JPH0376966B2 - - Google Patents

Info

Publication number
JPH0376966B2
JPH0376966B2 JP57229128A JP22912882A JPH0376966B2 JP H0376966 B2 JPH0376966 B2 JP H0376966B2 JP 57229128 A JP57229128 A JP 57229128A JP 22912882 A JP22912882 A JP 22912882A JP H0376966 B2 JPH0376966 B2 JP H0376966B2
Authority
JP
Japan
Prior art keywords
membrane
liquid
filtration
water
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57229128A
Other languages
Japanese (ja)
Other versions
JPS59127611A (en
Inventor
Tsukasa Ochiumi
Taro Maiwa
Keisuke Nakagome
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP22912882A priority Critical patent/JPS59127611A/en
Publication of JPS59127611A publication Critical patent/JPS59127611A/en
Publication of JPH0376966B2 publication Critical patent/JPH0376966B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は濾過方法に関し、詳しくは、例えば超
純水のユースポイントでの膜処理におけるよう
に、微量の微粒子を不純物として含有する液体か
ら、その微粒子を高能率にて除去する濾過方法に
関する。 例えば、電子工業の分野において高集積度のデ
バイスを製造する場合、1μ以下の微粒子の存在
が製品の歩留りや品質性能に大きい影響を及ぼす
ので、超純水と呼ばれる極めて高度に精製された
水が用いられている。このような超純水は、例え
ば半導体工場においては、セントラルシステムと
いわれる装置系にて脱イオン装置や逆浸透装置に
より製造され、配管系により最終の使用箇所、所
謂ユースポイントに供給されている。 しかし、セントラルシステムで製造された段階
では、所定の純度を有する超純水も、配管系を経
てユースポイントに至る配管、バルブ、貯蔵タン
ク等からの汚染により純度が低下し、場合によつ
ては、微生物が発生することもある。従つて、近
時、セントラルシステム以後に生じる汚染を除去
するため、ユースポイントにおいてミクロフイル
ターと呼ばれる0.2μ又はそれ以上の径の微孔を有
する微孔膜により濾過した後、使用に供してい
る。 このユースポイントにおけるミクロフイルター
を用いる濾過方法は、本来、ミクロフイルターに
供給される水が微量の微粒子を含有するのみであ
るから、配管、バルブ、膜装置等の容積部分を除
して、ミクロフイルターに供給される水の全量を
透過させる所謂全濾過方法によつている。しか
し、現実には、この方法によれば、集積回路の集
積度が高まるにつれて、得られる純水の品質が十
分とはいえず、しかも、微粒子を微量しか含有し
ないとはいえ、全量濾過するので、膜面に微粒子
が付着堆積、短期間に透水量が低下して能率に劣
る問題がある。 本発明者らは、上記した問題を解決するために
鋭意研究した結果、膜に供給される液体が微量の
微粒子を含有する場合であつても、後述する目詰
り係数によつて液体中の微粒子含量を所定の範囲
に規制し、この液体を所定の液回収率の範囲で限
外濾過処理することにより、長期間にわたつて透
過液量の低下なく、且つ、高い回収率で透過液を
得ることができることを見出して、本発明に至つ
たものである。 本発明は、微量の微粒子を含有する液体を膜を
用いて加圧濾過する方法において、目詰り係数を
2以下とした液体を液回収率が97〜99.9%の範囲
で限外濾過膜にて加圧濾過することを特徴とす
る。 本発明において、目詰り係数(Silt Density
Index、以下、SDIという。)とは、例えば、
Desalinaion、32、137−148(1980)に記載されて
いるように、孔径0.45μmの微孔を有するミクロ
フイルター(Millipore HAWPO 4700 Type
HA47mm white)に一定圧力下(30psi、2.1Kg/
cm2)で液体を供給して膜濾過し、この際、最初の
500mlを濾過するに要する時間T0を測定し、次
に、濾過開始よりn分後、例えば、15分後に再び
500mlを濾過するに要する時間Tnを測定し、これ
らより次式により算出される液質を示す一つの指
標である。 SDI=1−T0/Tn/n×100 本発明によれば、このSDIを2以下とした液体
を限外濾過膜により濾過する。SDIが2よりも大
きいときは、膜に供給されるる液体中に微粒子数
が106個/ml以上含まれるため、濾過においてこ
の微粒子が膜面に堆積しやすく、速やかに透過液
量が低下するので好ましくない。液回収率は97〜
99.9%である。97%よりも小さい回収率では液利
用が経済的に劣る。一方、全量回収とすると、微
量とはいえ、液中に含まれる微粒子が膜面に次第
に堆積し、経時的な透過液量の低下を招くので好
ましくない。しかしながら、本発明に従つて液回
収率を99.9%以下に保つことにより、透過液量は
経時的に安定しており、低下しない。即ち、本発
明によれば、処理する液体のSDIを規定すると共
に、濾過における回収率をも規定することによつ
て、不純物が濃縮された液体を僅かではあるが、
系外に取り出すことによつて、膜面への微粒子の
堆積を効果的に防止することができるのである。
尚、限外濾過膜装置には、装置内容積、配管やバ
ルブ、ポンプ等の容積部分が含まれるが、本発明
における液回収率は、装置系に処理すべき液体が
満たされている状態での供給液量に対する透過液
量を意味する。 本発明においては、用いる膜は、微粒子の除去
を目的とするから、逆浸透膜のような高精度のも
のは不必要であり、運転費用や微粒子の除去性能
から限外濾過膜を用いる。膜の分画分子量は特に
制限されるものではないが、通常、6000〜300000
が適当である。また、膜の形状は特に制限される
ものではなく、例えば、管状膜、スパイラル膜、
中空系膜等が用いることができるが、供給する液
側の容積が小さい中空糸膜が好適である。更に、
膜に液体を供給する際の圧力は、透水量を大きく
するために、0.4Kg/cm2以上であつて、高い程好ま
しいが、一方、経済的及び膜モジユールの耐圧性
の点から、通常、15Kg/cm2以下が望ましい。 以上のように、本発明によれば、SDIで規定さ
れる所定の範囲の微粒子含量の液体を特定の液回
収率範囲で限外濾過処理することにより、微粒子
含量の極めて少ない液体を膜透過液として得るこ
とができ、且つ、その際、その膜透過量が経時的
に安定していて、長期間にわたつて低下しない。
従つて、本発明の方法は、何ら限定されるもので
はないが、超純水のユースポイントにおける膜濾
過方法として好適である。 以下に実施例を挙げて本発明を説明する。 実施例 1〜3 原水を濾過装置、逆浸透装置、混床式イオン交
換装置、紫外線殺菌装置及びカートリツジ型混練
式ポリツシヤからなるセントラルシステムで処理
し、SDIが0.5±0.2、0.8±0.2及び1.7±0.2の原水
を得、また、比較例として、2.4±0.3及び3.0±
0.3の原水を得た。図面に示すように、この原水
1をポンプ2にて分画分子量13000のポリスルホ
ン製限外濾過膜モジユール(膜面積5.0m2)3に
供給圧力2.0Kgf/cm2で供給し、濃縮液側の出口流
路4を絞りこんで、99%の回収率で濾過し、膜透
過液5を得た。このような処理における透過水中
の微粒子数及び透水量の経時変化を第1表に示
す。 実施例 4〜6 上記実施例と同様に処理して、SDIが0.8±0.2
の原水を得、これを分画分子量50000のポリアミ
ド製中空膜(内径0.6mm、膜面積1.0m2)モ
The present invention relates to a filtration method, and more particularly, to a filtration method for removing fine particles with high efficiency from a liquid containing minute amounts of fine particles as impurities, such as in membrane treatment at the point of use of ultrapure water. For example, when manufacturing highly integrated devices in the electronics industry, the presence of particles of 1μ or less has a significant impact on product yield and quality performance, so extremely highly purified water called ultrapure water is used. It is used. For example, in a semiconductor factory, such ultrapure water is produced using a deionization device or a reverse osmosis device in a device system called a central system, and is supplied to the final point of use, a so-called point of use, through a piping system. However, even though ultrapure water has a specified purity when it is produced in a central system, its purity may decrease due to contamination from piping, valves, storage tanks, etc. that reach the point of use through the piping system. , microorganisms may occur. Therefore, in recent years, in order to remove contamination that occurs after the central system, products are used after being filtered at the point of use through a microporous membrane called a microfilter, which has micropores with a diameter of 0.2μ or more. In the filtration method using a microfilter at this point of use, since the water supplied to the microfilter originally contains only a small amount of fine particles, the volume of the pipes, valves, membrane devices, etc. is removed, and the water supplied to the microfilter is This is based on a so-called total filtration method in which the entire amount of water supplied to the filter is passed through. However, in reality, according to this method, as the degree of integration of integrated circuits increases, the quality of the pure water obtained is not sufficient, and even though it contains only a small amount of fine particles, all of the water must be filtered. There is a problem in that fine particles adhere to and accumulate on the membrane surface, resulting in a decrease in water permeability in a short period of time, resulting in poor efficiency. As a result of intensive research to solve the above-mentioned problems, the present inventors have found that even when the liquid supplied to the membrane contains a minute amount of fine particles, the clogging coefficient described below By regulating the content within a predetermined range and subjecting this liquid to ultrafiltration within a predetermined liquid recovery rate range, a permeated liquid can be obtained over a long period of time without a decrease in permeated liquid volume and at a high recovery rate. The present invention was developed based on the discovery that this can be done. The present invention is a method for pressure filtration of a liquid containing a minute amount of fine particles using a membrane, in which a liquid with a clogging coefficient of 2 or less is filtered through an ultrafiltration membrane at a liquid recovery rate of 97 to 99.9%. It is characterized by pressure filtration. In the present invention, the clogging coefficient (Silt Density
Index, hereinafter referred to as SDI. ) means, for example,
Desalinaion, 32, 137-148 (1980), a microfilter (Millipore HAWPO 4700 Type
HA47mm white) under constant pressure (30psi, 2.1Kg/
cm 2 ) for membrane filtration.
Measure the time T 0 required to filter 500 ml, then repeat again n minutes after the start of filtration, e.g. 15 minutes.
The time Tn required to filter 500 ml is measured and is an indicator of liquid quality calculated from the following formula. SDI=1-T 0 /Tn/n×100 According to the present invention, this liquid having an SDI of 2 or less is filtered using an ultrafiltration membrane. When the SDI is greater than 2, the liquid supplied to the membrane contains more than 106 particles/ml, so these particles tend to accumulate on the membrane surface during filtration, and the amount of permeated liquid quickly decreases. So I don't like it. Liquid recovery rate is 97~
It is 99.9%. At recovery rates less than 97%, liquid utilization becomes less economical. On the other hand, if the entire amount is recovered, fine particles contained in the liquid will gradually accumulate on the membrane surface, although the amount is small, and this will cause a decrease in the amount of permeated liquid over time, which is not preferable. However, by keeping the liquid recovery rate below 99.9% according to the present invention, the amount of permeated liquid is stable over time and does not decrease. That is, according to the present invention, by specifying the SDI of the liquid to be treated and also specifying the recovery rate in filtration, the liquid with concentrated impurities can be removed, albeit slightly.
By taking the particles out of the system, it is possible to effectively prevent fine particles from accumulating on the membrane surface.
Note that the ultrafiltration membrane device includes the internal volume of the device, the volume of piping, valves, pumps, etc., but the liquid recovery rate in the present invention is based on the condition that the device system is filled with the liquid to be processed. means the amount of permeate relative to the amount of feed liquid. In the present invention, since the purpose of the membrane used is to remove particulates, a high-precision membrane such as a reverse osmosis membrane is unnecessary, and an ultrafiltration membrane is used in view of operating costs and performance in removing particulates. The molecular weight cutoff of the membrane is not particularly limited, but is usually between 6,000 and 300,000.
is appropriate. Furthermore, the shape of the membrane is not particularly limited; for example, a tubular membrane, a spiral membrane,
Although a hollow membrane or the like can be used, a hollow fiber membrane having a small volume on the liquid side to be supplied is preferable. Furthermore,
The pressure when supplying the liquid to the membrane is 0.4 Kg/cm 2 or more, and the higher the pressure, the better, in order to increase the amount of water permeation. On the other hand, from the viewpoint of economics and pressure resistance of the membrane module, 15Kg/cm 2 or less is desirable. As described above, according to the present invention, by ultrafiltrating a liquid with a particulate content within a predetermined range defined by SDI within a specific liquid recovery rate range, a liquid with an extremely low particulate content can be converted into a membrane-permeated liquid. At the same time, the amount of permeation through the membrane is stable over time and does not decrease over a long period of time.
Therefore, the method of the present invention is suitable as a membrane filtration method at the point of use of ultrapure water, although it is not limited in any way. The present invention will be explained below with reference to Examples. Examples 1 to 3 Raw water was treated with a central system consisting of a filtration device, a reverse osmosis device, a mixed-bed ion exchange device, an ultraviolet sterilizer, and a cartridge-type kneading polisher, and the SDI was 0.5±0.2, 0.8±0.2, and 1.7±. 0.2 raw water was obtained, and as comparative examples, 2.4±0.3 and 3.0±
0.3 raw water was obtained. As shown in the drawing, this raw water 1 is supplied by a pump 2 to a polysulfone ultrafiltration membrane module (membrane area 5.0 m 2 ) 3 with a molecular weight cutoff of 13000 at a supply pressure of 2.0 Kgf/cm 2 , and the concentrated liquid side is The outlet channel 4 was narrowed down and filtered with a recovery rate of 99% to obtain a membrane permeate 5. Table 1 shows changes over time in the number of fine particles in the permeated water and the amount of permeated water in such a treatment. Examples 4 to 6 Processed in the same manner as in the above examples, SDI was 0.8±0.2
raw water was obtained, and this was passed through a hollow polyamide membrane (inner diameter 0.6 mm, membrane area 1.0 m 2 ) with a molecular weight cutoff of 50,000.

【表】【table】

【表】 ジユールに1.5Kgf/cm2で供給し、上記実施例と同
様にして濃縮液側の出口流路を絞りこんで、98%
の回収率で連続濾過した。このような処理におけ
る所定時間後の透過水中の微粒子数及び透水量の
経時変化を第2表に示す。 同様に、回収率が99.3%及び99.8%の場合につ
いても、第2表に結果を示す。 また、比較のために、実施例4と同様に処理し
て得た原水を回収率が90%、95%及び99.96%で
処理した場合の結果を第2表に示す。
[Table] Supply 1.5Kgf/cm 2 to Juul, narrow down the outlet flow path on the concentrate side in the same way as in the above example, and reduce to 98%.
Continuous filtration was performed with a recovery rate of . Table 2 shows the number of fine particles in the permeated water after a predetermined period of time in such a treatment and the changes over time in the amount of water permeated. Similarly, Table 2 shows the results for cases where the recovery rate is 99.3% and 99.8%. For comparison, Table 2 shows the results when the raw water obtained by the same treatment as in Example 4 was treated at recovery rates of 90%, 95%, and 99.96%.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の方法において用いた原水膜処理
のフローシートを示す。 1…原水、2…ポンプ、3…限外濾過膜モジユ
ール、4…濃縮液、5…膜透過液。
The drawing shows a flow sheet for raw water membrane treatment used in the method of the present invention. 1... Raw water, 2... Pump, 3... Ultrafiltration membrane module, 4... Concentrated liquid, 5... Membrane permeate liquid.

Claims (1)

【特許請求の範囲】 1 微量の微粒子を含有する液体を膜を用いて加
圧濾過する方法において、目詰り係数を2以下と
した液体を液回収率が97〜99.9%の範囲で限外濾
過膜にて加圧濾過することを特徴とする濾過方
法。 2 限外濾過膜が中空糸状膜であることを特徴と
する特許請求の範囲第1項記載の濾過方法。
[Scope of Claims] 1. A method of pressure filtration of a liquid containing a small amount of fine particles using a membrane, in which a liquid with a clogging coefficient of 2 or less is ultrafiltered at a liquid recovery rate of 97 to 99.9%. A filtration method characterized by pressure filtration using a membrane. 2. The filtration method according to claim 1, wherein the ultrafiltration membrane is a hollow fiber membrane.
JP22912882A 1982-12-31 1982-12-31 Filtering method Granted JPS59127611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22912882A JPS59127611A (en) 1982-12-31 1982-12-31 Filtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22912882A JPS59127611A (en) 1982-12-31 1982-12-31 Filtering method

Publications (2)

Publication Number Publication Date
JPS59127611A JPS59127611A (en) 1984-07-23
JPH0376966B2 true JPH0376966B2 (en) 1991-12-09

Family

ID=16887185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22912882A Granted JPS59127611A (en) 1982-12-31 1982-12-31 Filtering method

Country Status (1)

Country Link
JP (1) JPS59127611A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320085A (en) * 1986-07-10 1988-01-27 Toray Ind Inc Refined water producing apparatus
JP6634918B2 (en) 2016-03-25 2020-01-22 栗田工業株式会社 Ultrapure water production system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750642A (en) * 1980-09-12 1982-03-25 Kurita Water Ind Ltd Method and device for monitoring of ultrapure water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750642A (en) * 1980-09-12 1982-03-25 Kurita Water Ind Ltd Method and device for monitoring of ultrapure water

Also Published As

Publication number Publication date
JPS59127611A (en) 1984-07-23

Similar Documents

Publication Publication Date Title
JP3187629B2 (en) Reverse osmosis membrane treatment method
US6338803B1 (en) Process for treating waste water containing hydrofluoric acid and mixed acid etchant waste
JP2733573B2 (en) Ultrapure water production method and apparatus
US20020038782A1 (en) Plate-and -frame type membrane module system with inserted durable balls using vortex flow
JP3832602B2 (en) Water purifier and water purifier
JP2003080246A (en) Apparatus and method for treating water
JPH0376966B2 (en)
KR101481079B1 (en) Apparatus for purifying mixed water of raw water and concentrated water
CN107686184A (en) A kind of method for purifying water and system
JP3838689B2 (en) Water treatment system
JPS6261691A (en) Filtering method by filter membrane
JP2647104B2 (en) Method for treating wastewater discharged from semiconductor wafer manufacturing process
JP2950621B2 (en) Ultrapure water production method
JPS58163406A (en) Filtration of liquid
JP2004108864A (en) Sdi measuring method and its device and fresh water generating method using reverse osmosis membrane
JPH06304559A (en) Method for treating water and device therefor
JP2006218341A (en) Method and apparatus for treating water
JP2922059B2 (en) Operating method of hollow fiber membrane filter
JPS6359392A (en) Drinking water production system
JP3115750B2 (en) Pure water production method
JP3421905B2 (en) Wastewater treatment equipment
JP3023138B2 (en) Reverse osmosis desalination apparatus and reverse osmosis desalination method
JPS63294907A (en) Hollow yarn type ultrafilter membrane module
JPS6211507A (en) Treatment of suspended matters in water and treating device therefor
JPH0366035B2 (en)