JPH0377245B2 - - Google Patents

Info

Publication number
JPH0377245B2
JPH0377245B2 JP62167074A JP16707487A JPH0377245B2 JP H0377245 B2 JPH0377245 B2 JP H0377245B2 JP 62167074 A JP62167074 A JP 62167074A JP 16707487 A JP16707487 A JP 16707487A JP H0377245 B2 JPH0377245 B2 JP H0377245B2
Authority
JP
Japan
Prior art keywords
hot metal
dephosphorization
treatment
slag
pig iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62167074A
Other languages
Japanese (ja)
Other versions
JPS63241105A (en
Inventor
Koichi Nakamura
Masao Kurosaki
Satoru Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPS63241105A publication Critical patent/JPS63241105A/en
Publication of JPH0377245B2 publication Critical patent/JPH0377245B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、高塩基度スラグのマンガン分回収方
法に関するものである。 (従来の技術) 近年、極低硫鋼、極低燐鋼の開発に伴い各成分
の管理が益々厳しくなつてきている。通常の製鋼
方法では不純物の大半は転炉吹錬の工程で除去さ
れているが、この場合転炉の操業負担が大きくな
る。そこで転炉の操業負担を軽減するためと、各
成分管理の容易化を目的として溶銑の段階で各種
の不純物を予め除去することが行われ、種々の方
法が提案されている。 例えば、特開昭56−133413号公報には、溶銑を
脱珪処理した後脱燐処置し、これを転炉にて精錬
してその後脱硫するという技術が開示されてお
り、特開昭57−123906号及び特開昭57−123911号
公報には溶銑の脱硅、脱燐処理を行う際、脱燐処
理工程で生じるスラグを脱珪処理時の処理剤とし
て利用する技術が開示されている。 (発明が解決しようとする問題点) 前記特開昭56−133413号公報に開示された技術
は、転炉にて精錬を行う前に、溶銑の脱珪、脱燐
処理を別々に行うと共に精錬を行つた後脱硫処理
を行つて、それぞれの処理を分割して行うという
もので理想的な製鋼法ではあるが、転炉における
吹止Mnの向上という点には着目しておらず、又
特開昭57−123906号公報、特開昭57−123911号公
報の技術は、溶銑予備処理時における脱燐ズラグ
を脱珪スラグとして利用すると共に鉄分の回収を
行うという技術であり、吹止Mnの向上を計ると
いう技術ではない。 (問題点を解決するための手段) 本発明は、溶銑の予備処理を行う過程で発生す
る脱燐スラグから有効にMn分を回収する方法を
提供するものであつて、その要旨とするところは
下記のとおりである。 (1) マンガンの酸化物を含む脱燐処理用精錬剤を
使用して行う溶銑脱燐処理工程で発生する塩基
度3以上の高塩基度かつMnO4%以上の高
MnOスラグを受銑容器に収容してこの容器内
へ高炉からの溶銑を受銑すると共に溶銑の脱珪
処理を行うことを特徴とする高塩基度スラグの
マンガン分回収方法。 (2) 溶銑脱燐処理は1260℃以上の高温にて行い、
脱燐処理剤には副材として塩化カルシウムを5
%以下使用することを特徴とする前記第1項記
載の方法。 (3) 溶銑脱燐処理は専用の混銑車にて行うことを
特徴とする前記第1項又は第2項記載の方法。 (4) 溶銑の脱珪処理は鋳床樋内もしくは受銑容器
内にて行うことを特徴とする前記第1項〜第3
項の何れかに記載の方法。 以下、図面に基づいて本発明を説明する。 第1図は本発明を説明するブロツク線図であ
り、第2図は本発明の応用例を示すブロツク線図
である。 本発明は、表1に例示する如く鉄Mn鉱石を使
用して溶銑の脱燐処理を行い、発生する第6図に
示すような塩基度3以上の高塩基度かつMnO4%
以上の高MnOスラグを溶銑の脱珪処理に有効利
用するものであつて、第1図に示すように、前記
高塩基度スラグを受銑容器に収容し、この受銑容
器に高炉から出銑する溶銑を受銑して脱珪剤を添
加して溶銑の脱珪処理を行い、その後排滓を行
い、溶銑の脱燐処理を行う。この場合前述の如く
表1に例示した鉄マンガン鉱石を脱燐剤として用
いた脱燐処理を行い、望ましくはCaCl2を全処理
剤量の5%以下添加する。
(Industrial Application Field) The present invention relates to a method for recovering manganese from high basicity slag. (Prior Art) In recent years, with the development of ultra-low sulfur steel and ultra-low phosphorus steel, control of each component has become increasingly strict. In normal steelmaking methods, most of the impurities are removed during the converter blowing process, but in this case, the operational burden on the converter increases. Therefore, in order to reduce the operating burden of the converter and to facilitate the management of each component, various impurities are removed in advance at the hot metal stage, and various methods have been proposed. For example, JP-A No. 56-133413 discloses a technique in which hot metal is desiliconized and then dephosphorized, refined in a converter, and then desulfurized. No. 123906 and Japanese Unexamined Patent Publication No. 123911/1984 disclose a technique in which slag produced in the dephosphorization process is used as a treatment agent during the desiliconization process when hot metal is desiliconized and dephosphorized. (Problems to be Solved by the Invention) The technology disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 133413/1984 separately performs desiliconization and dephosphorization treatment of hot metal before refining in a converter, and also performs refining. This is an ideal steelmaking method in which desulfurization treatment is carried out after desulfurization treatment, and each treatment is performed separately. However, it does not focus on improving the blowout Mn in the converter, and it The technology disclosed in JP-A-57-123906 and JP-A-57-123911 is a technology that uses dephosphorization slag during pretreatment of hot metal as desiliconization slag and recovers iron content. It is not a technique for measuring improvement. (Means for Solving the Problems) The present invention provides a method for effectively recovering Mn from dephosphorization slag generated during the pretreatment process of hot metal, and its gist is as follows: It is as follows. (1) High basicity of 3 or more and high basicity of MnO4% or more generated in the hot metal dephosphorization process using a dephosphorization refining agent containing manganese oxide.
A method for recovering manganese from high basicity slag, characterized by storing MnO slag in a pig iron receiving container, receiving hot metal from a blast furnace into the container, and performing desiliconization treatment on the hot metal. (2) Hot metal dephosphorization treatment is performed at a high temperature of 1260℃ or higher.
Calcium chloride is added as an adjunct to the dephosphorization agent.
% or less of the method according to item 1 above. (3) The method according to item 1 or 2 above, wherein the hot metal dephosphorization treatment is carried out using a dedicated pig iron mixing car. (4) Items 1 to 3 above, characterized in that the desiliconization treatment of hot metal is carried out in the cast bed trough or in the pig iron receiving container.
The method described in any of the paragraphs. The present invention will be explained below based on the drawings. FIG. 1 is a block diagram explaining the present invention, and FIG. 2 is a block diagram showing an example of application of the present invention. In the present invention, as illustrated in Table 1, iron-Mn ore is used to dephosphorize hot metal.
The above-mentioned high MnO slag is effectively used for the desiliconization treatment of hot metal. The molten pig iron is received, a desiliconizing agent is added thereto, the molten metal is desiliconized, the slag is removed, and the molten iron is dephosphorized. In this case, as described above, dephosphorization treatment is performed using the ferromanganese ore shown in Table 1 as a dephosphorizing agent, and desirably 5% or less of CaCl 2 is added to the total amount of treatment agent.

【表】 脱燐処理に際しては処理温度を1260℃以上の高
温処理を行うことが脱燐効率を向上させる上で有
効である。 脱燐処理を行つた後は溶銑とスラグを分離し、
溶銑は転炉へ輸送して精錬を行い、スラグは受銑
容器内に残して前述の如く溶銑の脱珪処理にリサ
イクル使用する。 第2図は、溶銑の受銑以前に脱珪処理を行う例
を示した図で、この場合の脱珪処理は鋳床樋内で
行つてもよいし、予め脱珪剤を受銑容器内へ装入
しておいて受銑を行い脱珪処理を行うものであつ
てもよい。このような処理を行つても本発明の効
果には変りはない。 (作用) 本発明によれば、溶銑の脱燐処理工程において
Mnの酸化物を脱燐処理剤の一部とするために、
脱燐処理剤中に含まれるMn分が溶銑中に還元さ
れると同時にこの処理中にスラグへ移行したMn
分を次に出銑される溶銑の脱珪処理時に溶銑中へ
回収するものであるから、Mn酸化物中のMn分
を溶銑へ有効に回収することができる。 この場合、マンガンの酸化物を含む脱燐処理用
精錬剤とマンガンの酸化物を含まない脱燐処理用
精錬剤を使い分けて用いる場合には、マンガンの
酸化物を含む脱燐処理用精錬剤を吹込む混銑車
と、マンガンの酸化物を含まない脱燐処理用精錬
剤を吹込む混銑車とに混銑車を分別管理した方が
高塩基度スラグのマンガン分回収効率は向上す
る。その効果を示したのが第3図イである。 また、脱燐処理に際し処理剤としてCaCl2を5
%以下添加使用すること、及び処理温度を1260℃
以上の高温とすることが脱燐率を向上させるとい
う点で優れている。 本発明に係る脱燐処理用精錬剤は、以下の組成
のものが有効である。 鉄Mn鉱石:40〜70% CaO:24〜48% CaF2:6〜12% 第4図は、本発明に係る脱燐剤に加えるCaCl2
の効果を示す図で、表1に示した組成の鉄Mn鉱
石を主剤とし、副剤にCaCl2を全脱燐剤の5%及
び2%加えた場合の脱P率を示したものである。
同図に示すように、CaCl2を5%添加した場合
は、2%添加した場合よりも良好な値を示し、こ
の値は、スケールを主剤とした従来の脱燐剤を使
用した場合と同等以上の脱P率であつた。なお、
脱燐剤には表2に示すようにCaO,CaF2を配合
したものを用いた。 第5図は脱燐処理時の処理温度と脱P率との関
係を示す図で、前記同様の組成の鉄Mn鉱石を主
剤とし、CaCl2を5%配合した脱燐剤と、スケー
ルを主剤としてCaCl2を2%配合した従来法によ
る脱燐剤を使用した場合を示している。同図に示
すように、本発明に係る脱燐処理によれば従来法
と異なり、1260℃以上の高温処理を行うと脱P率
が向上する。しかしその効果は1350℃までで、そ
れを超えると脱P率は逆に低下する。
[Table] When performing dephosphorization treatment, it is effective to perform high-temperature treatment at a treatment temperature of 1260°C or higher in order to improve the dephosphorization efficiency. After dephosphorization, hot metal and slag are separated,
The hot metal is transported to a converter for refining, and the slag is left in the pig iron receiving container and recycled for desiliconization of the hot metal as described above. Figure 2 shows an example in which desiliconization treatment is performed before hot metal is received. In this case, desiliconization treatment may be performed in the cast bed trough, or a desiliconization agent may be applied in advance in the pig iron receiving vessel. Alternatively, the iron may be charged into a tank and then subjected to pig iron removal treatment. Even if such processing is performed, the effects of the present invention will not change. (Function) According to the present invention, in the hot metal dephosphorization process,
In order to use Mn oxide as part of the dephosphorization treatment agent,
At the same time as the Mn contained in the dephosphorization treatment agent is reduced to the hot metal, the Mn transferred to the slag during this treatment
Since the Mn content in the Mn oxide is recovered into the hot metal during the desiliconization treatment of the hot metal that is subsequently tapped, the Mn content in the Mn oxide can be effectively recovered into the hot metal. In this case, if a dephosphorization refining agent containing manganese oxide and a dephosphorization refining agent not containing manganese oxide are to be used separately, the dephosphorization refining agent containing manganese oxide should be used separately. The efficiency of recovering manganese from high basicity slag can be improved by managing the mixed pig iron car separately, which is the mixing car that blows in the pig iron and the mixing car that blows the dephosphorization refining agent that does not contain manganese oxides. Figure 3A shows this effect. In addition, CaCl 2 is used as a treatment agent during dephosphorization treatment.
% or less, and the processing temperature is 1260℃
Setting the temperature to a higher temperature is advantageous in that it improves the dephosphorization rate. The refining agent for dephosphorization according to the present invention has the following composition. Iron Mn ore: 40-70% CaO: 24-48% CaF 2 : 6-12% Figure 4 shows CaCl 2 added to the dephosphorizing agent according to the present invention.
This figure shows the dephosphorization rate when iron-Mn ore with the composition shown in Table 1 is used as the main agent, and CaCl 2 is added as an adjuvant at 5% and 2% of the total dephosphorizing agent. .
As shown in the figure, when CaCl 2 is added at 5%, the value is better than when it is added at 2%, and this value is equivalent to when using a conventional dephosphorizing agent based on scale. The P removal rate was above. In addition,
As shown in Table 2, a combination of CaO and CaF 2 was used as the dephosphorizing agent. Figure 5 is a diagram showing the relationship between treatment temperature and dephosphorization rate during dephosphorization treatment, and shows the relationship between the treatment temperature and dephosphorization rate during dephosphorization treatment. The case is shown in which a conventional dephosphorizing agent containing 2% CaCl 2 is used. As shown in the figure, according to the dephosphorization treatment according to the present invention, unlike the conventional method, the dephosphorization rate improves when high temperature treatment is performed at 1260° C. or higher. However, this effect is only effective up to 1350°C, and beyond that, the P removal rate decreases.

【表】 (実施例) 高炉から出銑された溶銑を本発明法によつて脱
珪処理したときの脱Si時のMnロス量を第7図に
示す。第8図には脱珪時のスラグ塩基度とMn分
配(log(MnO)/〔Mn〕)の関係を示すが、高
塩基度スラグの有効利用により脱珪時のスラグ塩
基度が高められスラグ中のMn分の還元に有効に
働いている。 また脱珪にひきつづき脱燐処理を行ない転炉に
て精錬を行なつた結果を第3図ロに示す。この時
に使用した脱燐剤は表2に示したものと同一であ
る。 なお、鉄Mn鉱石は表1に示した組成のものを
使用した。 溶銑温度は1260〜1300℃、本発明に係る脱燐剤
の使用量は35〜70Kg/tp、吹込速度は従来法と同
一の平均600Kg/minとした。 第3図ロに示すように、本発明によれば、溶銑
脱珪後のMn含有量が向上し、脱燐後及び転炉に
おける吹止後のMn含有量の大幅な向上となつ
た。 (発明の効果) 以上述べたように、本発明によれば、溶銑の脱
燐処理にMn鉱石を使用することによつて溶銑中
のMn含有量の高めることができると同時にこの
ときに得られる高塩基度スラグを次の出銑時の溶
銑の脱珪剤として利用するので、この際にも溶銑
中のMn含有量を向上でき、溶銑の脱燐処理時に
使用するMn鉱石中のMnを有効に回収すること
ができるという顕著な効果を奏する。
[Table] (Example) Figure 7 shows the amount of Mn loss during desiliconization when hot metal tapped from a blast furnace was desiliconized by the method of the present invention. Figure 8 shows the relationship between slag basicity during desiliconization and Mn distribution (log(MnO)/[Mn]).The slag basicity during desiliconization is increased by the effective use of high basicity slag. It works effectively to reduce the Mn content inside. In addition, following the desiliconization, a dephosphorization treatment was carried out and refining was carried out in a converter, and the results are shown in Fig. 3B. The dephosphorizing agent used at this time was the same as shown in Table 2. Note that the iron-Mn ore having the composition shown in Table 1 was used. The hot metal temperature was 1260 to 1300°C, the amount of the dephosphorizing agent used according to the present invention was 35 to 70 kg/tp, and the blowing rate was 600 kg/min on average, which is the same as the conventional method. As shown in FIG. 3B, according to the present invention, the Mn content after desiliconization of hot metal was improved, and the Mn content after dephosphorization and after blowing off in the converter was significantly improved. (Effects of the Invention) As described above, according to the present invention, by using Mn ore in the dephosphorization treatment of hot metal, the Mn content in the hot metal can be increased, and at the same time, the Mn content can be increased. Since the high basicity slag is used as a desiliconizing agent for hot metal during the next tapping process, the Mn content in the hot metal can be increased at this time as well, and the Mn in the Mn ore used during the dephosphorization process of hot metal can be effectively used. It has the remarkable effect of being able to be recovered.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するブロツク線図、第2
図は本発明の応用例を示すブロツク線図、第3図
イは脱燐処理時に混銑車を専用化した場合の効果
を例示した図、第3図ロは本発明の実施例を示す
図、第4図はCaO原単位と脱P率との関係を示す
図(条件:処理前〔Si〕0.12〜0.18%、処理前
〔P〕0.120〜0.150%、処理後温度1260〜1300
℃)、第5図は脱燐処理時の処理温度と脱P率と
の関係を示す図(条件:処理前〔Si〕0.12〜0.18
%、処理前〔P〕0.120〜0.150%、CaO原単位23
〜28Kg/tp)、第6図a,bは本発明に係る脱燐
処理後スラグのMnO%及びスラグ塩基度を示す
ヒストグラム、第7図はスラグMnOと溶銑Mn分
の関係を示す図、第8図は脱Si後スラグ塩基度と
(MnO)/〔Mn〕の関係を示す図である。
Figure 1 is a block diagram explaining the present invention, Figure 2 is a block diagram explaining the present invention.
The figure is a block diagram showing an application example of the present invention, Figure 3A is a diagram illustrating the effect of dedicating a pig iron mixer during dephosphorization processing, Figure 3B is a diagram showing an embodiment of the present invention, Figure 4 shows the relationship between CaO basic unit and P removal rate (conditions: before treatment [Si] 0.12-0.18%, before treatment [P] 0.120-0.150%, after treatment temperature 1260-1300
℃), Figure 5 is a diagram showing the relationship between the treatment temperature during dephosphorization treatment and the dephosphorization rate (conditions: [Si] 0.12 to 0.18 before treatment
%, before treatment [P] 0.120-0.150%, CaO basic unit 23
~28Kg/tp), Figures 6a and b are histograms showing the MnO% and slag basicity of the slag after dephosphorization according to the present invention, Figure 7 is a diagram showing the relationship between slag MnO and hot metal Mn content, Figure 8 is a diagram showing the relationship between slag basicity after Si removal and (MnO)/[Mn].

Claims (1)

【特許請求の範囲】 1 マンガンの酸化物を含む脱燐処理用精錬剤を
使用して行う溶銑脱燐処理工程で発生する塩基度
3以上の高塩基度かつMnO4%以上の高MnOス
ラグを受銑容器に収容してこの容器内へ高炉から
の溶銑を受銑すると共に溶銑の脱珪処理を行うこ
とを特徴とする高塩基度スラグのマンガン分回収
方法。 2 溶銑脱燐処理は1260℃以上の高温にて行い、
脱燐処理剤には副材として塩化カルシウムを5%
以下使用することを特徴とする特許請求の範囲第
1項記載の方法。 3 溶銑脱燐処理は専用の混銑車にて行うことを
特徴とする特許請求の範囲第1項又は第2項記載
の方法。 4 溶銑の脱珪処理は鋳床樋内もしくは受銑容器
内にて行うことを特徴とする特許請求の範囲第1
項〜第3項の何れか1項に記載の方法。
[Claims] 1. A method for receiving high MnO slag with a basicity of 3 or more and MnO of 4% or more generated in a hot metal dephosphorization process using a dephosphorization refining agent containing manganese oxides. A method for recovering manganese from high basicity slag, which comprises storing the manganese in a pig iron container, receiving hot metal from a blast furnace into the container, and performing desiliconization treatment on the hot metal. 2 Hot metal dephosphorization treatment is performed at a high temperature of 1260℃ or higher,
The dephosphorization agent contains 5% calcium chloride as an adjunct.
A method according to claim 1, characterized in that it is used below. 3. The method according to claim 1 or 2, wherein the hot metal dephosphorization treatment is carried out using a dedicated pig iron mixing car. 4. Claim 1, characterized in that the desiliconization treatment of hot metal is carried out in the cast bed trough or in the pig iron receiving container.
The method according to any one of Items 1 to 3.
JP62167074A 1986-11-04 1987-07-06 Method for recovering manganese content in slag having high basicity Granted JPS63241105A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26234686 1986-11-04
JP61-262346 1986-11-04

Publications (2)

Publication Number Publication Date
JPS63241105A JPS63241105A (en) 1988-10-06
JPH0377245B2 true JPH0377245B2 (en) 1991-12-10

Family

ID=17374468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62167074A Granted JPS63241105A (en) 1986-11-04 1987-07-06 Method for recovering manganese content in slag having high basicity

Country Status (1)

Country Link
JP (1) JPS63241105A (en)

Also Published As

Publication number Publication date
JPS63241105A (en) 1988-10-06

Similar Documents

Publication Publication Date Title
JP3293383B2 (en) How to use hot metal slag
JPH10237526A (en) Dephosphorization of hot metal
JP2653301B2 (en) Reusing method of low P converter slag
JP3470857B2 (en) Dephosphorization refining method of hot metal in converter type refining vessel
JP2001115205A (en) Method for dephosphorizing molten iron
JPH0377245B2 (en)
JP3924059B2 (en) Steelmaking method using multiple converters
JP3740009B2 (en) Hot metal dephosphorization method
JP2900011B2 (en) Converter refining method
JP3194212B2 (en) Converter steelmaking method
JPH09176717A (en) Method for steelmaking molten iron of blast furnace
JPS6362562B2 (en)
JPH07179920A (en) Production of molten steel
JPH111714A (en) Steelmaking method
JP3684953B2 (en) Pre-silicidation / phosphorization method of hot metal
JPH11100608A (en) Method for desiliconizing and desulfurizing molten iron
JPH10237525A (en) Dephosphorization of molten iron and steelmaking
JP2000256719A (en) Steelmaking method
JP3486890B2 (en) Converter steelmaking method using dephosphorized hot metal
JPS60218408A (en) Pretreatment of molten iron
JPH08260015A (en) Pretreatment of molten iron
JP2004307941A (en) Method for dephosphorizing molten iron using converter-type vessel
JPH0353014A (en) Smelting method for extremely low-sulfur steel
JP3924058B2 (en) Converter steelmaking method using dephosphorized hot metal
JP2002069518A (en) Method for dephosphorizing molten iron developing little slag quantity