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to semiconductor manufacturing equipment, and particularly to improvements in in-line sputtering equipment or chemical vapor deposition (CVD) equipment.

(2) 技術の背景 近時、半導体の製造工程において、スパツタま
たはCVD等により、例えばウエハ上に形成した
各デバイスにコンタクトをとるためのコンタクト
窓を第1図の半導体の断面図に示すように形成
し、配線用の金属導電性物質、例えばアルミニウ
ム(Al)をスパツタリング法により形成する。
(2) Background of the technology Recently, in the semiconductor manufacturing process, contact windows for making contact with each device formed on a wafer, for example, by sputtering or CVD, as shown in the cross-sectional view of a semiconductor in Figure 1, are being used. A metal conductive material for wiring, such as aluminum (Al), is formed by sputtering.

このような配線層のデポジツトにおいては、第
1図aに示すようにデバイスが形成されたウエハ
1上にリンシリカガラス(PSG)等の絶縁層2
を形成してコンタクト窓3を該絶縁膜層2上に形
成し、Al等の配線パターン4を形成するときに
PSG層の厚みが1μm程度あり、コンタクト窓3の
幅wが極めて小さいときには、Alの配線パター
ン4のコンタクト窓3内への付着状態は凸状に形
成されPSG層のエツジ部2aの近傍のAl配線層
厚は極めて薄くなる。
In depositing such a wiring layer, as shown in FIG.
When forming a contact window 3 on the insulating film layer 2 and forming a wiring pattern 4 of Al etc.
When the thickness of the PSG layer is about 1 μm and the width w of the contact window 3 is extremely small, the adhesion state of the Al wiring pattern 4 inside the contact window 3 is formed in a convex shape, and the Al near the edge part 2a of the PSG layer is The wiring layer thickness becomes extremely thin.

一般に理想的には、第1図bに示すように
PSG層及びコンタクト窓上のAl層4の厚さD1
D2,D3は厚みが等しくなるように膜形成される
べきである。
Generally, ideally, as shown in Figure 1b,
Thickness D 1 of Al layer 4 on PSG layer and contact window,
D 2 and D 3 should be formed to have the same thickness.

第1図aの如くAl層パツド4の付着された場
合には3aで示す部分が薄いため電流を流したと
き抵抗が高いという弊害の他にパターン切れ等を
発生するため信頼性を著しく低下させることが多
い。
When the Al layer pad 4 is attached as shown in Fig. 1a, the part indicated by 3a is thin, which not only has the disadvantage of high resistance when current is applied, but also causes pattern breakage, which significantly reduces reliability. There are many things.

Al配線パターン層を第1図bに示す理想的パ
ターン形状とするためにはウエハを200〜450℃ま
で上昇させる必要があり、インライン式のスパツ
タ装置ではスパツタ室にウエハが送り込まれてス
パツタリングがなされるときのウエハ基板温度が
200〜450℃に保持されている必要があつた。これ
はAlの原子の運動速度を上げてやるために必要
なウエハ基板温度である。
In order to form the Al wiring pattern layer into the ideal pattern shape shown in Figure 1b, it is necessary to heat the wafer to 200 to 450°C, and in an in-line sputtering device, the wafer is fed into a sputtering chamber and sputtered. The wafer substrate temperature when
It was necessary to maintain the temperature between 200 and 450°C. This is the wafer substrate temperature necessary to increase the motion speed of Al atoms.

(3) 従来技術の問題点 従来の上記したインライン式のスパツタ装置の
略図的な構成を第2図に示す。第2図において、
5はセンダーでウエハ基板の出し入れが行われ、
弁6を介してロードロツク7にウエハが挿入さ
れ、スパツタ室10と連なる弁9と該弁6を閉じ
弁8を開いてロードロツク7内を真空状態とし、
スパツタ室10内はメインバルブ11を介して真
空状態となされているが、弁9を開いてロードロ
ツク7内のウエハをスパツタ室10に挿入すると
ともに弁9を閉じる。このときロードロツク13
とスパツタ室10を結ぶ弁12は閉じられてい
る。
(3) Problems with the Prior Art FIG. 2 shows a schematic configuration of the conventional in-line sputtering device described above. In Figure 2,
5 is a sender where wafer substrates are loaded and unloaded.
The wafer is inserted into the load lock 7 via the valve 6, and the valve 9 connected to the sputtering chamber 10 and the valve 6 are closed, and the valve 8 is opened to create a vacuum inside the load lock 7.
The interior of the sputtering chamber 10 is kept in a vacuum state via the main valve 11, and the valve 9 is opened to insert the wafer in the load lock 7 into the sputtering chamber 10, and the valve 9 is closed. At this time, load lock 13
The valve 12 connecting the sputtering chamber 10 and the sputtering chamber 10 is closed.

スパツタ室10内でスパツタリングが終つて配
線層等が形成されたウエハはロードロツク13に
送り込まれる。
After sputtering is completed in the sputtering chamber 10, the wafer on which wiring layers and the like have been formed is sent to a load lock 13.

この場合、ロードロツク13とスパツタ室を結
ぶ弁12並びにレシーバ16とを結ぶ弁15に閉
じられて、弁14が開かれてロードロツク13の
排気がなされ真空状態とした後に弁12が開かれ
てスパツタリングされたウエハがロードロツク1
3内に送り込まれる。
In this case, the valve 12 connecting the load lock 13 and the sputtering chamber and the valve 15 connecting the receiver 16 are closed, and the valve 14 is opened to evacuate the load lock 13 and create a vacuum state, and then the valve 12 is opened to start sputtering. The loaded wafer is in load lock 1.
Sent into 3.

次に弁12を閉じ、ロードロツク13をN2
の不活性ガスを用いて大気圧にした後且つ弁15
を開いてロードロツク13内のウエハをレシーバ
16内に搬入して取り出す。
Next, close the valve 12, bring the load lock 13 to atmospheric pressure using an inert gas such as N2, and then close the valve 15.
The wafer in the load lock 13 is loaded into the receiver 16 and taken out.

このようなインライン式スパツタ装置では、ロ
ードロツク7においては大気をスパツタ室に入れ
ないための機能とともにウエハを200〜450℃まで
昇温させる機能を有している。
In such an in-line sputtering apparatus, the load lock 7 has the function of not allowing atmospheric air to enter the sputtering chamber, and also the function of raising the temperature of the wafer to 200 to 450 DEG C.

このロードロツク内の加熱は処理時間に見合う
ように加熱時間を設定してウエハ加熱を行つてい
るが、これが正常に動作しているときは特に問題
がないが、これのライン内でのトラブル、或いは
排気速度の変動等の異常が生じたときにウエハは
所定の基板温度に達しないままスパツタ室内に送
入されて膜形成されて不良品を発生する欠点があ
つた。
The heating time inside this load lock is set to match the processing time and the wafer is heated.When this is working normally, there is no particular problem, but if there is trouble within this line or When an abnormality such as a fluctuation in the pumping speed occurs, the wafer is sent into the sputtering chamber before reaching a predetermined substrate temperature and a film is formed, resulting in defective products.

(5) 発明の目的 本発明は上記欠点に鑑み、予備加熱室または膜
形成室内に搬入された半導体基板の温度が一定に
なるように温度制御して、上記のようなトラブル
等が発生した場合でも安定な処理の行える半導体
製造装置を提供することを目的とするものであ
る。
(5) Purpose of the Invention In view of the above-mentioned drawbacks, the present invention provides a method for controlling the temperature of a semiconductor substrate carried into a preheating chamber or a film forming chamber so that the temperature thereof remains constant, so that when the above-mentioned troubles occur, However, the purpose is to provide a semiconductor manufacturing apparatus that can perform stable processing.

(5) 発明の構成 そして、この目的は本発明によれば、上面にマ
イクロ波および赤外線を透過し気密性を有する透
過部材で覆われた窓が形成され、該透過部材の周
囲部を抑え金具およびOリングシールによつて密
封した真空槽と、該真空槽上に設置された導波管
とを有する膜形成装置の予備加熱室または膜形成
室内に搬入された半導体基板を、前記導波管、透
過部材を通してマイクロ波を照射することにより
加熱するマイクロ波加熱手段と、前記抑え金具に
光フアイバを埋設し該光フアイバの一端面を前記
透過部材に接触させ、前記半導体基板から生じる
赤外線を該光フアイバの一端面より入射して他端
面に接続される温度検出器に導くことにより非接
触で前記半導体基板の温度検出を行う温度検出手
段と、該温度検出手段の検出結果に基づき前記マ
イクロ波加熱手段のマイクロ波出力またはその出
力時間を制御して前記半導体基板を一定温度に調
整する温度制御手段とを備えたことを特徴とする
半導体製造装置を提供することで達成される。
(5) Structure of the Invention According to the present invention, a window covered with a transparent member that transmits microwaves and infrared rays and is airtight is formed on the upper surface, and a metal fitting is used to suppress the surrounding area of the transparent member. A semiconductor substrate carried into a preheating chamber or a film forming chamber of a film forming apparatus having a vacuum chamber sealed with an O-ring seal and a waveguide installed on the vacuum chamber is placed inside the waveguide. , a microwave heating means for heating by irradiating microwaves through a transparent member; an optical fiber is embedded in the holding fitting, one end surface of the optical fiber is brought into contact with the transparent member, and the infrared rays generated from the semiconductor substrate are transmitted. temperature detection means for detecting the temperature of the semiconductor substrate in a non-contact manner by entering the optical fiber from one end surface and guiding it to a temperature detector connected to the other end surface; This is achieved by providing a semiconductor manufacturing apparatus characterized by comprising: temperature control means for adjusting the temperature of the semiconductor substrate to a constant temperature by controlling the microwave output or the output time of the heating means.

(6) 発明の実施例 以下、本発明の一実施例を図面について説明す
る。
(6) Embodiment of the Invention An embodiment of the present invention will be described below with reference to the drawings.

第3図は本発明の第2図に示すロードロツク7
すなわち、予備室の要部の断面を示すものであ
り、17は断面がほぼ直方形状で紙面に対し垂直
方向に延設され手前側にセンダー5が、奥にスパ
ツタ室10が第2図のように配置され、弁6,9
並びに8の開閉によつてロードロツク内を真空に
保つたり大気に連通させたりしている真空槽であ
り、該真空槽内には同じくセンダー5側からスパ
ツタ室10に向かつて2本のレール18が敷設さ
れてウエハ等の試料1が該レール上に連続的に搬
送される。
FIG. 3 shows the load lock 7 shown in FIG. 2 of the present invention.
That is, it shows a cross section of the main part of the preliminary chamber, and 17 has an almost rectangular cross section and extends perpendicularly to the plane of the paper, with the sender 5 in the front and the sputtering chamber 10 in the back, as shown in Figure 2. valves 6 and 9
This is a vacuum tank that maintains a vacuum inside the load lock or communicates it with the atmosphere by opening and closing 8. Inside the vacuum tank, there are also two rails 18 running from the sender 5 side toward the sputtering chamber 10. Samples 1 such as wafers are continuously conveyed onto the rails.

この窓19を、マイクロ波および赤外線を透過
可能で気密性を有する透過部材、例えば石英ガラ
ス20で覆い、この石英ガラス20の周囲部をガ
ラス抑え金具21およびOリングシール材22に
よつて密封することにより、真空槽17内を高い
真空度に保持している。
This window 19 is covered with a transparent member that can transmit microwaves and infrared rays and has an airtight property, for example, quartz glass 20, and the periphery of this quartz glass 20 is sealed with a glass holding fitting 21 and an O-ring sealing material 22. As a result, the inside of the vacuum chamber 17 is maintained at a high degree of vacuum.

ガラス抑え金具21の上部にはフランジ部23
を有する導波管24を載置する。
A flange portion 23 is provided at the top of the glass holding fitting 21.
The waveguide 24 having the following characteristics is placed.

該導波管側部にはマイクロ波発振管25を設
け、導波管壁に穿つた透孔を通してアンテナ26
を突き出させマイクロ波出力端27よりマイクロ
波を発振させて石英ガラス20を通してウエハ1
を加熱させる。
A microwave oscillation tube 25 is provided on the side of the waveguide, and an antenna 26 is installed through a through hole in the waveguide wall.
The wafer 1 is emitted from the microwave output end 27 through the quartz glass 20.
heat up.

マイクロ波発振管25から発振された電磁場は
誘電体であるウエハのみを加熱し、他の真空槽を
形成している金属部分や石英ガラスを加熱しな
い。導波管は大気にさらせるため、加熱装置を真
空槽内に設ける必要がないので加熱装置の設計の
自由度を大きくとれる。さらに金属部に当つてマ
イクロ波は接地電位に落ちるためにランプヒータ
加熱のように金属部の蓄熱による影響をウエハが
受けないという特徴がある。
The electromagnetic field oscillated from the microwave oscillation tube 25 heats only the wafer, which is a dielectric material, and does not heat the other metal parts or quartz glass forming the vacuum chamber. Since the waveguide is exposed to the atmosphere, there is no need to provide a heating device in a vacuum chamber, allowing greater flexibility in designing the heating device. Furthermore, since the microwave drops to the ground potential when it hits the metal part, the wafer is not affected by heat accumulation in the metal part, unlike lamp heater heating.

本発明ではガラス抑え金具21及び導波管24
のフランジ23に透孔21a,23aに挿通して
石英ガラス20の表面にオプテイカルフアイバー
28の一端を接触させ、他端面を赤外線センサの
如き温度検出器29に結合させ、ウエハ1から生
じる赤外線31を検出する。そして、制御回路3
0により、温度検出器29の出力信号に基づき、
マイクロ波発振管25から出力されるマイクロ波
のパワーまたはその出力時間をコントロールし
て、ウエハ1を一定温度に調整する。
In the present invention, the glass holding fitting 21 and the waveguide 24
The optical fiber 28 is inserted through the through holes 21a and 23a in the flange 23 of the wafer 1, one end of the optical fiber 28 is brought into contact with the surface of the quartz glass 20, and the other end surface is connected to a temperature detector 29 such as an infrared sensor. Detect. And control circuit 3
0, based on the output signal of the temperature detector 29,
The power of the microwave output from the microwave oscillation tube 25 or its output time is controlled to adjust the temperature of the wafer 1 to a constant temperature.

上記構成によれば、例えばマイクロ波の発振時
間を制御することにより、ウエハ温度を200〜450
℃の範囲に調整することが可能となる。
According to the above configuration, for example, by controlling the microwave oscillation time, the wafer temperature can be adjusted between 200 and 450.
It becomes possible to adjust the temperature within the range of ℃.

すなわち、ウエハ温度が所定の温度より低けれ
ば発振を継続させ、所定温度より高ければ発振を
停止させるようにする。
That is, if the wafer temperature is lower than a predetermined temperature, the oscillation is continued, and if the wafer temperature is higher than the predetermined temperature, the oscillation is stopped.

なお、上記実施例ではインライン式膜形成装置
としてスパツタ装置によりAl配線パターンを形
成する場合について予備室内部での実施例につい
て述べたが、膜形成室においても同様の構成によ
りウエハ温度の制御は可能である。さらに本発明
はこれに限定されることなく、例えばCVD装置
によつて各種薄膜を形成する場合に適用し得るこ
とは勿論である。
In addition, in the above example, an example was described in which an Al wiring pattern is formed using a sputtering device as an in-line film forming apparatus inside a preparatory chamber, but the wafer temperature can also be controlled in a film forming chamber with a similar configuration. It is. Further, the present invention is not limited thereto, and can of course be applied to the case where various thin films are formed by, for example, a CVD apparatus.

(7) 発明の効果 以上、詳細に説明したように本発明の半導体製
造装置によれば、インライン式薄膜形成装置内の
トラブル或いは排気速度変動等の異常に対して、
従来のように時間だけで温度制御をしている場合
に比べて試料の表面温度を非接触状態で計測でき
ること、並びに加熱手段にフイードバツクを掛け
て時間または出力をコントロールできるので安定
な処理を行い得る特徴を有するものである。
(7) Effects of the Invention As described above in detail, the semiconductor manufacturing apparatus of the present invention can prevent troubles in the in-line thin film forming apparatus or abnormalities such as fluctuations in pumping speed.
Compared to the conventional case where temperature is controlled only by time, the surface temperature of the sample can be measured without contact, and the time or output can be controlled by applying feedback to the heating means, making it possible to perform stable processing. It has characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは従来の半導体装置のAl配線パ
ターン状態を説明するための側断面図、第2図は
従来のインライン式スパツタ装置の概略的構成を
示す排気系統図、第3図は第2図の予備室に本発
明の一実施例を適用した場合の側断面図である。 1……Si基板(ウエハ)、2……絶縁層、3…
…コンタクト窓、4……配線層(Al等)、5……
センダー、6,8,9,11,12,14,15
……弁、7,13……ロードロツク、10……ス
パツタ室、16……レシーバ、17……真空槽、
18……レール、19……窓、20……石英ガラ
ス、21……ガラス抑え金具、22……O−リン
グシール、23……フランジ部、24……導波
管、25……マイクロ波発振管、26……アンテ
ナ、27……マイクロ波出力端、28……オプテ
イカルフアイバー、29……温度検出器、30…
…制御回路、31……赤外線。
Figures 1a and b are side sectional views for explaining the Al wiring pattern state of a conventional semiconductor device, Figure 2 is an exhaust system diagram showing the schematic configuration of a conventional in-line sputtering device, and Figure 3 is an FIG. 3 is a side sectional view when an embodiment of the present invention is applied to the preliminary chamber shown in FIG. 2; 1... Si substrate (wafer), 2... Insulating layer, 3...
...Contact window, 4...Wiring layer (Al, etc.), 5...
Sender, 6, 8, 9, 11, 12, 14, 15
... Valve, 7, 13 ... Load lock, 10 ... Sputter chamber, 16 ... Receiver, 17 ... Vacuum chamber,
18...Rail, 19...Window, 20...Quartz glass, 21...Glass holding fitting, 22...O-ring seal, 23...Flange section, 24...Waveguide, 25...Microwave oscillation Tube, 26... Antenna, 27... Microwave output end, 28... Optical fiber, 29... Temperature detector, 30...
...control circuit, 31...infrared rays.

Claims (1)

【特許請求の範囲】 1 上面にマイクロ波および赤外線を透過し気密
性を有する透過部材で覆われた窓が形成され、該
透過部材の周囲部を抑え金具およびOリングシー
ルによつて密封した真空槽と、該真空槽上に設置
された導波管とを有する膜形成装置の予備加熱室
または膜形成室内に搬入された半導体基板を、前
記導波管、透過部材を通してマイクロ波を照射す
ることにより加熱するマイクロ波加熱手段と、 前記抑え金具に光フアイバを埋設し該光フアイ
バの一端面を前記透過部材に接触させ、前記半導
体基板から生じる赤外線を該光フアイバの一端面
より入射して他端面に接続される温度検出器に導
くことにより非接触で前記半導体基板の温度検出
を行う温度検出手段と、 該温度検出手段の検出結果に基づき前記マイク
ロ波加熱手段のマイクロ波出力またはその出力時
間を制御して前記半導体基板を一定温度に調整す
る温度制御手段とを備えたことを特徴とする半導
体製造装置。
[Claims] 1. A window covered with a transparent member that transmits microwaves and infrared rays and has an airtight property is formed on the upper surface, and a vacuum sealed by a metal fitting and an O-ring seal is formed around the transparent member. A semiconductor substrate carried into a preheating chamber or a film forming chamber of a film forming apparatus having a tank and a waveguide installed on the vacuum tank is irradiated with microwaves through the waveguide and the transparent member. an optical fiber is embedded in the holding fitting, one end surface of the optical fiber is brought into contact with the transparent member, and infrared rays generated from the semiconductor substrate are incident on the one end surface of the optical fiber; temperature detection means for detecting the temperature of the semiconductor substrate in a non-contact manner by guiding the temperature to a temperature detector connected to an end face; and a microwave output of the microwave heating means or its output time based on the detection result of the temperature detection means. and temperature control means for controlling the temperature of the semiconductor substrate to a constant temperature.
JP22868782A 1982-12-28 1982-12-28 Device for manufacturing semiconductor Granted JPS59125621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22868782A JPS59125621A (en) 1982-12-28 1982-12-28 Device for manufacturing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22868782A JPS59125621A (en) 1982-12-28 1982-12-28 Device for manufacturing semiconductor

Publications (2)

Publication Number Publication Date
JPS59125621A JPS59125621A (en) 1984-07-20
JPH0377659B2 true JPH0377659B2 (en) 1991-12-11

Family

ID=16880226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22868782A Granted JPS59125621A (en) 1982-12-28 1982-12-28 Device for manufacturing semiconductor

Country Status (1)

Country Link
JP (1) JPS59125621A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4796081A (en) * 1986-05-02 1989-01-03 Advanced Micro Devices, Inc. Low resistance metal contact for silicon devices
JP2611434B2 (en) * 1989-06-23 1997-05-21 富士電機株式会社 Schottky barrier diode manufacturing method
SE465100B (en) * 1989-06-30 1991-07-22 Inst Mikroelektronik Im PROCEDURE AND DEVICE TO PROCESS IN A COLD WALL REACTOR
JP2638311B2 (en) * 1991-01-10 1997-08-06 動力炉・核燃料開発事業団 Heating temperature measuring device in microwave high electric field

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691436A (en) * 1979-12-26 1981-07-24 Fujitsu Ltd Method for heating semiconductor substrate
JPS5754315A (en) * 1980-09-19 1982-03-31 Matsushita Electric Ind Co Ltd Preparation of semiconductor device
JPS57178316A (en) * 1981-04-27 1982-11-02 Hitachi Ltd Manufacture of semiconductor element and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691436A (en) * 1979-12-26 1981-07-24 Fujitsu Ltd Method for heating semiconductor substrate
JPS5754315A (en) * 1980-09-19 1982-03-31 Matsushita Electric Ind Co Ltd Preparation of semiconductor device
JPS57178316A (en) * 1981-04-27 1982-11-02 Hitachi Ltd Manufacture of semiconductor element and device therefor

Also Published As

Publication number Publication date
JPS59125621A (en) 1984-07-20

Similar Documents

Publication Publication Date Title
US5815396A (en) Vacuum processing device and film forming device and method using same
US5098198A (en) Wafer heating and monitor module and method of operation
KR940007608B1 (en) Device for vacuum treatment and device for and method of film formation using said device
US4806321A (en) Use of infrared radiation and an ellipsoidal reflection mirror
US6646752B2 (en) Method and apparatus for measuring thickness of a thin oxide layer
EP0092346B1 (en) Method and apparatus for heating a semiconductor substrate under reduced pressure
US7550366B2 (en) Method for bonding substrates and device for bonding substrates
US5232509A (en) Apparatus for producing low resistivity tungsten thin film comprising reaction temperature measuring thermocouples
US5478609A (en) Substrate heating mechanism
CA1093216A (en) Silicon device with uniformly thick polysilicon
JP2000286207A (en) Apparatus and method for heat treatment
JPH0377659B2 (en)
JP3334162B2 (en) Vacuum processing apparatus, film forming apparatus and film forming method using the same
JP2811026B2 (en) Semiconductor processing method and apparatus
US4228452A (en) Silicon device with uniformly thick polysilicon
EP0452777B1 (en) Wafer heating and monitoring system and method of operation
JP4451508B2 (en) Vapor growth method
JPH029121A (en) Plasma etching apparatus
WO2012077659A1 (en) Display device manufacturing apparatus, display device manufacturing method, and display device
US20230005798A1 (en) Substrate processing apparatus and substrate processing method
JPH0561574B2 (en)
JPS63125680A (en) Vapor deposition device
JPS59100536A (en) Microwave processor
JP3244463B2 (en) Vacuum processing apparatus, film forming apparatus and film forming method using the same
JP2640269B2 (en) Processing method and processing apparatus