JP2946779B2 - Manufacturing method of graphitized fiber - Google Patents

Manufacturing method of graphitized fiber

Info

Publication number
JP2946779B2
JP2946779B2 JP3045491A JP3045491A JP2946779B2 JP 2946779 B2 JP2946779 B2 JP 2946779B2 JP 3045491 A JP3045491 A JP 3045491A JP 3045491 A JP3045491 A JP 3045491A JP 2946779 B2 JP2946779 B2 JP 2946779B2
Authority
JP
Japan
Prior art keywords
fiber
graphitized
temperature
graphitization
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3045491A
Other languages
Japanese (ja)
Other versions
JPH04272231A (en
Inventor
正芳 鷲山
要治 松久
龍夫 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TORE KK
Original Assignee
TORE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TORE KK filed Critical TORE KK
Priority to JP3045491A priority Critical patent/JP2946779B2/en
Publication of JPH04272231A publication Critical patent/JPH04272231A/en
Application granted granted Critical
Publication of JP2946779B2 publication Critical patent/JP2946779B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は黒鉛化繊維の製造方法、
特に黒鉛結晶性が高く、弾性率,強度に優れた黒鉛化繊
維の製造方法に関する。
The present invention relates to a method for producing graphitized fibers,
In particular, the present invention relates to a method for producing a graphitized fiber having high graphite crystallinity and excellent elastic modulus and strength.

【0002】[0002]

【従来の技術】炭素繊維はその優れた機械的特性、特に
比強度,比弾性率が高いことから、宇宙航空関係、レジ
ャー用品及び工業材料等の各種補強材料の強化材として
広く用いられている。特に弾性率の高い黒鉛化繊維にお
いては、その剛性を活用して薄肉の構造材とすることが
でき、一層の軽量化効果を実現している。しかしなが
ら、その性能は未だ十分でなく、さらに弾性率,強度の
高い高性能な黒鉛化繊維の開発が望まれている。
2. Description of the Related Art Carbon fibers are widely used as reinforcing materials for various reinforcing materials such as aerospace, leisure goods and industrial materials because of their excellent mechanical properties, particularly high specific strength and specific elastic modulus. . In particular, in the case of graphitized fibers having a high elastic modulus, a thin structural material can be obtained by utilizing the rigidity thereof, and a further weight saving effect is realized. However, its performance is not yet sufficient, and the development of a high-performance graphitized fiber having a higher elastic modulus and strength has been desired.

【0003】このような高性能な黒鉛化繊維を製造する
ためには、特に繊維の黒鉛結晶性を高め、より完全な結
晶構造に近づけることが重要である。
[0003] In order to produce such a high-performance graphitized fiber, it is particularly important to increase the graphite crystallinity of the fiber so as to approach a more complete crystal structure.

【0004】そのための技術として、例えば特公昭47
−50331号公報にはホウ素化合物の水溶液をアクリ
ル系酸化繊維に浸漬した後焼成する触媒黒鉛化技術が示
されており、また特開昭46−3908号公報には炭素
繊維を2000℃以上の高温度域で延伸する黒鉛化技術
が示されている。
[0004] As a technique for this purpose, for example, Japanese Patent Publication No. Sho 47
Japanese Patent No. 50331 discloses a catalyst graphitization technique in which an aqueous solution of a boron compound is immersed in an acrylic oxide fiber and then calcined. A graphitization technique for stretching in the temperature range is shown.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記し
たホウ素化合物を付着させる触媒黒鉛化では、繊維に対
してホウ素化合物の付着ムラが生じる問題、あるいは繊
維に付着させるのに要する時間が非常に長く連続生産が
困難であるといった問題がある。一方、炭素繊維を20
00℃以上で延伸する黒鉛化は、ピッチ,天然アスファ
ルトから得られる実質的に無定型,等方性の炭素質繊維
の高配向化を図ったものであって、得られる黒鉛化繊維
はたかだか弾性率が400GPa、強度が2.0GPa と、
今日の黒鉛化繊維分野で求められている高剛性・高強度
品とはほど遠いものしか得られていない。
However, in the graphitization of the catalyst for adhering the boron compound, the problem of uneven adhesion of the boron compound to the fiber or the time required for adhering to the fiber is extremely long. There is a problem that production is difficult. On the other hand, carbon fiber
Graphitization, which is performed at a temperature of 00 ° C. or higher, is intended to increase the orientation of a substantially amorphous, isotropic carbonaceous fiber obtained from pitch and natural asphalt, and the obtained graphitized fiber is at most elastic. Rate is 400GPa, strength is 2.0GPa,
Only products far from high rigidity and high strength products required in the field of graphitized fibers today are obtained.

【0006】本発明は、上記の従来技術に対し、黒鉛化
過程での結晶性を従来品に比して格段に向上させること
に着目し鋭意検討の結果、炭素繊維の黒鉛化処理を、加
圧不活性雰囲気中、加撚下で延伸しながら行うことが特
に効果的であることを見い出し、本発明に至った。すな
わち、本発明の課題は黒鉛結晶性が高く、弾性率,強度
が共に優れた黒鉛化繊維の製造方法を提供することにあ
る。
The present invention focuses on significantly improving the crystallinity in the graphitization process as compared with the conventional product, and as a result of intensive studies, the present invention has shown that graphitization of carbon fibers has been added. The present inventors have found that it is particularly effective to carry out stretching under twisting in a pressure inert atmosphere, and have reached the present invention. That is, an object of the present invention is to provide a method for producing graphitized fibers having high graphite crystallinity and excellent elastic modulus and strength.

【0007】[0007]

【課題を解決するための手段】本発明の上記課題は、2
000℃未満の焼成により得られた炭素繊維を、加圧不
活性雰囲気中、2000℃以上の温度で、加撚下、5%
以上の延伸を加えながら焼成することによって解決する
ことができる。
The above object of the present invention is to provide:
The carbon fiber obtained by firing at less than 000 ° C. is twisted at a temperature of 2,000 ° C. or more in a pressurized inert atmosphere at a temperature of not less than 5% under twisting.
The problem can be solved by firing while applying the above stretching.

【0008】以下、本発明の構成を順次説明する。Hereinafter, the configuration of the present invention will be sequentially described.

【0009】本発明においては、2000℃未満の焼成
によって得られた炭素繊維を、不活性雰囲気中、200
0℃以上の温度で、5%以上の延伸を加えながら黒鉛化
するが、その際,特に不活性雰囲気を加圧雰囲気とし、
しかも黒鉛化に供する炭素繊維には予め撚りを加えてお
くものである。
In the present invention, the carbon fiber obtained by firing at less than 2000 ° C.
At a temperature of 0 ° C. or more, the graphite is graphitized while being stretched by 5% or more.
Moreover, the carbon fibers to be graphitized are twisted in advance.

【0010】すなわち、2000℃までの炭化により生
成した黒鉛結晶を、さらに成長させるためには、不活性
雰囲気を加圧状態にして延伸を行う必要がある。これに
より黒鉛結晶の成長を一段と促進させることができる。
That is, in order to further grow the graphite crystal formed by carbonization up to 2000 ° C., it is necessary to perform stretching under a pressurized inert atmosphere. Thereby, the growth of the graphite crystal can be further promoted.

【0011】この場合の黒鉛化圧力は、高いほど結晶成
長の効果が大きく、好ましくは0.1Kg/cm 2 ・G以
上,より好ましくは0.5Kg/cm2 ・G以上,さらに
ましくは1.0Kg/cm2 ・G以上,特に好ましくは1.
5Kg/cm2 ・G以上である。一方、圧力の上限について
は、50Kg/cm2 ・Gを越える圧力では、温度も高いこ
とからオートクレーブ等の焼成装置に特殊なものが要求
されるため高価なものとなったり、連続焼成が困難とな
る等の点から経済的に不利となる場合がある。従って、
黒鉛化圧力としては、常圧を越える圧力状態、好ましく
は0.1〜50Kg/cm 2 ・G,より好ましくは0.5〜
50Kg/cm2 ・G,さらに好ましくは1.0〜30Kg/
cm2 ・G,特に好ましくは1.5〜10Kg/cm2 ・G程
度が実用的である。また圧力媒体には、窒素あるいはア
ルゴンなどの不活性ガスが好ましい。これらの圧力媒体
(加圧雰囲気)となるガスの供給方法としては、ボンベ
により供給してもよいし、コンプレッサーを用いて連続
的に供給することもできる。
In this case, the higher the graphitization pressure, the greater the effect of crystal growth, preferably 0.1 kg / cm 2 · G or less.
Above, more preferably 0.5 kg / cm 2 · G or more, even more preferably 1.0 kg / cm 2 · G or more, particularly preferably 1.
It is 5 kg / cm 2 · G or more. On the other hand, with respect to the upper limit of the pressure, if the pressure exceeds 50 kg / cm 2 · G, the temperature is high and special equipment is required for a firing apparatus such as an autoclave. In some cases, it is economically disadvantageous. Therefore,
As the graphitization pressure, a pressure state exceeding normal pressure, preferably
Is 0.1 to 50 kg / cm 2 · G, more preferably 0.5 to
50 kg / cm 2 · G, more preferably 1.0 to 30 kg /
cm 2 · G, particularly preferably about 1.5 to 10 kg / cm 2 · G is practical. The pressure medium is preferably an inert gas such as nitrogen or argon. As a method for supplying these pressure media (pressurized atmosphere), the gas may be supplied by a cylinder or may be supplied continuously by using a compressor.

【0012】黒鉛化温度としては、2000℃以上の温
度,好ましくは2500℃以上,より好ましくは280
0℃以上の温度とする。すなわち、炭化糸内部の結晶の
再配列を生じさせるためには2000℃以上の温度が必
要であり、2000℃未満の温度では結晶の再配列が起
こりにくく、加圧にしてもその効果が不充分である。上
限温度については特に限定するものではないが、炭素が
昇華しない温度までに止めるのが黒鉛化繊維の物性ある
いは黒鉛化炉の寿命延長などの面からも好ましい。また
加熱する際の昇温速度は、2000℃以上の温度域で、
好ましくは300℃/分以下,より好ましくは100℃
/分以下にすることが、黒鉛化繊維の緻密性を向上さ
せ、結晶の配向を進行させる上で効果的である。
The graphitization temperature is at least 2,000 ° C., preferably at least 2500 ° C., more preferably at least 280 ° C.
The temperature is 0 ° C. or higher. That is, in order to cause the rearrangement of the crystal inside the carbonized yarn, a temperature of 2000 ° C. or higher is required. At a temperature lower than 2000 ° C., the rearrangement of the crystal is unlikely to occur, and the effect is insufficient even when the pressure is applied. It is. The upper limit temperature is not particularly limited, but it is preferable to stop the temperature at a temperature at which carbon does not sublime, from the viewpoint of the physical properties of the graphitized fiber or the extension of the life of the graphitization furnace. In addition, the heating rate at the time of heating, in the temperature range of 2000 ° C. or more,
Preferably 300 ° C./min or less, more preferably 100 ° C.
/ Min or less is effective for improving the denseness of the graphitized fiber and for promoting the crystal orientation.

【0013】また黒鉛化の際の延伸条件は、5%以上、
好ましくは10%以上,より好ましくは15%以上の延
伸率とするのがよい。このような延伸条件は、黒鉛化に
おける結晶の再配向を最大限にするためであり、5%未
満の延伸率では配向度が低下し、物性低下の原因にな
る。延伸率の上限は特に限定するものではないが、黒鉛
化繊維の毛羽あるいは糸切れが生じないように、圧力,
温度によって適宜最適化することが好ましい。
The stretching conditions for graphitization are 5% or more,
The stretching ratio is preferably 10% or more, more preferably 15% or more. Such stretching conditions are for maximizing the reorientation of the crystals in the graphitization. At a stretching ratio of less than 5%, the degree of orientation is reduced, and the physical properties are reduced. The upper limit of the draw ratio is not particularly limited, but the pressure and the pressure are set so that the graphitized fibers do not fluff or break.
It is preferable to appropriately optimize the temperature.

【0014】一方、本発明においては、黒鉛化に先立ち
炭素繊維には加撚しておく。その撚数は好ましくは2タ
ーン/m以上、より好ましくは5ターン/m以上、さら
に好ましくは10ターン/m以上である。加撚の上限
は、30ターン/mを越えると、糸が捻れて延伸の効果
が出し難く、さらに糸傷みの原因にもなり、黒鉛化繊維
の引張強度が低下する場合がある。炭素繊維への加撚
は、プリカーサー、耐炎化繊維および炭素繊維のいずれ
の段階で施してもよく、この加撚によって被処理繊維を
加圧雰囲気下での延伸・黒鉛化おける、単糸切れ、焼成
装置のシール栓部分との摩擦による毛羽の発生、さらに
前記シール栓からの吹出しガスによる繊維の損傷等を未
然に防止することができる。換言すれば、この黒鉛化に
先立つ炭素繊維への加撚によって、炭素繊維の加圧・延
伸黒鉛化がはじめて可能になる。
On the other hand, in the present invention, carbon fibers are twisted prior to graphitization. The number of twists is preferably at least 2 turns / m, more preferably at least 5 turns / m, even more preferably at least 10 turns / m. If the upper limit of twisting exceeds 30 turns / m, the yarn is twisted, making it difficult to obtain the effect of drawing, and further causing yarn damage, which may lower the tensile strength of the graphitized fiber. Twisting of the carbon fiber may be performed at any stage of the precursor, the oxidized fiber and the carbon fiber. By this twisting, the fiber to be treated is stretched and graphitized under a pressurized atmosphere, the single yarn breaks, It is possible to prevent the generation of fluff due to the friction with the seal stopper portion of the firing device, and the damage of the fibers due to the gas blown out from the seal stopper. In other words, by twisting the carbon fiber prior to the graphitization, it is possible to pressurize and stretch the carbon fiber for the first time.

【0015】以上の黒鉛化の焼成方法としては、連続焼
成が好ましく、また黒鉛化炉の糸入口および糸出口シー
ルを平滑にすると共に、糸束径に対してシール栓の開口
径を最適化すること等は、糸傷みおよび不活性ガスの吹
き出し量をコントロールする上からも望ましいことであ
る。得られた黒鉛化繊維は、必要に応じて従来公知の技
術により表面処理,サイジング剤付与等を行うことがで
きる。
As the firing method for graphitization, continuous firing is preferable. In addition, the yarn inlet and outlet seals of the graphitizing furnace are smoothed, and the opening diameter of the seal stopper is optimized with respect to the yarn bundle diameter. This is also desirable from the viewpoint of controlling the amount of yarn damage and the amount of inert gas blown out. The obtained graphitized fiber can be subjected to a surface treatment, a sizing agent application, and the like, if necessary, by a conventionally known technique.

【0016】本発明における炭素繊維には、2000℃
未満の焼成により得られたアクリル系炭素繊維,ピッチ
系炭素繊維およびレーヨン系炭素繊維等が適用できる
が、それらの代表例として、以下にアクリル系炭素繊維
の製造例を説明しておく。
The carbon fiber in the present invention has a temperature of 2000 ° C.
Acrylic carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, and the like obtained by calcination of less than 10% can be applied, and examples of the production of acrylic carbon fiber will be described below as typical examples thereof.

【0017】すなわち、まずアクリル系重合体として
は、90モル%以上のアクリロニトリルと10モル%以
下の共重合可能なビニル系モノマー、例えばアクリル
酸,メタクリル酸,イタコン酸およびそれらのアルカリ
金属塩,アンモニウム塩および低級アルキルエステル
類,アクリルアミドおよびその誘導体,アリルスルホン
酸,メタリルスルホン酸およびそれらの塩類またはアル
キルエステル類などの共重合体を挙げることができる。
共重合が10モル%を超すと、後述する耐炎化工程で単
糸間接着が生じ易くなり好ましくない。
That is, first, as the acrylic polymer, a copolymerizable vinyl monomer of 90 mol% or more and acrylonitrile of 10 mol% or less, for example, acrylic acid, methacrylic acid, itaconic acid and their alkali metal salts, ammonium Copolymers such as salts and lower alkyl esters, acrylamide and derivatives thereof, allylsulfonic acid, methallylsulfonic acid, and salts or alkyl esters thereof can be given.
If the copolymerization exceeds 10 mol%, adhesion between single yarns is likely to occur in a flame-proofing step described below, which is not preferable.

【0018】重合法については、従来公知の溶液重合,
懸濁重合,乳化重合などを適用することができるが、重
合度としては紡糸性および単糸間接着防止のため、極限
粘度([η])で好ましくは1.2以上、より好ましくは
1.7以上にするのがよい。
As for the polymerization method, conventionally known solution polymerization,
Suspension polymerization, emulsion polymerization and the like can be applied, but the degree of polymerization is preferably at least 1.2, more preferably 1. 1 in intrinsic viscosity ([η]), in order to prevent spinnability and prevent adhesion between single yarns. It is good to be 7 or more.

【0019】紡糸方法には湿式紡糸法,乾湿式紡糸法あ
るいは乾式紡糸法などを採用できる。得られた凝固糸は
従来公知の浴延伸,スチーム延伸,工程油剤付与,乾燥
緻密化などを行うことによって所定のデニール,配向度
を有する前駆体繊維(プリカーサー)とする。
As the spinning method, a wet spinning method, a dry-wet spinning method or a dry spinning method can be employed. The obtained coagulated yarn is subjected to conventionally known bath drawing, steam drawing, application of a process oil agent, drying and densification, etc., to obtain a precursor fiber (precursor) having a predetermined denier and orientation degree.

【0020】黒鉛結晶性を向上させるために、プリカー
サーの緻密性を向上させておくことが有効である。プリ
カーサーの緻密性は、ヨウ素吸着法によるΔLの値とし
て、好ましくは50以下,より好ましくは30以下,さ
らに好ましくは10以下がよい。ヨウ素吸着法によるΔ
Lの値が50以下の緻密なプリカーサーを得るための手
段としては、紡糸原液および凝固浴液の低温化および凝
固時の低張力化,延伸倍率および延伸温度の適正化など
が有効である。
In order to improve graphite crystallinity, it is effective to improve the denseness of the precursor. The denseness of the precursor is preferably 50 or less, more preferably 30 or less, and still more preferably 10 or less, as a value of ΔL measured by an iodine adsorption method. Δ by iodine adsorption method
Effective means for obtaining a dense precursor having a value of L of 50 or less include lowering the temperature of the spinning solution and the coagulation bath solution, lowering the tension during coagulation, and optimizing the draw ratio and drawing temperature.

【0021】かかるプリカーサーの耐炎化条件として
は、200〜300℃の酸化性雰囲気中、緊張あるいは
延伸条件下で、密度が好ましくは1.30g /cm3
上,より好ましくは1.35g /cm3 以上になるまで加
熱するのがよい。すなわち、耐炎化が不十分であると、
炭化する際に単糸間接着などを起こしやすくなり、高弾
性・高強度の黒鉛化繊維を得るには、耐炎化糸の密度は
1.30g /cm3 以上が好ましい。雰囲気については、
空気,酸素,二酸化窒素,塩化水素など公知の酸化性雰
囲気を採用できるが、経済性の面から空気が好ましい。
The oxidizing conditions of such a precursor are as follows: the density is preferably 1.30 g / cm 3 or more, more preferably 1.35 g / cm 3 , in an oxidizing atmosphere at 200 to 300 ° C. under tension or stretching conditions. It is better to heat until the above. That is, if the flame resistance is insufficient,
The density of the flame-resistant yarn is preferably 1.30 g / cm 3 or more in order to easily cause adhesion between single yarns during carbonization and to obtain graphitized fibers having high elasticity and high strength. For the atmosphere,
A known oxidizing atmosphere such as air, oxygen, nitrogen dioxide, and hydrogen chloride can be employed, but air is preferred from the viewpoint of economy.

【0022】炭化の処理には、最高2000℃未満の温
度で、300〜500℃および1000〜1200℃の
温度領域において、500℃/分以下、好ましくは30
0℃/分以下、さらに好ましくは100℃/分以下の昇
温速度で炭化することが緻密性を向上させる上で有効で
ある。このとき、熱による結晶の配向緩和を防ぐため
に、好ましくは5%以上、より好ましくは10%以上の
延伸を加えることが有効である。
The carbonization treatment is performed at a maximum temperature of less than 2000.degree. C. and in a temperature range of 300 to 500.degree. C. and 1000 to 1200.degree.
It is effective to carbonize at a heating rate of 0 ° C./min or less, more preferably 100 ° C./min or less, in order to improve the compactness. At this time, it is effective to add a stretching of preferably 5% or more, more preferably 10% or more, in order to prevent the orientation of the crystal from being relaxed by heat.

【0023】このようにして得られる炭素繊維には、加
撚状態として、本発明における加圧雰囲気下での延伸黒
鉛化を施すが、炭素繊維への加撚はプリカーサー,耐炎
化繊維および炭素繊維のいずれの段階でもよいことは、
前述したとおりである。
The carbon fiber thus obtained is subjected to drawing graphitization in a pressurized atmosphere in the present invention in a twisted state, and the carbon fiber is twisted by a precursor, an oxidized fiber and a carbon fiber. It can be at any stage of
As described above.

【0024】[0024]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。なお、本実施例におけるΔL,結晶サイズL
c,配向度π002 , 樹脂含浸ストランド特性は、それ
ぞれ以下の方法により求めた値である。
The present invention will be described more specifically with reference to the following examples. In this embodiment, ΔL and crystal size L
c, the degree of orientation π002, and the resin-impregnated strand characteristics are values obtained by the following methods, respectively.

【0025】ヨウ素吸着法によるΔL 繊維長5〜7cmの乾燥試料を約0.5g精秤し、200
mlの共栓付き三角フラスコに採り、これにヨウ素溶液
(I2 :51g,2,4-ジクロロフェノール10g,酢酸
90gおよびヨウ化カリウム100gを秤量し、1lの
メスフラスコに移して水で溶かして定容とする)100
mlを加えて、60℃で50分間振盪しながら吸着処理を
行う。ヨウ素を吸着した試料を流水中で30分間水洗し
た後、遠心脱水(2000 rpm×1分)してすばやく風
乾する。この試料を開繊した後、ハンター型色差計[カ
ラーマシン(株)製,CM-25型]で、明度(L値)を測定
する(L1 )。
About 0.5 g of a dry sample having a ΔL fiber length of 5 to 7 cm by the iodine adsorption method was precisely weighed,
Then, the solution was taken into a 1 ml Erlenmeyer flask with a stopper and an iodine solution (I 2 : 51 g, 2,4-dichlorophenol 10 g, acetic acid 90 g, and potassium iodide 100 g) were weighed, transferred to a 1-liter volumetric flask and dissolved with water. Constant volume) 100
Add ml, and perform adsorption treatment while shaking at 60 ° C for 50 minutes. The sample adsorbed with iodine is washed with running water for 30 minutes, then centrifugally dehydrated (2000 rpm × 1 minute) and quickly air-dried. After opening the sample, the lightness (L value) is measured (L 1 ) with a Hunter-type color difference meter [CM-25, manufactured by Color Machine Co., Ltd.].

【0026】一方、ヨウ素の吸着処理を行わない対応の
試料を開繊し、同様に前記ハンター型色差計で、明度
(L0 )を測定し、L0 −L1 により明度差ΔLを求め
た。
On the other hand, the corresponding sample not subjected to the iodine adsorption treatment was opened, the lightness (L 0 ) was measured by the hunter type color difference meter, and the lightness difference ΔL was obtained from L 0 -L 1 . .

【0027】結晶サイズLc 繊維束を40mm長に切断して、20mgを精秤採取し、試
料繊維軸が正確に平行になるようにそろえた後、試料調
整用治具を用いて幅1mmの厚さが均一な試料繊維束に整
えた。薄いコロジオン液を含浸させて形態がくずれない
ように固定した後、広角X線回折測定試料台に固定し
た。X線源としては、理学電気社製のX線発生装置を用
いて、35kV−15mAの出力のCuKα線(Niフ
ィルター使用)を用いた。理学電機社製のゴニオメータ
ーを用い、透過法によりグラファイトの面指数(00
2)に相当する2θ=26゜近傍の回折ピークをシンチ
レーションカウンターにより検出した。
The crystal size Lc fiber bundle is cut into a length of 40 mm, 20 mg is precisely weighed and sampled, and the sample fiber axes are aligned so as to be exactly parallel. The sample fiber bundle was prepared into a uniform sample fiber bundle. After being impregnated with a thin collodion solution and fixed so as not to lose its shape, it was fixed to a sample table for wide-angle X-ray diffraction measurement. As the X-ray source, an X-ray generator manufactured by Rigaku Denki KK was used, and a CuKα ray (using a Ni filter) having an output of 35 kV-15 mA was used. Using a goniometer manufactured by Rigaku Denki Co., the surface index of graphite (00
A diffraction peak near 2θ = 26 ° corresponding to 2) was detected by a scintillation counter.

【0028】上記、回折ピークにおける半価幅から下式
を用いて結晶サイズLcを求めた。 Lc=λ/(β0 COS θ) ただし、λは用いたX線の波長(ここではCuKα線を
用い、1.5418オングストローム)であり、θはBragg の
回折角である。また、β0 は真の半価幅であり、次式に
より求めた。
The crystal size Lc was determined from the half width at the diffraction peak using the following equation. Lc = λ / (β 0 COS θ) where λ is the wavelength of the used X-ray (here, 1.5K angstroms using CuKα ray), and θ is the diffraction angle of Bragg. Β 0 is the true half-value width, which was determined by the following equation.

【0029】β0 2 =βE 2 −βL 2 (βE :見掛けの半価巾,βL :装置定数(この場合1.
05×10-2rad ))結晶配向度π002 結晶サイズLcの場合と同様に試料を調整し、同様の解
析方法により得られた(002)回折の最高強度を含む
子午線方向のプロフィルの広がりの半価幅(H゜)から
次式を用いて結晶配向度π002 (%)を求めた。
Β 0 2 = β E 2 −β L 2E : apparent half width, β L : apparatus constant (in this case, 1.
05 × 10 -2 rad)) Crystal orientation degree π002 The sample was adjusted in the same manner as in the case of the crystal size Lc, and a half of the spread of the profile in the meridian direction including the highest intensity of the (002) diffraction obtained by the same analysis method. The degree of crystal orientation π 002 (%) was determined from the valence width (H ゜) using the following equation.

【0030】 π002 =[(180−H)/180]×100樹脂含浸ストランド特性 炭素繊維束に“ベークライト”ERL−4221/三フ
ッ化ほう素モノエチルアミン(BF3 MEA)/アセト
ン=100/3/4部を含浸し、得られた樹脂含浸スト
ランドを130℃で30分間加熱して硬化させ、JIS
−R−7601に規定する樹脂含浸ストランド試験法に
従って測定した。
The π 002 = [(180-H ) / 180] × 100 resin-impregnated strands characteristic carbon fiber bundle to "Bakelite" ERL-4221 / boron trifluoride monoethyl amine (BF 3 MEA) / acetone = 100/3 / 4 parts, and the obtained resin-impregnated strands were cured by heating at 130 ° C. for 30 minutes.
-Measured according to the resin impregnated strand test method specified in R-7601.

【0031】実施例1,実施例2,比較例1 アクリロニトリル(AN)99.5モル%と、メタクリ
ル酸0.5モル%からなる共重合体を用いて、濃度が2
0重量%のジメチルスルホキシド(DMSO)溶液を作
製した。この溶液を35℃に調整し、孔径0.12mm,
ホール数3000の紡糸口金を通して一旦空気中に吐出
して約3mmの空間を走らせた後、温度5℃,濃度30%
のDMSO溶液中で凝固させた。凝固糸条を水洗後、3
段階の浴延伸で3.5倍に延伸し、シリコーン系油剤を
付与した後、130〜160℃に加熱されたローラー表
面に接触させて乾燥緻密化し、さらに3.6Kg/cm2
Gの加圧スチーム中で3倍に延伸して単糸繊度0.75
d,トータルデニール2250Dの繊維束を得た。該繊
維束のΔLは30であった。
Example 1, Example 2, Comparative Example 1 Using a copolymer consisting of 99.5 mol% of acrylonitrile (AN) and 0.5 mol% of methacrylic acid, the concentration was 2
A 0% by weight dimethyl sulfoxide (DMSO) solution was prepared. The solution was adjusted to 35 ° C., and the pore size was 0.12 mm,
Once it is discharged into the air through a spinneret with 3,000 holes and runs through a space of about 3 mm, the temperature is 5 ° C and the concentration is 30%.
In DMSO solution. After washing the coagulated yarn with water,
After stretching by 3.5 times by bath stretching in a step, applying a silicone-based oil agent, it is brought into contact with a roller surface heated to 130 to 160 ° C. to be dried and densified, and further to 3.6 kg / cm 2.
Stretched 3 times in pressurized steam of G, and single yarn fineness 0.75
d, A fiber bundle of total denier 2250D was obtained. ΔL of the fiber bundle was 30.

【0032】得られた繊維束を240〜280℃の空気
中で、5%の延伸率で加熱し、密度1.36g /cm3
耐炎化繊維に転換し、900℃の不活性雰囲気中で5%
の延伸率で前炭化を行い、さらに1600℃で5%の延
伸率の加熱を行い炭素繊維とした。300℃〜500℃
および1000℃〜1200℃での昇温速度は、それぞ
れ200℃/分および500℃/分であった。
The obtained fiber bundle is heated in air at 240 to 280 ° C. at a draw ratio of 5% to convert the fiber bundle into oxidized fiber having a density of 1.36 g / cm 3 , and in an inert atmosphere at 900 ° C. 5%
Pre-carbonization was performed at a stretching ratio of 5%, and heating was performed at 1600 ° C. at a stretching ratio of 5% to obtain carbon fibers. 300 ° C to 500 ° C
And the rate of temperature rise at 1000 ° C to 1200 ° C were 200 ° C / min and 500 ° C / min, respectively.

【0033】次に、得られた炭素繊維を15ターン/m
まで加撚し、アルゴンで0.1Kg/cm 2 ・G と3Kg/cm
2 ・G の2条件について加圧保持された加圧黒鉛化炉に
連続的に供給して、3000℃,30%延伸で連続的に
黒鉛化を行った。また、比較用サンプルとして、同様な
方法で常圧下(0Kg/cm2 ・G ),3000℃,30%
延伸で黒鉛化を行った。いずれの黒鉛化糸も表面処理
後、サイジング剤を付与した。
Next, the obtained carbon fiber was subjected to 15 turns / m
Twist to 0.1 kg / cm 2 · G and 3 kg / cm with argon
It was continuously supplied to a pressurized graphitizing furnace held under pressure under two conditions of 2 · G , and was continuously graphitized at 3000 ° C. and 30% elongation. In addition, as a comparative sample, the same method under normal pressure (0 kg / cm 2 · G), 3000 ° C., 30%
Graphitization was performed by stretching. After the surface treatment, a sizing agent was applied to each of the graphitized yarns.

【0034】樹脂含浸ストランド特性を測定した結果、
表1に示すように,加圧下で得られた黒鉛化繊維は、常
圧下で得られた黒鉛化繊維に比べて弾性率および強度が
いずれも大幅に向上していた。
As a result of measuring the characteristics of the resin-impregnated strand,
As shown in Table 1, the graphitized fiber obtained under pressure had significantly improved elastic modulus and strength compared to the graphitized fiber obtained under normal pressure.

【0035】X線回折の結果、常圧下で得られた黒鉛化
繊維に比べ、加圧下で得られた黒鉛化繊維は、加圧に
することによって結晶性(配向度,結晶サイズ)が高い
黒鉛化繊維が得られた。
The results of X-ray diffraction, compared with the graphite fibers obtained in atmospheric pressure, the graphitized fiber obtained under pressure, crystallinity (degree of orientation, crystal size) by the pressure is high Graphitized fibers were obtained.

【0036】比較例2 実施例1で用いた炭素繊維を25ターン/mまで加撚
し、加圧黒鉛化炉を用いて、3Kg/cm2 ・G の加圧下,
3000℃で、3%の延伸で連続的に黒鉛化を行った。
Comparative Example 2 The carbon fiber used in Example 1 was twisted up to 25 turns / m, and was pressed under a pressure of 3 kg / cm 2 · G using a pressurized graphitization furnace.
Graphitization was continuously performed at 3000 ° C. by stretching at 3%.

【0037】得られた黒鉛化繊維のX線回折の結果、配
向度π002 が93.0%,結晶サイズLcが62オング
ストロームであった。また、樹脂含浸ストランド特性を
測定した結果、弾性率510GPa ,強度3.2GPaであ
り、実施例1の30%延伸の黒鉛化糸に比べて弾性率,
強度とも低かった。
As a result of X-ray diffraction of the obtained graphitized fiber, the degree of orientation π 002 was 93.0% and the crystal size Lc was 62 Å. Also, the resin impregnated strand characteristics were measured, and as a result, the elastic modulus was 510 GPa and the strength was 3.2 GPa.
The strength was low.

【0038】比較例3 実施例1における無撚の炭素繊維を、3Kg/cm2 ・G の
加圧下,3000℃,30%延伸で黒鉛化を行ったが、
加圧黒鉛化炉のシール栓部分で毛羽が発生し、糸切れを
起した。
Comparative Example 3 The non-twisted carbon fiber in Example 1 was graphitized at 3000 ° C. and 30% under a pressure of 3 kg / cm 2 · G.
Fluff was generated at the seal stopper of the pressurized graphitizing furnace, and the yarn was broken.

【0039】実施例,比較例4〜5 実施例1の炭素繊維を用い、表2に示したように,撚
数,圧力,温度および延伸比を変えて、連続的に黒鉛化
を行った。
Examples 3 to 8 and Comparative Examples 4 to 5 As shown in Table 2, the graphitization was continuously performed using the carbon fiber of Example 1 by changing the number of twists, the pressure, the temperature and the stretching ratio. went.

【0040】表2からわかるように、加撚状態のもと
で、圧力が高い程、温度が高い程、そして延伸率が高い
程、黒鉛化繊維は結晶性が向上し、弾性率,強度に優れ
た黒鉛化繊維を得ることができる。
As can be seen from Table 2, under the twisted state, the higher the pressure, the higher the temperature, and the higher the draw ratio, the higher the crystallinity of the graphitized fiber and the higher the elasticity and strength. An excellent graphitized fiber can be obtained.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】本発明の黒鉛化方法によれば、黒鉛結晶
性が容易に向上し、弾性率,強度が共に優れた炭素繊維
を容易に製造することができる。
According to the graphitization method of the present invention, it is possible to easily produce graphite having improved graphite crystallinity and excellent elastic modulus and strength.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) D01F 9/12 - 9/32 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) D01F 9/12-9/32

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2000℃未満の焼成により得られた炭素
繊維を、加圧不活性雰囲気中、2000℃以上の温度
で、加撚下、5%以上の延伸を加えながら焼成すること
を特徴とする黒鉛化繊維の製造方法。
1. A carbon fiber obtained by firing at a temperature of less than 2000 ° C. is fired in a pressurized inert atmosphere at a temperature of 2000 ° C. or more, while being twisted and stretched by 5% or more. Of producing graphitized fibers.
【請求項2】請求項1において、炭素繊維の撚数が2〜
30ターン/mであることを特徴とする黒鉛化繊維の製
造方法。
2. The method according to claim 1, wherein the number of twists of the carbon fiber is 2 to 2.
A method for producing a graphitized fiber, wherein the production speed is 30 turns / m.
JP3045491A 1991-02-25 1991-02-25 Manufacturing method of graphitized fiber Expired - Fee Related JP2946779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3045491A JP2946779B2 (en) 1991-02-25 1991-02-25 Manufacturing method of graphitized fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3045491A JP2946779B2 (en) 1991-02-25 1991-02-25 Manufacturing method of graphitized fiber

Publications (2)

Publication Number Publication Date
JPH04272231A JPH04272231A (en) 1992-09-29
JP2946779B2 true JP2946779B2 (en) 1999-09-06

Family

ID=12304355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3045491A Expired - Fee Related JP2946779B2 (en) 1991-02-25 1991-02-25 Manufacturing method of graphitized fiber

Country Status (1)

Country Link
JP (1) JP2946779B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7358793B2 (en) 2018-06-18 2023-10-11 東レ株式会社 Method for manufacturing carbon fiber bundles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780154A (en) * 1994-03-22 1998-07-14 Tokuyama Corporation Boron nitride fiber and process for production thereof
DE102012004118A1 (en) * 2011-10-26 2013-05-02 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Carbon fibers, carbon fiber precursors and their production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7358793B2 (en) 2018-06-18 2023-10-11 東レ株式会社 Method for manufacturing carbon fiber bundles

Also Published As

Publication number Publication date
JPH04272231A (en) 1992-09-29

Similar Documents

Publication Publication Date Title
JP5264150B2 (en) Carbon fiber strand and method for producing the same
EP1130140B1 (en) Acrylonitril-based precursor fiber for carbon fiber and method for production thereof
JP4228009B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JPS6328132B2 (en)
JP7342700B2 (en) Carbon fiber bundle and its manufacturing method
JP2946779B2 (en) Manufacturing method of graphitized fiber
JPH086210B2 (en) High-strength and high-modulus carbon fiber and method for producing the same
JPH05195324A (en) Precursor for carbon fiber production and method for producing the precursor
JP4446991B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP3002549B2 (en) Manufacturing method of graphite fiber
JP2636509B2 (en) Carbon fiber and method for producing the same
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JPH02289121A (en) Production of carbon fiber
JP2004183194A (en) Carbon fiber bundle, acrylonitrile-based precursor fiber to the carbon fiber and method for producing the same
JP3303424B2 (en) Method for producing acrylic carbon fiber
JPS6141326A (en) Preparation of precursor for carbon fiber
JP2707845B2 (en) Method for producing acrylonitrile-based graphitized fiber
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JP2004060126A (en) Carbon fiber and method for producing the same
JP7319955B2 (en) Carbon fiber precursor fiber bundle, flameproof fiber bundle, method for producing them, and method for producing carbon fiber bundle
JPH02264011A (en) Acrylic fiber for graphite fibers
JP2022113763A (en) Manufacturing method of carbon fiber bundle
JPH02300324A (en) Production of flameproof fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees