JPH0376822A - Production of acrylic fiber provided with flame resistance - Google Patents

Production of acrylic fiber provided with flame resistance

Info

Publication number
JPH0376822A
JPH0376822A JP6148890A JP6148890A JPH0376822A JP H0376822 A JPH0376822 A JP H0376822A JP 6148890 A JP6148890 A JP 6148890A JP 6148890 A JP6148890 A JP 6148890A JP H0376822 A JPH0376822 A JP H0376822A
Authority
JP
Japan
Prior art keywords
flame
resistant
flame resistance
fiber
acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6148890A
Other languages
Japanese (ja)
Inventor
Yoji Matsuhisa
松久 要治
Masayoshi Washiyama
正芳 鷲山
Toru Hiramatsu
徹 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP6148890A priority Critical patent/JPH0376822A/en
Publication of JPH0376822A publication Critical patent/JPH0376822A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain at low cost in high productivity a high-strength. heat- resistant fiber with excellent mechanical properties by providing an acrylic precursor with flame resistance under a pressurized state. CONSTITUTION:The objective fiber can be obtained by providing an acrylic precursor with flame resistance at 200-300 deg.C under a pressurized state (pref. at a pressure of 0.5-50kg/cm<2>-G).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアクリル系耐炎化繊維の製造方法、特に生産性
が高く、かつ機械的特性の高いアクリル系耐炎化繊維の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing flame-resistant acrylic fibers, and particularly to a method for producing flame-resistant acrylic fibers with high productivity and high mechanical properties.

[従来の技術] 近年耐炎化繊維の用途開発が進むとともに、耐炎化繊維
に対して高性能化の要求とともに低価格化の要求が強く
なっている。
[Prior Art] In recent years, as the development of applications for flame-resistant fibers has progressed, demands for higher performance and lower prices for flame-resistant fibers have become stronger.

しかし、従来耐炎化繊維を高性能化するための技術は、
原液ろ過のためのろ材あるいは製糸油剤の高品質化ある
いは低速処理化の方向となって、コストアップの原因と
なり、高性能化と低コスト化の双方を同時に満たす技術
は非常に困難であった。
However, the conventional technology for improving the performance of flame-resistant fibers is
The trend has been to improve the quality of filter media and spinning oils for filtration of raw solutions, or to reduce processing speed, which has led to increased costs, and it has been extremely difficult to find a technology that simultaneously satisfies both high performance and low cost.

かかる従来技術に対して、本発明者らは高性能化ととも
に生産性の高い耐炎化繊維の製造方法を鋭意検討し、ア
クリル系プリカーサ−を加圧下で耐炎化することによっ
て生産性が顕著に向上すると同時に、機械的特性が大幅
に向上することを見い出し、本発明に至った。
In response to such conventional technology, the present inventors have diligently investigated a method for producing flame-resistant fibers with high performance and high productivity, and have found that productivity is significantly improved by making acrylic precursors flame-resistant under pressure. At the same time, they discovered that the mechanical properties were significantly improved, leading to the present invention.

[発明が解決しようとする課題] 本発明の課題は、上記従来技術では達成し得なかった生
産性が高く、かつ機械的特性の高いアクリル系耐炎化繊
維の製造方法を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a method for producing flame-resistant acrylic fibers with high productivity and high mechanical properties, which could not be achieved with the above-mentioned conventional techniques.

[課題を解決するための手段] 本発明の上記課題は、アクリル系プリカーサ−を加圧下
で耐炎化することを特徴とするアクリル系耐炎化繊維の
製造方法によって解決することができる。
[Means for Solving the Problems] The above-mentioned problems of the present invention can be solved by a method for producing a flame-resistant acrylic fiber, which is characterized in that an acrylic precursor is made flame-resistant under pressure.

すなわち、本発明方法において、原料繊維であるアクリ
ル繊維(プリカーサ−)を構成するアクリル系重合体と
しては、好ましくは85モル%以上のアクリロニトリル
と15モル%以下の共重合可能なビニル系モノマとの共
重合体を挙げることができる。
That is, in the method of the present invention, the acrylic polymer constituting the acrylic fiber (precursor) that is the raw material fiber preferably contains 85 mol% or more of acrylonitrile and 15 mol% or less of a copolymerizable vinyl monomer. Copolymers can be mentioned.

この場合のビニル系モノマには、たとえばアクリル酸、
メタクリル酸、イタコン酸およびそれらのアルカリ金属
塩、アンモニウム塩および低級アルキルエステル類、ア
クリルアミドおよびその誘導体、アリルスルホン酸、メ
タリルスルホン酸およびそれらの塩類またはアルキルエ
ステル類などがある。
In this case, vinyl monomers include, for example, acrylic acid,
Examples include methacrylic acid, itaconic acid and their alkali metal salts, ammonium salts and lower alkyl esters, acrylamide and derivatives thereof, allylsulfonic acid, methallylsulfonic acid and their salts or alkyl esters.

重合法については、従来公知の溶液重合、懸濁重合、乳
化重合などを適用することができる。また、紡糸方法に
は、湿式紡糸法、乾湿式紡糸法などを採用できるが、機
械的特性の高い耐炎化繊維を得るためには、緻密性の高
いプリカーサ−を選ぶことが望ましく、就中緻密性の高
いプリカーサ−が得られる乾湿式紡糸法が好ましい。
Regarding the polymerization method, conventionally known solution polymerization, suspension polymerization, emulsion polymerization, etc. can be applied. In addition, wet spinning method, dry-wet spinning method, etc. can be adopted as the spinning method, but in order to obtain flame-resistant fibers with high mechanical properties, it is desirable to select a highly dense precursor. A dry-wet spinning method is preferred since it provides a precursor with high properties.

緻密性としては、ヨウ素吸着法にょるΔLの値が好まし
くは40以下、より好ましくは20以下。
Regarding compactness, the value of ΔL determined by iodine adsorption method is preferably 40 or less, more preferably 20 or less.

さらに好ましくは↓0以下の緻密なプリカーサがよい。More preferably, it is a dense precursor of ↓0 or less.

ヨード吸着によるΔLの値が40以下の緻密なプリカー
サ−を得るための手段としては、紡糸原液ポリマーの高
濃度化、紡糸原液および凝固浴液の低温化および凝固時
の低張力化により凝固糸の膨潤度を低く抑え、かつ浴延
伸時の延伸段数、延伸倍率および延伸温度の最適化によ
り浴延伸糸の膨潤度を低く抑えることが有効である。
As a means to obtain a dense precursor with a ΔL value of 40 or less due to iodine adsorption, the coagulated yarn is increased by increasing the concentration of the spinning dope polymer, lowering the temperature of the spinning dope and coagulation bath solution, and lowering the tension during coagulation. It is effective to keep the degree of swelling of the bath-drawn yarn low by keeping the degree of swelling low and optimizing the number of stretching stages, the stretching ratio, and the stretching temperature during bath-drawing.

プリカーサ−の単繊維デニールとしては好ましくは2.
0d以下、より好ましくはり、Od以下の細デニールが
物性上有利である。
The single fiber denier of the precursor is preferably 2.
A fine denier of 0d or less, more preferably Od or less, is advantageous in terms of physical properties.

かかるプリカーサ−を、加圧された200〜300℃の
雰囲気中で加熱し、耐炎化処理を行なう。
Such a precursor is heated in a pressurized atmosphere at 200 to 300°C to perform flameproofing treatment.

処理方式としては、バッチ処理および連続処理のいずれ
でも良いが、生産性の面から連続処理が好ましい。
The processing method may be either batch processing or continuous processing, but continuous processing is preferred from the viewpoint of productivity.

加圧する圧力としては、好ましくは0.05〜100 
kg/ad−G、より好ましくは0.5〜50kg/a
t−G程度である。圧力が高いほど耐炎化時間を短縮す
る効果が大きいが、加圧空気の予備加熱あるいはシール
が難しいなどの問題がある。特に100 kg/at−
Gを越えると連続処理のためのシールが難しいといった
問題がある。
The pressure to be applied is preferably 0.05 to 100
kg/ad-G, more preferably 0.5-50 kg/a
It is about t-G. The higher the pressure, the greater the effect of shortening the flame resistance time, but there are problems such as difficulty in preheating the pressurized air or in sealing. Especially 100 kg/at-
If it exceeds G, there is a problem that it is difficult to seal for continuous processing.

このような加圧下での耐炎化により常圧での耐炎化に比
べて耐炎化時間を1/2から1/20程度まで短縮する
ことが可能になる。
By imparting flame resistance under such pressure, it is possible to shorten the flame resistance time to approximately 1/2 to 1/20 compared to flame resistance under normal pressure.

また、耐炎化の進行とともに圧力を変化させることもで
き、徐々に加圧度を上げたり、常圧あるいは減圧での耐
炎化と組み合わせることもできる。
Further, the pressure can be changed as the flame resistance progresses, and the degree of pressurization can be gradually increased, or it can be combined with flame resistance at normal pressure or reduced pressure.

加熱雰囲気としては、空気、酸素、二酸化窒素。The heating atmosphere is air, oxygen, or nitrogen dioxide.

塩化水素など従来公知の酸化性雰囲気を採用できるが、
前半あるいは後半といった一部を窒素などの不活性雰囲
気で行なうこともできる。
Although conventionally known oxidizing atmospheres such as hydrogen chloride can be used,
Part of the first half or the second half can also be carried out in an inert atmosphere such as nitrogen.

また、加熱時に定長に対して5%以内の収縮あるいは0
〜50%程度の延伸処理を行なうことが物性向上のため
に好ましい。
Also, when heated, shrinkage within 5% of the fixed length or 0
It is preferable to carry out a stretching treatment of about 50% to improve physical properties.

耐炎化の進行度としては、密度が好ましくは1.25g
/an3以上、より好ましくは1.30g / an 
3以上、さらに好ましくは1.35g/a[13以上に
なるまで加熱するのがよい。なお、耐炎化の前半あるい
は後半といった耐炎化の一部を常圧下で行ない、加圧下
での耐炎化と組み合わせることもできる。
As for the progress of flame resistance, the density is preferably 1.25g.
/an3 or more, more preferably 1.30g/an
3 or more, more preferably 1.35 g/a [13 or more. It is also possible to carry out part of the flame resistance, such as the first half or the second half, under normal pressure, and to combine it with flame resistance under pressure.

また、耐炎化炉方式としては、オーブン耐炎化炉、ホッ
トローラー接触耐炎化炉あるいは流動床耐炎化炉などを
適用することができ、プリカーサ−に応じて選択するこ
とが好ましい。
Further, as the flameproofing furnace method, an oven flameproofing furnace, a hot roller contact flameproofing furnace, a fluidized bed flameproofing furnace, etc. can be applied, and it is preferable to select one according to the precursor.

得られた耐炎化繊維はそのまま耐熱性繊維として、防火
服、断熱材などに使用することができる。
The obtained flame-resistant fibers can be used as they are as heat-resistant fibers for fireproof clothing, heat insulating materials, and the like.

またこの耐炎化繊維をさらに不活性雰囲気中で炭化する
ことによって、機械的特性に優れた炭素繊維が得られる
Moreover, by further carbonizing this flame-resistant fiber in an inert atmosphere, carbon fiber with excellent mechanical properties can be obtained.

炭化温度については1000℃以上、好ましくは120
0〜1700℃に設定することが引張強度を高める上で
有効である。その際の昇温速度としては、350〜45
0℃の温度領域での昇温速度を300℃/分以下、好ま
しくは200℃/分以下とすることが物性上好ましい。
The carbonization temperature is 1000°C or higher, preferably 120°C.
Setting the temperature to 0 to 1700°C is effective in increasing the tensile strength. The temperature increase rate at that time is 350 to 45
In terms of physical properties, it is preferable that the temperature increase rate in the 0°C temperature range be 300°C/min or less, preferably 200°C/min or less.

また、350〜450℃の温度領域において2%以上の
延伸を行なうことも物性を向上させる上で有効である。
Further, it is also effective to perform stretching of 2% or more in the temperature range of 350 to 450°C in improving physical properties.

得られた炭素繊維はさらに2000℃以上の不活性雰囲
気中で加熱することによって、機械的特性の高い黒鉛化
繊維を得ることができる。
By further heating the obtained carbon fiber in an inert atmosphere at 2000° C. or higher, a graphitized fiber with high mechanical properties can be obtained.

[実施例] 以下、実施例により本発明をさらに具体的に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお、本例中におけるヨウ素吸着法によるΔLおよび樹
脂含浸ストランド物性は、それぞれ以下の方法により求
めた値である。
In this example, the ΔL measured by the iodine adsorption method and the physical properties of the resin-impregnated strand are values determined by the following methods.

ヨウ素吸着法によるΔL 繊維長5〜7cmの乾燥試料を約0.5g精秤し、20
0 mlの共栓付き三角フラスコに採り、これにヨウ素
溶液(I2  :51g、 2.4−ジクロロフェノー
ル10g、酢酸90gおよびヨウ化カリウム100gを
秤量し、11のメスフラスコに移して水で溶かして定容
とする)100mlを加えて、60℃で50分間振盪し
ながら吸着処理を行なう。
ΔL by iodine adsorption method Approximately 0.5 g of a dry sample with a fiber length of 5 to 7 cm was accurately weighed, and 20
Weigh out iodine solution (51 g of I2, 10 g of 2.4-dichlorophenol, 90 g of acetic acid, and 100 g of potassium iodide) into a 0 ml Erlenmeyer flask with a stopper, transfer to a volumetric flask No. 11, and dissolve with water. Add 100 ml of the solution to a constant volume and perform adsorption treatment while shaking at 60°C for 50 minutes.

ヨウ素を吸着した試料を流水中で30分間水洗した後、
遠心脱水(2000+pmX1分)してすばやく風乾す
る。この試料を開繊した後、ハンター型色差計[カラー
マシン(株)製、 CM−25型コで明度(L値)を測
定する(Ll)。
After washing the iodine-adsorbed sample in running water for 30 minutes,
Centrifuge dehydrate (2000+pm x 1 minute) and quickly air dry. After opening this sample, the lightness (L value) was measured using a Hunter type color difference meter [Model CM-25, manufactured by Color Machine Co., Ltd. (Ll).

一方、ヨウ素の吸着処理を行なわない対応の試料を開繊
し、同様に前記ハンター型色差計で明度(LO)を測定
し、Lo  Llにより明度差ΔLを求めた。
On the other hand, a corresponding sample that was not subjected to iodine adsorption treatment was opened, and the lightness (LO) was similarly measured using the Hunter type color difference meter, and the lightness difference ΔL was determined from LoLl.

樹脂含浸ストランド物性 ”ベークライト” ERL−4221/三フツ化ホウ素
モノエチルアミン(BF3・MEA)/アセトン=10
0/3/4部を炭素繊維に含浸し、得られた樹脂含浸ス
トランドを130℃で30分間加熱して硬化させ、JI
S−R−7601に規定する樹脂含浸ストランド試験法
に従って測定した値である。
Resin-impregnated strand physical properties "Bakelite" ERL-4221/Boron trifluoride monoethylamine (BF3/MEA)/Acetone = 10
Carbon fiber is impregnated with 0/3/4 part, and the resulting resin-impregnated strand is cured by heating at 130°C for 30 minutes.
This is a value measured according to the resin-impregnated strand test method specified in SR-7601.

実施例1 アクリロニトリル(AN)99.0モル%とメタクリル
酸1.0モル%からなる共重合体を用いて、濃度が20
重量%のジメチルスルホキシド(DMSO)溶液を作製
した。この溶液を焼結金属フィルターを用いて口過した
後、温度30℃に調整し、孔径0.12mmφ、ホール
数3000の紡糸口金を通して一旦空気中に吐出して約
5mmの空間を走らせた後、温度2℃、濃度30%のD
MSO水溶液中で凝固させた。凝固糸条を水洗後、4段
の延伸浴で4倍に延伸しシリコーン系油剤を付与した後
、130〜160℃に加熱されたローラー表面に接触さ
せて乾燥緻密化し、さらに4゜0 kg/cnfの加圧
スチーム中で3倍に延伸して単糸繊度0. 7d、  
)−タルデニール2100Dの繊維束を得た。得られた
アクリル繊維のΔLは18であった。
Example 1 Using a copolymer consisting of 99.0 mol% acrylonitrile (AN) and 1.0 mol% methacrylic acid, the concentration was 20%.
A wt % dimethyl sulfoxide (DMSO) solution was prepared. After passing this solution through a sintered metal filter, the temperature was adjusted to 30°C, and it was once discharged into the air through a spinneret with a hole diameter of 0.12 mmφ and a number of holes of 3000, and was run through a space of about 5 mm. D at a temperature of 2°C and a concentration of 30%
Coagulated in aqueous MSO. After washing the coagulated yarn with water, it is stretched 4 times in a four-stage drawing bath and coated with a silicone oil, and then brought into contact with a roller surface heated to 130 to 160°C to dry and densify it, and further 4°0 kg/ cnf in pressurized steam to a single yarn fineness of 0. 7d,
)-Tardenyl 2100D fiber bundle was obtained. The obtained acrylic fiber had a ΔL of 18.

得られた繊維束を10kg/aI!−Gに加圧された2
40〜260℃の空気中で、延伸比1. 0で連続的に
加熱し、密度が1. 35 g/an3の耐炎化繊維に
転換した。所要耐炎化時間は10分であった。得られた
耐炎化繊維の単糸強度は3.8g/dと高く、高強度が
要求される用途に最適であった。
The resulting fiber bundle weighs 10kg/aI! -2 pressurized to G
In air at 40-260°C, at a stretching ratio of 1. Heating continuously at 0, the density is 1. It was converted into flame resistant fiber of 35 g/an3. The required flame resistance time was 10 minutes. The single fiber strength of the obtained flame-resistant fiber was as high as 3.8 g/d, making it ideal for applications requiring high strength.

なお、得られた耐炎化繊維をさらに引き続いて最高温度
1400℃の窒素雰囲気中で炭化して炭素繊維を得た。
The obtained flame-resistant fibers were subsequently carbonized in a nitrogen atmosphere at a maximum temperature of 1400° C. to obtain carbon fibers.

その際の350〜450℃の温度領域での昇温速度は3
00’C/分であった。また350〜450℃の温度領
域での延伸率は3%であった。得られた炭素繊維は樹脂
含浸ストランド物性が強度640 kg/mm2.弾性
率29j/mm2と非常に高いものであった。
At that time, the temperature increase rate in the temperature range of 350 to 450℃ is 3
It was 00'C/min. Further, the stretching ratio in the temperature range of 350 to 450°C was 3%. The obtained carbon fiber has resin-impregnated strand physical properties such as a strength of 640 kg/mm2. The elastic modulus was extremely high at 29j/mm2.

比較例1 実施例1において、240〜260℃の空気中での耐炎
化圧力を常圧(Okg/cm2−G)として、延伸比1
.0で連続的に加熱し、密度が1. 35g/ an 
3の耐炎化繊維に転換した。所要耐炎化時間は60分で
あった。すなわち10kg/cm2−Gの加圧時に比べ
て6倍の時間が必要であった。しかも、得られた耐炎化
繊維の単糸強度は2.9g/dと低強度であった。
Comparative Example 1 In Example 1, the flameproofing pressure in air at 240 to 260°C was set to normal pressure (Okg/cm2-G), and the stretching ratio was 1.
.. Heating continuously at 0, the density is 1. 35g/an
3 was converted to flame-resistant fiber. The required flame resistance time was 60 minutes. In other words, the time required was six times longer than when pressurizing at 10 kg/cm2-G. Moreover, the single fiber strength of the obtained flame-resistant fiber was as low as 2.9 g/d.

さらに実施例1と同様にして炭化したところ、得られた
炭素繊維の樹脂含浸ストランド物性も強度595 kg
/mm2.弾性率27t/mm2と実施例1に比べて低
物性であった。
Furthermore, when carbonization was carried out in the same manner as in Example 1, the physical properties of the resin-impregnated strands of the obtained carbon fibers also showed a strength of 595 kg.
/mm2. The elastic modulus was 27 t/mm2, which was lower physical properties than Example 1.

実施例2〜4 実施例1において、240〜260℃の空気中での耐炎
化圧力を表1のように変え、延伸比1.0で加熱し、密
度が1.35g/an3の耐炎化繊維に転換した。得ら
れた耐炎化繊維の特性を表1に示す。
Examples 2-4 In Example 1, the flame-retardant pressure in air at 240-260°C was changed as shown in Table 1, and the flame-retardant fibers were heated at a drawing ratio of 1.0 and had a density of 1.35 g/an3. It was converted to Table 1 shows the properties of the flame-resistant fibers obtained.

さらに得られた耐炎化繊維を実施例1と同じ条件で炭化
して炭素繊維とした。得られた炭素繊維の特性を表1に
示す。
Furthermore, the obtained flame-resistant fiber was carbonized under the same conditions as in Example 1 to obtain carbon fiber. Table 1 shows the properties of the obtained carbon fiber.

(以下余白) [発明の効果] 本発明方法により、機械的特性の高いアクリル系耐炎化
繊維を生産性良く製造することが可能となり、高強度耐
熱性繊維を低コストで生産できる。
(The following is a blank space) [Effects of the Invention] The method of the present invention makes it possible to produce flame-resistant acrylic fibers with high mechanical properties with good productivity, and to produce high-strength heat-resistant fibers at low cost.

特に耐炎化の所要時間を従来の約1/2から1/20程
度にまで短縮することが可能になる。
In particular, the time required for flame resistance can be reduced to about 1/2 to 1/20 of the conventional time.

しかも得られた耐炎化繊維を引き続き炭化することによ
って機械的特性に優れたアクリル系炭素繊維が得られる
といった顕著な効果がある。
Furthermore, by subsequently carbonizing the obtained flame-resistant fiber, there is a remarkable effect that an acrylic carbon fiber having excellent mechanical properties can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)アクリル系プリカーサーを加圧下で耐炎化するこ
とを特徴とするアクリル系耐炎化繊維の製造方法。
(1) A method for producing flame-resistant acrylic fibers, which comprises making an acrylic precursor flame-resistant under pressure.
(2)加圧圧力が0.05〜100kg/cm^2−G
であることを特徴とする請求項(1)記載のアクリル系
耐炎化繊維の製造方法。
(2) Pressure is 0.05-100kg/cm^2-G
The method for producing an acrylic flame-resistant fiber according to claim (1).
JP6148890A 1989-03-17 1990-03-13 Production of acrylic fiber provided with flame resistance Pending JPH0376822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6148890A JPH0376822A (en) 1989-03-17 1990-03-13 Production of acrylic fiber provided with flame resistance

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP1-67153 1989-03-17
JP6715389 1989-03-17
JP11660289 1989-05-09
JP1-116602 1989-05-09
JP6148890A JPH0376822A (en) 1989-03-17 1990-03-13 Production of acrylic fiber provided with flame resistance

Publications (1)

Publication Number Publication Date
JPH0376822A true JPH0376822A (en) 1991-04-02

Family

ID=27297524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6148890A Pending JPH0376822A (en) 1989-03-17 1990-03-13 Production of acrylic fiber provided with flame resistance

Country Status (1)

Country Link
JP (1) JPH0376822A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088010A1 (en) * 2003-04-01 2004-10-14 Zimmer Aktiengesellschaft Method and device for producing post-stretched cellulose spun threads
US7204265B2 (en) 2002-02-13 2007-04-17 Zimmer Aktiengesellschaft Bursting insert

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204265B2 (en) 2002-02-13 2007-04-17 Zimmer Aktiengesellschaft Bursting insert
WO2004088010A1 (en) * 2003-04-01 2004-10-14 Zimmer Aktiengesellschaft Method and device for producing post-stretched cellulose spun threads
KR100691913B1 (en) * 2003-04-01 2007-03-09 짐머 악티엔게젤샤프트 Method and device for producing post-stretched cellulose spun threads
CN100410430C (en) * 2003-04-01 2008-08-13 齐默尔股份公司 Method and device for producing post-stretched cellulose spun threads

Similar Documents

Publication Publication Date Title
JP3933712B2 (en) Acrylonitrile-based precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber
JP5765420B2 (en) Carbon fiber bundle and method for producing carbon fiber
JP5720783B2 (en) Carbon fiber bundle and method for producing carbon fiber bundle
JP5691366B2 (en) Carbon fiber manufacturing method
WO2000005440A1 (en) Acrylonitril-based precursor fiber for carbon fiber and method for production thereof
JPS6211089B2 (en)
JP2006348462A (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JPH0376822A (en) Production of acrylic fiber provided with flame resistance
JPS6113004B2 (en)
JPH05195324A (en) Precursor for carbon fiber production and method for producing the precursor
JP4887219B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
JP5811529B2 (en) Carbon fiber bundle manufacturing method
GB1578492A (en) Production of carbon fibres
JPH04281008A (en) Acrylonitrile-based precursor fiber bundle
JP2946779B2 (en) Manufacturing method of graphitized fiber
JPH07292526A (en) Production of acrylic carbon fiber
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JP2011213774A (en) Polyacrylonitrile for producing carbon fiber, polyacrylonitrile-based precursor fiber, and method for producing carbon fiber
KR102216640B1 (en) Method of preparing polyacrylonitrile based fiber and polyacrylonitrile based copolymer used in the method
KR0123937B1 (en) Manufacturing process of precursive fiber for carbon fiber
JPH02300325A (en) Production of flameproof fiber
JPH02300324A (en) Production of flameproof fiber
JP2000119341A (en) Acrylonitrile-based polymer, and precursor fiber for carbon fiber using the same
JPH0433890B2 (en)