JPH0377569B2 - - Google Patents

Info

Publication number
JPH0377569B2
JPH0377569B2 JP30285286A JP30285286A JPH0377569B2 JP H0377569 B2 JPH0377569 B2 JP H0377569B2 JP 30285286 A JP30285286 A JP 30285286A JP 30285286 A JP30285286 A JP 30285286A JP H0377569 B2 JPH0377569 B2 JP H0377569B2
Authority
JP
Japan
Prior art keywords
film
main pole
thin film
etching
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP30285286A
Other languages
Japanese (ja)
Other versions
JPS63157309A (en
Inventor
Shuji Ogasawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP30285286A priority Critical patent/JPS63157309A/en
Publication of JPS63157309A publication Critical patent/JPS63157309A/en
Publication of JPH0377569B2 publication Critical patent/JPH0377569B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier

Landscapes

  • Magnetic Heads (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、垂直磁気記録用ヘツドの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a perpendicular magnetic recording head.

〔従来の技術〕[Conventional technology]

垂直磁気記録用ヘツドとしての主磁極膜の特性
は、おもにガラス基板ならびに結晶化ガラス基板
上で測定されている。しかし実際にヘツドとして
使用する場合には、ヘツド構造に合わせた基板上
に主磁極膜を形成する必要がある。現在考えられ
ている基板としてはフエライトとセラミツクの複
合物があげられる。そのヘツドの構造ならびに作
成工程について詳しく説明する。
The characteristics of the main pole film used as a perpendicular magnetic recording head are mainly measured on glass substrates and crystallized glass substrates. However, when actually used as a head, it is necessary to form a main pole film on a substrate that matches the head structure. The substrate currently being considered is a composite of ferrite and ceramic. The structure and manufacturing process of the head will be explained in detail.

垂直記録方式によるヘツドの構造を第1図およ
び第2図に示す。主磁極膜1はCo−Zr−Nbの薄
膜よりなる。この主磁極膜1は、非磁性材である
セラミツク2と磁性材であるフエライト3上にス
パツタ、蒸着、イオンプレーテイング等で形成さ
れ、もう一方のセラミツク2′およびフエライト
3′に接着されて保持されている。ここでセラミ
ツク2,2′はスライダー部として媒体に接触す
るためにR研磨もしくは球面研磨が施こされてい
る。またフエライト3,3′には巻線溝部4,
4′が形成されている。これらの巻線溝部4,
4′にはさまれている部分7,7′が補助磁極とし
てはたらき、またその外側の部分8,8′がリタ
ーンパス部としてはたらくことになる。
The structure of a perpendicular recording head is shown in FIGS. 1 and 2. The main pole film 1 is made of a Co--Zr--Nb thin film. This main pole film 1 is formed by sputtering, vapor deposition, ion plating, etc. on ceramic 2, which is a non-magnetic material, and ferrite 3, which is a magnetic material, and is adhered and held by the other ceramic 2' and ferrite 3'. has been done. Here, the ceramics 2, 2' are R-polished or spherically polished in order to contact the medium as a slider portion. In addition, the ferrite 3, 3' has a winding groove 4,
4' is formed. These winding grooves 4,
The portions 7, 7' sandwiched between the magnetic poles 4' serve as auxiliary magnetic poles, and the outer portions 8, 8' serve as return path sections.

次にこのヘツドの作成工程について詳細に説明
する。第3図において、所望の大きさのセラミツ
ク2の片面(下面)を鏡面研磨する。一方、所望
の大きさのフエライト3には巻線溝部4の加工を
施こしかつ片面(上面)を鏡面研磨する。次に第
4図に示すように、セラミツク2とフエライト3
とを、ガラスあるいは結晶化ガラスもしくは樹脂
等の接着層9を介して接着する。次工程として、
第5図に示すように主磁極膜を形成する面10の
鏡面研磨を行う。すなわち面10は、セラミツク
2、フエライト3、接着層9の複合物(基板)1
4の面である。次に第6図に示すように、主磁極
膜1となるCo−Zr−Nbの薄膜をスパツタもしく
は蒸着イオンプレーテイング等で所望の薄膜に形
成する。さらに第7図を参照して、主磁極膜1が
所望の形状トラツク寸法になるように、フオトエ
ツチングを利用しマスクパタンを形成し主磁極膜
1を塩酸等の強酸でエツチングを行う。次に第8
図を参照して、主磁極膜が形成されていない複合
物(基板)14′と主磁極膜がが形成された複合
物14とを樹脂ましくはガラス等で接着する。
Next, the manufacturing process of this head will be explained in detail. In FIG. 3, one side (lower surface) of a ceramic 2 of a desired size is mirror polished. On the other hand, a winding groove 4 is formed on a ferrite 3 having a desired size, and one side (upper surface) is mirror polished. Next, as shown in Fig. 4, ceramic 2 and ferrite 3
are bonded together via an adhesive layer 9 made of glass, crystallized glass, resin, or the like. As the next step,
As shown in FIG. 5, the surface 10 on which the main pole film will be formed is mirror-polished. That is, the surface 10 is a composite (substrate) 1 of ceramic 2, ferrite 3, and adhesive layer 9.
This is the fourth aspect. Next, as shown in FIG. 6, a thin film of Co--Zr--Nb, which will become the main pole film 1, is formed into a desired thin film by sputtering, evaporation ion plating, or the like. Further, referring to FIG. 7, a mask pattern is formed using photoetching, and the main pole film 1 is etched with a strong acid such as hydrochloric acid so that the main pole film 1 has a desired shape and track size. Then the 8th
Referring to the figure, a composite (substrate) 14' on which no main pole film is formed and a composite 14 on which a main pole film is formed are bonded together with resin, glass, or the like.

次にセラミツク2,2′をR研磨もしくは球面
研磨を行い、第9図の破線11に沿つて切断する
ことにより、ヘツドコアチツプとする。尚、R研
磨もしくは球面研磨は、コアチツプの段階でな
く、両側をスライダーではさみ込んでから、すな
わちヘツド形状にしてからも可能である。
Next, the ceramics 2, 2' are R-polished or spherically polished and cut along the broken line 11 in FIG. 9 to form a head core chip. Incidentally, R polishing or spherical polishing can also be performed not at the core chip stage but after sandwiching both sides with sliders, that is, after forming the head shape.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の工程を経て垂直ヘツドを作成する。その
場合、第7図に示した主磁極膜1のパターニング
はフエライト、セラミツク、接着層の複合物14
に行なわれるということに起因して次の問題が発
生している。
A vertical head is created through the above steps. In that case, the patterning of the main pole film 1 shown in FIG.
The following problems arise due to the fact that

フエライトの腐食、すなわちフエライトの鏡
面部のエツチングが発生する。
Corrosion of the ferrite, that is, etching of the mirror surface of the ferrite occurs.

Co−Zr−Nb薄膜のエツチング速度がフエラ
イト上とセラミツク上とで違うため、フエライ
ト部分のエツチング速度に合わせたエツチング
を行うとセラミツク部分にCo−Zr−Nb薄膜の
エツチ残が発生し、またセラミツク部分のエツ
チング速度に合わせたエツチングを行うとフエ
ライト部分のCo−Zr−Nb薄膜がアンダーカツ
ト(サイドエツチング)され、主磁極膜1のパ
ターンが細くなつてしまうという問題点が発生
した。
Since the etching speed of the Co-Zr-Nb thin film is different between the ferrite and ceramic parts, if etching is performed to match the etching speed of the ferrite part, etching residue of the Co-Zr-Nb thin film will be generated on the ceramic part, and the ceramic part will be etched. When etching is performed in accordance with the etching speed of the parts, the Co--Zr--Nb thin film in the ferrite part is undercut (side etched), resulting in a problem that the pattern of the main pole film 1 becomes thinner.

このように、垂直磁気ヘツドでは主磁極膜
(Co−Zr−Nb薄膜)の特性が非常に重要になる。
とりわけ主磁極の形状やトラツク巾の寸法等がミ
クロンオーダーでの制御を必要とするのに対し、
フオトレジストのマスクパターンを上記ミクロン
オーダーで制御したとしても、次工程、すなわ
ち、主磁極膜(Co−Zr−Nb薄膜)のエツチング
において、複合物上の主磁極膜(Co−Zr−Nb薄
膜)のエツチング速度が部分的に違うことから、
パターンの細りあるいはエツチ残等が生じるた
め、所望の形状ならびに所望のパタン巾が得られ
ないという問題点がある。また補強磁極となるフ
エライト部分が塩酸等の強酸でエツチングされて
しまうため信頼性の上でも問題がある。
In this way, the characteristics of the main pole film (Co--Zr--Nb thin film) are very important in a perpendicular magnetic head.
In particular, the shape of the main pole and the dimensions of the track width require control on the micron order.
Even if the mask pattern of the photoresist is controlled to the above-mentioned micron order, in the next process, that is, etching the main pole film (Co-Zr-Nb thin film), the main pole film (Co-Zr-Nb thin film) on the composite material will be removed. Because the etching speed of
There is a problem that the desired shape and desired pattern width cannot be obtained because the pattern becomes thinner or etching remains. Furthermore, since the ferrite portion that becomes the reinforcing magnetic pole is etched by strong acids such as hydrochloric acid, there is also a problem in terms of reliability.

それ故に本発明の技術的課題は、主磁極膜を所
望の形状トラツク巾に形成できる磁気ヘツドの製
造方法を提供することにある。
Therefore, a technical object of the present invention is to provide a method for manufacturing a magnetic head in which the main pole film can be formed into a desired shape and track width.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、2以上の異なる材質からなる
基板とCo−Zr−Nbの薄膜よりなる主磁極膜とを
有する垂直磁気記録用ヘツドの製造方法におい
て、上記基板上に耐酸性にすぐれた非磁性薄膜を
形成し、その上にCo−Zr−Nbの薄膜を形成し、
酸性の薬品で所用に形状にエツチングして上記主
磁極膜を形成することを特徴とする垂直磁気ヘツ
ドの製造方法が得られる。
According to the present invention, in the method of manufacturing a perpendicular magnetic recording head having a substrate made of two or more different materials and a main pole film made of a thin film of Co-Zr-Nb, a Form a magnetic thin film, form a Co-Zr-Nb thin film on top of it,
There is obtained a method for manufacturing a perpendicular magnetic head, characterized in that the main pole film is formed by etching into a desired shape using an acidic chemical.

これによると、複合物基板でありながら、見か
け上単一基板上でエツチングが行なわれることに
なるため、エツチング速度に違いは見られなく、
またこの耐酸性にすぐれた非磁性層がエツチング
時に保護膜となり、補助磁極となるフエライトの
エツチングをおさえることになる。
According to this, even though it is a composite substrate, etching is apparently performed on a single substrate, so there is no difference in etching speed.
Furthermore, this non-magnetic layer with excellent acid resistance acts as a protective film during etching, and suppresses etching of the ferrite which becomes the auxiliary magnetic pole.

〔実施例〕〔Example〕

本発明による実施例を下記に示す。第5図に示
す複合物14を得るまでの工程は従来と同様であ
る。さらにこの複合物14の研磨した面10に、
第10図に示す如くSiO2等の耐酸性に優れた非
磁性材薄膜13をスパツタで形成し、その上に第
11図に示す如くCo−Zr−Nb薄膜よりなる主磁
極膜1を0.3μmでスパツタを用い形成する。さら
に第12図に示すようにフオトレジスト膜12を
全面に塗布する。その次にフオトレジストで、第
13図に示すように所望の形状(ここでは複合物
すべてにかかる棒状)、トラツク幅(ここでは0、
1mm)に形成する。その後、HCl:H2O2:H2O
=1:1:8の割合いで調合したエツチング液中
に浸漬して、Co−Zr−Nbの薄膜をエツチングす
る。このとき非磁性材薄膜13としてSiO2を用
いた場合にはSiO2の膜厚0.05μmではややSiO2
がエツチングで損われ、保護膜の効果がなく0.1μ
m以上で、効果的であり、第14図に示すよう
に、フエライトの腐食なしに複合物全面にわたり
均一な形状ならびに均一なトラツク幅を得ること
ができた。なお、SiO2膜が0.3μmを越えると、非
磁性膜厚が主磁極形成膜に比較して厚くなりすぎ
正確なトラツク形成はできるものの他の磁気特性
上望ましくない。よつて耐酸性膜は0.1〜0.3μm
が望ましい。
Examples according to the invention are shown below. The steps up to obtaining the composite 14 shown in FIG. 5 are the same as conventional ones. Furthermore, on the polished surface 10 of this composite 14,
As shown in FIG. 10, a thin film 13 of a non-magnetic material such as SiO 2 with excellent acid resistance is formed by sputtering, and then a main pole film 1 made of a thin Co-Zr-Nb film 13 with a thickness of 0.3 μm is formed thereon as shown in FIG. 11. Form using a sputter. Furthermore, as shown in FIG. 12, a photoresist film 12 is applied to the entire surface. Next, with photoresist, as shown in Fig. 13, the desired shape (here, a bar that covers the entire composite), track width (here, 0,
1mm). Then HCl: H2O2 : H2O
The Co--Zr--Nb thin film is etched by immersing it in an etching solution prepared at a ratio of 1:1:8. At this time, when SiO 2 is used as the non-magnetic material thin film 13, the SiO 2 film is slightly damaged by etching when the SiO 2 film thickness is 0.05 μm, and the protective film has no effect and the thickness is 0.1 μm.
m or more, it is effective, and as shown in FIG. 14, it was possible to obtain a uniform shape and uniform track width over the entire surface of the composite without corrosion of the ferrite. It should be noted that if the SiO 2 film exceeds 0.3 μm, the nonmagnetic film will be too thick compared to the main pole forming film, which is undesirable from the viewpoint of other magnetic properties, although accurate track formation is possible. Therefore, the acid-resistant film is 0.1 to 0.3 μm.
is desirable.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば主磁極膜
が所望の寸法にしかもフエライトをエツチングす
ることなく形成された垂直磁気ヘツドの製造方法
を提供できる。
As described above, according to the present invention, it is possible to provide a method for manufacturing a perpendicular magnetic head in which the main pole film is formed to a desired size without etching ferrite.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は垂直磁気ヘツドコアの斜視図、第2図
は第1図のA部拡大平面図、第3図〜第9図まで
は従来の垂直磁気ヘツドの製造工程を示す各々斜
視図、第10図〜第14図は本発明による垂直磁
気ヘツドの製造工程の要部を示す各々斜視図であ
る。 1:主磁極膜、2,2′:セラミツク、3,
3′:フエライト、4,4′:巻線溝部、12:フ
オトレジスト膜、13:非磁性材薄膜。
FIG. 1 is a perspective view of a perpendicular magnetic head core, FIG. 2 is an enlarged plan view of section A in FIG. 1 to 14 are perspective views showing essential parts of the manufacturing process of the perpendicular magnetic head according to the present invention. 1: Main pole film, 2, 2': Ceramic, 3,
3': Ferrite, 4, 4': Winding groove, 12: Photoresist film, 13: Nonmagnetic material thin film.

Claims (1)

【特許請求の範囲】[Claims] 1 2以上の異なる材質からなる基板とCo−Zr
−Nbの薄膜よりなる主磁極膜とを有する垂直磁
気記録用ヘツドの製造方法において、上記基板上
に耐酸性にすぐれた非磁性薄膜を形成し、その上
にCo−Zr−Nbの薄膜を形成し、酸性の薬品で所
用の形状にエツチングして上記主磁極膜を形成す
ることを特徴とする垂直磁気ヘツドの製造方法。
1 Substrate made of two or more different materials and Co-Zr
- A method for manufacturing a perpendicular magnetic recording head having a main pole film made of a thin Nb film, in which a nonmagnetic thin film with excellent acid resistance is formed on the substrate, and a Co-Zr-Nb thin film is formed on top of the non-magnetic thin film. A method for manufacturing a perpendicular magnetic head, characterized in that the main pole film is formed by etching it into a desired shape using an acidic chemical.
JP30285286A 1986-12-20 1986-12-20 Production of perpendicular magnetic head Granted JPS63157309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30285286A JPS63157309A (en) 1986-12-20 1986-12-20 Production of perpendicular magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30285286A JPS63157309A (en) 1986-12-20 1986-12-20 Production of perpendicular magnetic head

Publications (2)

Publication Number Publication Date
JPS63157309A JPS63157309A (en) 1988-06-30
JPH0377569B2 true JPH0377569B2 (en) 1991-12-11

Family

ID=17913872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30285286A Granted JPS63157309A (en) 1986-12-20 1986-12-20 Production of perpendicular magnetic head

Country Status (1)

Country Link
JP (1) JPS63157309A (en)

Also Published As

Publication number Publication date
JPS63157309A (en) 1988-06-30

Similar Documents

Publication Publication Date Title
JP2979509B2 (en) Method of manufacturing a flat magnetic head by forming a cavity in a non-magnetic wafer
US4636897A (en) Perpendicular magnetic recording and reproducing thin film head
US4670972A (en) Method for making magnetic heads
JPH0514322B2 (en)
JPH0377569B2 (en)
JP2572213B2 (en) Thin film magnetic head
JPH0453012A (en) Manufacture of thin film magnetic head
JPH10340426A (en) Thin film magnetic head and its production
JP2707758B2 (en) Method for manufacturing thin-film magnetic head
JP2596070B2 (en) Manufacturing method of magnetic head
JP2891817B2 (en) Magnetic head manufacturing method
JPS6124007A (en) Thin film magnetic head
JP2707760B2 (en) Method for manufacturing thin-film magnetic head
JPS60258715A (en) Production of thin film magnetic head
JPS6035316A (en) Thin film magnetic head
JP2625526B2 (en) Substrate for thin film magnetic head and method of manufacturing the same
JPS6111914A (en) Production of thin film magnetic head
JPS62170011A (en) Manufacture of thin film magnetic head
JP2977897B2 (en) Method of manufacturing thin film magnetic tape head
JPH07110917A (en) Thin film magnetic head and manufacture thereof
JPH03147507A (en) Perpendicular magnetic thin-film head and production thereof
JPS62107418A (en) Thin film magnetic head
JPH02247808A (en) Thin film magnetic head and its production
JPS5975421A (en) Thin film magnetic head
JPS60191407A (en) Magnetic head